
Model-based intensification of
CHO cell cultures: One-step
strategy from fed-batch to
perfusion

Anne Richelle1*, Brandon Corbett2, Piyush Agarwal2,
Anton Vernersson3, Johan Trygg3 and Chris McCready2

1Sartorius Corporate Research, Brussels, Belgium, 2Sartorius Corporate Research, Toronto, ON,
Canada, 3Sartorius Corporate Research, Umeå, Sweden

There is a growing interest in continuous processing of the biopharmaceutical

industry. However, the technology transfer from traditional batch-based

processes is considered a challenge as protocol and tools still remain to be

established for their usage at the manufacturing scale. Here, we present a

model-based approach to design optimized perfusion cultures of Chinese

Hamster Ovary cells using only the knowledge captured during small-scale

fed-batch experiments. The novelty of the proposedmodel lies in the simplicity

of its structure. Thanks to the introduction of a new catch-all variable

representing a bulk of by-products secreted by the cells during their

cultivation, the model was able to successfully predict cellular behavior

under different operating modes without changes in its formalism. To our

knowledge, this is the first experimentally validatedmodel capable, with a single

set of parameters, to capture culture dynamic under different operating modes

and at different scales.
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1 Introduction

Currently, only one out of every 10,000 new drug candidates reaches the market. It

takes on average 10 years from the discovery of a drug compound until its approval by

federal agencies. The probability of clinical success is less than 10% (from Phase one to

launch) (Dowden and Munro, 2019; Berdigaliyev and Aljofan, 2020). As a consequence,

the cost of drug development is constantly increasing, with a current annual expenditure

of more than 2 billion euros, while the actual revenues do not follow the same trend

(DiMasi et al., 2016; Wouters et al., 2020).

In this context, we observe that biopharmaceutical companies tend to outsource their

early activities in order to reduce their costs and to be more agile around potential market

disruption (Mallapaty, 2017; Landhuis, 2018). This implies a growing need to accelerate

the operational tasks (process development and product manufacturing). The path to
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acceleration for biopharmaceutical industry relies mostly on

digitalization of process information (to fasten process

development) and intensification of operations (to increase

productivity and enable more flexibility in the production)

(Steinwandter et al., 2019; Narayanan et al., 2022).

Digital bioprocessing is expected to provide significant

competitive advantage to industry adopters (e.g., rapid process

prototyping, improved process performance and product quality,

and de-risked transfer to manufacturing) (Portela et al., 2021;

Narayanan et al., 2022). This digital transformation requires the

computerization of the information used and generated at each

step of a product development process. Once all the information

is digitized, it needs to be accessible, organized and

contextualized (i.e., data management). This structured digital

information can therefore be used to feed data analytics and

associated modeling tools to generate valuable insights for

further process optimization and control, thereby fasten

process development (Finelli and Narasimhan, 2020; Banner

et al., 2021; Wasalathanthri et al., 2021).

Today, the industry standard for proteins production, such as

monoclonal antibodies, is a fed-batch process (Chen et al., 2018;

Ha et al., 2022). However, the productivity of such a process can

be significantly improved by implementing a continuous culture

strategy to intensify the volumetric productivity. Such approach

can lead to an increase up to 10-fold of space-time yields,

therefore leading to a reduction of production time by 30%

(Müller et al., 2022). These improvements enable opportunity for

much smaller facilities with similar or larger productivity

outputs, limiting the capital investment (for facilities and raw

material costs) and providing manufacturing flexibility and

sustainability (Bielser et al., 2018; Chen et al., 2018; Müller

et al., 2022).

Such transition from traditional (fed)-batch to continuous

manufacturing is facilitated by the emergence of various

technological enablers (Rathore et al., 2022) and is

encouraged by health authorities (i.e., US Food and Drug

Administration). However, the adoption is relatively slow as

many challenges remain. Indeed, scale-downmodels, decisional

tools, equipment and procedures currently in place, in most

companies, have been developed for fed-batch processes and

cannot be transposed without significant changes (Chen et al.,

2018). Therefore, this transition might be seeming a high cost

and time demand investment to modify existing process

development protocols (Papathanasiou et al., 2017; Bielser

et al., 2018; Müller et al., 2022). In this context, advanced

computational tools could be used to elucidate changes in

process dynamics and assess the influence of varying

operating scenarios. These in-silico tools provide testing

platforms for early determination of process bottlenecks at

minimum experimental costs and enable the design of

advanced optimization strategies that will lead to optimal

and stable operation (Papathanasiou et al., 2017; Rathore

et al., 2022).

While this burden for digital transition and technology

transfer has been observed in the past (and successfully

overcome) in other industry sector (e.g., petrochemical

companies, aeronautics), biopharma faces the additional

challenge of its operation relying on complex biological

systems that cannot be easily described with known first

principles rules (Strube et al., 2018). Numerous modelling

studies successfully characterizing the influence of measurable

process conditions on culture dynamic exist in literature

(Smiatek et al., 2020; Wang et al., 2020; Tsopanoglou and

Jiménez del Val, 2021; Babi et al., 2022; Schwarz et al., 2022).

Unfortunately, they often depend on numerous measurements

not often available at manufacturing scale and/or complex

modeling and optimization procedures requiring important

computational expertise. Therefore, these model-based

intensification strategies are difficult to transfer at industrial

scale in spite of their most likely success (Papathanasiou et al.,

2017; Papathanasiou and Kontoravdi, 2020). Here, we focused on

the development of a modeling structure enabling the description

of upstream bioprocess dynamics and the transfer between

operations (specifically, from fed-batch to continuous culture)

at different scales (from Ambr® 250 to Univessel® 2L) with a

single set of kinetic parameters. We have demonstrated that the

growth model identified using fed-batch cell cultures can be used

to design intensified culture conditions in a one-step strategy. To

our knowledge, this is the first experimentally validated

methodology providing simulation capabilities appropriate for

optimization and system configuration decisions within

biopharmaceutical process development and advanced control

activities.

2 Materials and methods

2.1 Cell line, inoculum development,
medium and analytical methods

Chinese Hamster Ovary (CHO) DG44 cell line (Sartorius)

expressing a monoclonal antibody (mAb, IgG1) was used. All

experiments were carried out using the same chemically defined

media (Sartorius) and Stock Culture Medium (SCM) for the seed

train. The seed train cultures were performed in 5 steps. For the

fed-batch processes, these pre culture steps were performed in

(unbaffled) shake flasks. For the perfusion culture, the last pre-

culture step was performed in a 2L Univessel®. The first and

second pre culture steps were performed in SCM with 15nM

MTX while the others were without MTX. Cells were seeded at

0.2 × 106 cells/mL and split every 3–4 days. The incubators

settings for the shake flasks were: 7.5% CO2, temperature at

36.8°C, 80% humidity, 120 rpm for agitation with an orbital

diameter of 50 mm. Fed-batch, intensified and perfusion

cultures were performed with a production medium (PM -

Sartorius) and with two feed media (FMA and FMB
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-Sartorius). Cell growth (VCC and viability) were measured

using a Flex analyzer (Nova Biomedical).

2.2 Fed-batch and intensified cultures in
Ambr® 250

The fed-batch (Experiments 1-4) and intensified cultures

(Experiment 5-7) were performed in Ambr® 250 bioreactor

with a working volume of 200 and 210 ml respectively for fed-

batch and intensified cultures. The cultures were inoculated at

0.3 × 106 cells/mL. The feeding profiles were calculated off-

line following the standard applications implemented in

Sartorius. For the intensified cultures, the flow rate was

adjusted daily from day 3. The culture conditions were

controlled at 36.8°C for the temperature, pH 7.1 with CO2,

60% of DO with O2 and air inlets, 855 rpm for the agitation

(adjusted during culture to maintain DO at 60%). 30 µL of

antifoam (Sigma antifoam C 2%) was automatically added

every 12 h and manually added if needed. A daily glucose

bolus was performed starting on day 5 of culture if the

measured glucose concentration was less than 5 g/L (stock

glucose solution of 400 g/L).

2.3 Perfusion cultures in 2L bioreactor

The perfusion culture (Experiment 8) was performed in 2L

Univessel® bioreactor with a working volume of 200 ml. The

culture was inoculated at 0.3 × 106 cells/mL. The perfusion

medium was a mix of 91.2% of PM, 8% FMA, 0.8% FMB and

6mM of L-glutamine. The culture conditions were controlled at

36.8°C for the temperature, pH 6.95 ± 0.05 with CO2 and 1M

NaCO3, 60% of DO with O2 and air inlets, 260 rpm for the

agitation (adjusted during culture to maintain DO at 60%). 1 ml

of antifoam (Sigma antifoam C 2%) was automatically added

every day and manually added if needed. The flow rates of media

additions and outlet of culture medium are detailed in

Section 3.3.

3 Theory/calculation/modeling/
theoretical aspects

3.1 Bioprocess description

Chinese Hamster Ovary (CHO) cells are typically cultivated

in a bioreactor with controlled environmental conditions. CHO

cell culture population can be divided into 3 subgroups: living

(Xv), dead (Xd) and lysed (Xl) cells. Cell death and lysis are

cellular processes triggered by the accumulation of metabolic

byproducts (here represented by a catch-all “biomaterial”

variable ∅b).

A bioreactor can be operated in different modes by acting on

the inlet (feeding medium addition, Ff) and outlet (Fout) flow

rates:

- Batch mode: all substrates are added at the beginning of the

culture and nothing is added (Ff � 0) or removed

(Fout � 0) from the bioreactor afterwards;

- Fed-batch mode: the bioreactor is fed continuously in

culture medium (Ff ≠ 0), while the outflow remains

nul (Fout � 0);

- Continuous mode: the bioreactor is fed continuously

(Ff ≠ 0) and the culture medium is continuously

removed (Fout ≠ 0).

Perfusion culture is a type of continuous operation where the

viable cell concentration (Xv) and the volume (V) within the

bioreactor are kept constant (Figure 1). Specifically, the cell

culture is continuously fed with fresh medium (Ff) while the

outlet flow (Fout) is composed of a harvest (Fh) and a “bleed” (Fb)

streams that are removed to, respectively, keep the culture

volume and viable cell concentration constants. To this end,

the harvest stream (Fh) is firstly directed through a cell retention

device that will separate the living (Xv) and dead (Xd) cells from

the used media containing lysed cells (Xl) and metabolic by-

products (∅b). The living (Xv) and dead (Xd) cells are then re-

injected in the bioreactor while the cell-free stream is collected for

further purification of the drug product. The harvest flow rate

(Fh) is controlled to keep the volume within the bioreactor

constant. The “bleed” outflow (Fb), presenting the same

composition as the bioreactor, is used to maintain the culture

at steady-state (i.e., maintain the concentration of living cells

within the bioreactor constant) (Bielser et al., 2018; Bausch et al.,

2019).

3.2 Model development

The general dynamic of a bioprocess can be described by

expressing the mass balance of each component (ωi) of the

system. In the case where the cell culture take place in a

perfectly mixed liquid phase, mass balance performed on the

termVωi describes the evolution of the component ωi (expressed

as total amount in the bioreactor) over the bioprocess and is

defined with the following differential equation:

d(V.ωi)
dt

� ∑
k~i

(± )φk + Ffωi,in − Foutωi (1)

where the notation k ~ i means that the summation is made on

all reactions k which imply the component i and φk is the rate of

the reaction k. Ff and Fout represent respectively the inlet feeding

and the outlet rates. ωi and ωi,in represent respectively the

concentration of the component i in the bioreactor and in the

feeding.
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Using this formalism, the dynamic of the 3 cell population

subgroups (Xv, Xd and Xl) and the bulk set of metabolites

secreted by the cells (∅b) can be described with the following set

of ordinary differential equations (Eqs 2–5):

d(V.Xv)
dt

� μeffXvV − μdXvV − FbXv (2)
d(V.Xd)

dt
� μdXvV − klXdV − FbXd (3)

d(V.Xl)
dt

� klXdV − FhXl − FbXl (4)
d(V.∅b)

dt
� XvV − Fh∅b − Fb∅b (5)

where Xv is the viable cell density (VCD—concentration of

living cells), Xd is the dead cell density (concentration of dead

cells), Xl is the lysed cell density (concentration of lysed cells),

and ∅b is a catch-all “biomaterial” variable representing the

metabolic byproducts. Fb is the bleeding rate, Fh is the harvest

rate, and V is the bioreactor volume. μeff, μd, and kl are

the effective growth, effective death, and lysing rates,

respectively.

Here, we assumed that lysed cells Xl are a degradation

product of the dead cells Xd while these arise from living cells

Xv, according to the specific death rate μd. Kroll et al. (Kroll et al.,

2016) showed that the lysed cells could be a direct degradation

product of living cells Xv. However, we were not able, in the case

of this study, to discriminate the dead and lysed cells with the

analytical assays used to assess the cell viability (trypan blue

exclusion test (Strober, 2015)). Therefore, we decided to keep the

lysed cell subpopulation as a degree of freedom in the model

structure.

As the term Vωi represents the total amount of component i

in the bioreactor, the mass balance equations can be transformed

to be expressed with concentration units by combining with Eqs

6, 7:

d(V.ωi)
dt

� V
d(ωi)
dt

+ ωi
d(V)
dt

(6)
d(V)
dt

� Ff − Fh − Fb (7)

Doing so, the Eqs 2–5 can be rewritten as follows:

dXv

dt
� (μeff − μd −

Ff

V
+ Fh

V
)Xv (8)

dXd

dt
� μdXv − (kl + Ff

V
− Fh

V
)Xd (9)

FIGURE 1
Schematic of a perfusion bioreactor. Media is continuously fed into the bioreactor (Ff ) and a cell-free harvest is continuously removed (Fh). The
cell retention filter is assumed to be ideal, where only the lysed cells (Xl) and other cellular by-products (∅b) pass through while viable (Xv ) and dead
cells (Xd) are fed back into the bioreactor. The bleed stream (Fb), containing same content as the bioreactor, is used to keep the concentration of
living cells within the bioreactor constant, by removing cells in excess.
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dXl

dt
� klXd − Ff

V
Xl (10)

d∅b

dt
� Xv − Ff

V
∅b (11)

These mass balance equations are developed under the

assumption that the bleed stream (Fb) has the same content

as the bioreactor and the harvest stream (Fh) is cell free (ideal

separation filter where the lysed cells and biomaterial pass

through, and only viable and dead cells are retained into the

bioreactor) (Figure 1).

The cell growth rate (μeff) is represented as the product of

the maximal growth rate (μmax) and a nonlinear factor that

describes the inhibition of growth due to the accumulation of

byproducts (represented by the biomaterial variable ∅b). The

resulting effective growth rate is captured in the following

equation:

μeff � μmax

1

( ∅b
KI,∅b

)3

+ 1
(12)

where KI,∅b is a parameter that represents the concentration of

biomaterial (∅b) above which inhibition occurs (Supplementary

Figure S1).

Note that the description of the cell growth rate (μeff) can be

generalized to consider additional effects such as activation by

substrates or quadratic effects due to variations in the process

environmental conditions (e.g., temperature and pH shifts):

μeff � μmax.∏S

i�1ηS,i.∏Q

i�1ηQ,i.∏I

i�1ηI,i (13)

where ηs,i is the contribution for the substrate variable Si, ηQ,i is

the contribution for the quadratic variable QI and ηI,i is the

contribution for the inhibitor variable Ii. The choice of the

mathematical formalism used to describe each of these

contributions depends on the case under study. Here, there

was no modification of the process conditions nor substrates

limiting the cell culture metabolism. Therefore, the formalism

used in Eq. 12 was sufficient to describe the effective growth rate

observed in the experiments.

The effective death rate, μd, is dependent on a base death rate

and a toxicity factor related to the accumulation of lysed cells

(Xl). Functionally:
μd � kd + ktXl (14)

where kd is the primary death rate and kt represents the toxicity

factor associated to the accumulation of lysed cells in the

bioreactor. Note that the toxicity factor could also be related

to the accumulation of the metabolite byproducts (∅b) in the

culture medium. We tested both implementations and obtained

better results using the lysed cells (Xl) as toxicity factor (data not
shown).

Finally, the lysing process was assumed to be governed by kl
through a first-order rate law. This assumption was not further

investigated as the lysed cell subpopulation is acting as a degree of

freedom in the model structure. Tracking the material balance of

viable and dead cells gives an indication of total cells generated,

and by extension the number of cells that have lysed and are no

longer detectable.

Dead cells amount is evaluated indirectly through cell

viability measurement which captures the ratio between viable

cells and total cells:

Viab � Xv

Xv +Xd
(15)

3.3 Perfusion operations

The rate at which the media is exchanged in perfusion

culture can be defined either by the cell specific perfusion rate

(CSPR - media supply needed by cells by day) or by the

perfusion rate (P - amount of bioreactor volume renewed by

day). Specifically, the cell specific perfusion rate (CSPR) is

defined as the ratio between the perfusion rate (P) and the

viable cell density (Xv) while the perfusion rate (P) is defined

as the ratio between the feeding rate (Ff) and the volume of

the bioreactor (V):

CSPR � P

Xv
(16)

P � Ff

V
(17)

Note that contrarily to the perfusion rate, the CSPR is cell

and media specific. Therefore, it represents an important

performance criterion (Bielser et al., 2018; Bausch et al., 2019).

Typically, a perfusion culture is set in two phases:

intensification and steady-state. Firstly, the cells are growing

exponentially until a pre-defined target viable cell concentration

(Xv,target) is reached. During this intensification phase, the

feeding rate (Ff) is equal to the harvest rate (Fh) while the

bleed stream (Fb) is set to zero. Using Eqs 16, 17, the optimal

feeding rate for a given perfusion rate can be defined as follows:

Ff,ti � CSPR.Xv,ti.Vti (18)

where Ff,ti, Xv,ti, Vti are respectively the feeding rate, the viable

cell concentration, and the bioreactor volume at time i .

The second part of the perfusion culture is called the steady-

state phase. It aims to maintain the viable cell concentration in

the bioreactor at a predefined target value (Xv,target) by acting on

the bleed rate (Fb). For this phase, the definition of the feeding

rate (Eq. 18) can be simplified as Xv,ti � Xv,target.

Ff,ti � P.Vti (19)

During the steady-state phase, the bleed stream is used as a

manipulated process variable to control the viable cell

concentration in the bioreactor. In the context of this study,
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we used a Proportional-Integral (PI) controller to define the

bleed rate.

Fb,ti � max(0, min(Ff, Fb,ti−1 + δbleed,ti)) (20)

δbleed,ti � KP.εbleed,ti +
KP

TI
.(εbleed,ti − εbleed,ti−1) (21)

εbleed,ti � Xv,target −Xv,ti (22)

where Fb,ti is the bleed rate at time ti. δbleed,ti is the PI controller

output (with KP and TI as proportional and integral terms) that

will be used to adjust the bleeding rate imposed at time i − 1

(Fb,ti−1) such as to minimize the deviation (εbleed,ti) of the viable

cell concentration at time i (Xv,ti) from the target setpoint

(Xv,target). For this study, the PI control parameters have been

hand tuned and set to KP � −0.2 and TI � 0.5.

Finally, the harvest rate is determined based on the

knowledge of the feed and bleed rates such as to maintain a

constant volume:

Fh,ti � Ff,ti − Fb,ti (23)

3.4 Parameter identification

Dynamic equations were solved by MATLAB’s ordinary

differential equation solver function ode15s. The parameter

identification was performed by using the Nelder–Mead

simplex optimization algorithm (function fminsearch) in order

to minimize a least-squares criterion (sum of squared differences

between model predictions and experimental measurements).

J(θ) � ∑n

j�1∑N

i�1(yij(θ) − ymes ij)2 (24)

where θ is the vector of the parameters to be identified (dim θ =

5), θT = [μmax KI,∅b kd kt kl], y
T
ij(θ ) = [Xv ij Viabij] is the vector

of the simulated variables (using model of mass balance Eqs

8–11) at the ith time instant in the jth experiment, yT
mes,ij =

[Xv,mes ij Viabmes ij] is the vector of the corresponding

measurements.

3.5 Parameter sensitivity analysis and
predicted model output uncertainty

The analysis of the sensitivity of the model outputs with

respect to the parameters was performed as in Richelle et al.

(Richelle et al., 2014). To this end, the four state variables (Xv,

Xd,Xl and∅b) were defined as the system outputs yj with i = 1:4.

The parameters were denoted θj with j = 1:5. The time evolution

of the 4 × 5 sensitivity functions (zyi

zθj
) was then computed as

follows:

d

dt
(zyi

zθj
) � z

zθj
(dyi

dt
) � zfi

zθj
+ ∑m

k�1
zfi

zyk
×
zyk

zθj
(25)

for i = 1 to 4, j = 1 to 4 andm = dim(y) = 4 with dyi/dt = fi (y, qj, t)

represented by model Eqs 8–11.

These sensitivity functions were used for computing a lower

bound of the variance (Cramer-Rao bound) of the parameter

estimation errors (σ2θi , i =1:5) on the basis of the Fischer

information matrix:

F � ∑n

j�1∑N

i�1(zyij

zθ
)T

Q−1
ij (zyij

zθ
) (26)

σ2θi � Sij with S � F−1where yij = [Xv,ij Xd,ij Xl,ij ∅b,ij] at the ith

time instant in the jth experiment and θT = [μmax KI,∅b kd kt kl].

The covariance matrix S could also be used to measure the

correlation between the parameters (linear dependencies):

COR(θi, θj) � Sij��
Sii

√ ���
Sjj

√ (27)

where Sij is the covariance of the errors on parameter estimates θi
and θj; Sii and Sjj are respectively the variance of the errors on

parameter estimates θi and θj.

For analysing the uncertainty on the model outputs with

respect to the parameter estimation errors, a global approach

based on Monte Carlo sampling method was used. Contrarily

to local approach based on first-order Taylor series

approximation, this approach does not assume that the

model responds linearly to a perturbation evaluated at a

specific point of the parameter space. Instead, this

sampling-based method uses a repeated random sampling

of parameter values in a defined parameter space. In doing

so, the overall model is used to generate the associated

predicted model outputs by an iterative process of model

simulations.

4 Results

4.1 Model identification using fed-batch
cultures

We developed a growth model that tracks density and

viability of a cell culture population (living, dead and lysed).

The parameters of this model were identified based on 4 replicate

fed-batch experiments performed in Ambr® 250 (see Section 2

for details). To circumvent local minima and convergence

problems with the optimization algorithm, a multi-start

strategy was considered for the initialization of the parameter

values. 100 uniformly distributed pseudo-random values over a

given range (Table 1) were used for the initialization of the

algorithm. For analysing the uncertainty on the model outputs

with respect to the parameter estimation errors, a global

approach with a Monte Carlo simulation was used, based on

1000 normally distributed pseudo-random sets of parameter

values (Figure 2).
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The identified parameter values (based on the 4 experiments)

and associated confidence intervals are presented in Table 1 and

the correlation matrix (absolute values of the correlation

coefficients between parameters) in Table 2. Results obtained

for the parameter identification of each experiment separately are

also presented in Supplementary Tables S1–S6. The model

simulations and associated prediction confidence intervals are

presented in Figure 2 and Supplementary Figure S2 along with

the experimental data used to identify the model.

The model captures well the evolution of the viable cell

density over the culture duration for the 4 experiments. The

viability predictions present larger, but still acceptable, residuals

than the ones of the viable cell density. We observe a marked

transition in the decrease dynamic of the measured viability, at

TABLE 1 Parameters values identified for each experiment separately and whole set of experiments 1 to 4.

Initialization
range

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1-2-
3-4

σθ
a CVb

μmax [0.01, 1] 0.8409 0.8560 0.8145 0.8439 0.8384 0.0005 0.06

kd [0.01, 1] 0.0210 0.0275 0.0273 0.0136 0.0209 0.0002 0.87

kt [0.01, 1] 0.0286 0.0261 0.0232 0.0376 0.0290 0.0002 0.62

KI,∅b [1, 100] 24.1117 24.4954 25.9156 23.7059 24.3905 0.0226 0.09

kl [0.01, 1] 0.8723 0.7209 0.8765 0.6352 0.7743 0.0702 9.06

aStandard deviation of parameter values identified using the whole set of experiments.
bCoefficient of variation (CV) of parameter values ( σθ/θ - expressed in %) identified on the whole set of experiments 1 to 4.

FIGURE 2
Comparison between measurements of Ambr® 250 fed-batch experiments 1–4 (red dots) and the model simulation (blue curve) performed
using the parameters value identified on the whole set of experiments. The dashed red lines represent the experimental confidence interval. The
dashed blue lines represent the uncertainty in the model predictions—calculated using Monte Carlo simulations (1000 samples) of normally
distributed pseudo random parameters values (parameter space defined by θ ± 2σθ ).
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day 11 of the culture, that the model is not able to capture. Such

shift in the viability evolution results, most likely, from a strain-

specific adaptation to high level of toxic by-products as it was not

systematically observed in cell cultures performed with different

strains (data not shown). In this context, we decided to not

introduce additional complexity to the model to capture this

event.

The parameters were identified with good confidence, this

was also reflected in the simulation of the model output

uncertainty (Table 1 and Figure 2). The highest parameter

correlation is observed between μmax and KI,∅b followed by kt
and kl as expected due to the respective formulation of the

effective growth and death rates (Eqs 13, 14). The largest

uncertainty was associated to the lysed cells with the

parameter kl. This is explained by the fact that lysed cells act

as a degree of freedom in the model since no experimental

measurements were available for this variable. The

determination of living and dead cell density is typically

performed with image-based cell analyzer using colorimetric

test (dye exclusion methods (Strober, 2015)). However, the

lysis of cells is neglected in these analytical assays, leading to

false estimation of the dead cell population (Kroll et al., 2016).

Some protocols using death markers (lactate deshydrogenase and

double stranded genomic DNA) in the culture supernatants for

monitoring cell lysis have shown promising results to solve this

issue (Klein et al., 2015).

4.2 Model-based prediction of intensified
operations performance

The model was further cross-validated using data from

Ambr® 250 intensified cultures (Experiments 5, 6 and 7 -

see Methods for details). The model simulations successfully

predicted the culture dynamic for intensified operations with

media exchange. The intensification was achieved by harvesting

the culture media at the same rate (Fh) as the medium feeding

(Ff); keeping the living (Xv) and dead cells (Xd) into the

bioreactor while lysed cells (Xl) and secreted byproducts

(∅b) were filtered out (Figure 1). Doing so, cell growth is no

longer inhibited by the biomaterial accumulation and the death

rate is less favored by the lysed cell accumulation in the culture

media (Eq. 14). Specifically, the concentration of lysed cells and

biomaterials after 10 days of culture in intensified conditions

were respectively 10- and 4-fold lower than for fed-batch

operations (Figure 3). Note that we did not present the

evolution of the cell viability for these intensified

experiments as the measurements and associated simulations

present a variation over the culture time smaller than the

standard error assumed for this signal (measurements and

simulations between 0.99 and 0.97 while the error is

assumed to be 5%).

The proposed model has a rather simple structure compared

to the ones presented in literature. The overall formalism to

describe the different cell population subgroups is, most often,

conserved across existing models: cell growth and mortality

occurs in parallel while dead cells are lysed over time. The

main difference in our proposed structure lies in the

description of the growth and dead rates. Indeed, it is well

known that mammalian cell metabolism can be limited by the

depletion of nutrients or by the accumulation of inhibitory

metabolites (Lourenço da Silva et al., 1996). Therefore, the

death and growth rate are typically described as extended

Monod’s law (more than one compound influencing the

reaction rate) accounting for diverse activating and inhibiting

compounds.

For example, Shirahata et al. (Shirahata et al., 2019) modelled

the growth rate in continuous operation with an inhibition by the

accumulation of ammonia. Lourenço da Silva et al. (Lourenço da

Silva et al., 1996) developed a kinetic model that describes the

growth of hybridoma cells in fed-batch culture with decreasing

and death enhancing effects of glucose, amino-acids, serum and

oxygen depletion, on the one hand, and of ammonia and lactate

accumulation on the other. Craven et al. (Craven et al., 2013)

accounted in their growth model for the activation by substrates

(glucose and glutamine) and inhibition by byproducts (lactate

and ammonia). Papathanasiou et al. (Papathanasiou et al., 2017)

used five metabolites (glucose, glutamine, arginine, aspartate,

asparagine) to describe their activation and inhibition influence

on growth and death processes.

The evaluation of the respective influence of these potential

limiting factors is a difficult task. Several of these factors are often

simultaneously limiting; leading to observed diversity in the

model formalism for growth and death rates. Furthermore,

the description of such activation and inhibition effects by

multiple metabolites quickly complicates the model structure.

Indeed, with this formalism, these compounds are introduced as

state variables in the model and their associated kinetics need to

be described. The main novelty of the proposed model is the

introduction of a catch-all “biomaterial” variable (∅b). This

variable captures the inhibition of growth by a bulk of

secreted by-products without detailing the identity and

contribution of each potential inhibitor. Therefore, it

simplifies the model structure (and reduced the number of

TABLE 2 Correlation matrix (absolute value) of the parameters
identified on the whole set of experiment.

μmax kd kt KI,Øb kl

μmax 1 0.1669 0.0626 0.6263 0.0415

kd 0.1669 1 0.7480 0.0731 0.1358

kt 0.0626 0.7480 1 0.0884 0.4355

KI,∅b 0.6263 0.0731 0.0884 1 0.0619

kl 0.0415 0.1358 0.4355 0.0619 1
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model parameters) as there is no need to describe the dynamic

associated to these compounds.

4.3 Design and analysis of perfusion
process conditions

The perfusion operation of a CHO cell culture was simulated

with the proposed model structure using the following

assumptions:

- The culture was performed in a 2L bioreactor Univessel®
- The initial seeding density and viability were set as for the

Ambr® 250 fed-batch experiments

- The lysed cells and inhibitory biomaterial were

initialized at 0

- There were no considerations for adjustment in growth

changes during the simulation

- It was assumed that the media composition and perfusion

rate is sufficient for supplying nutrients

FIGURE 3
Comparison of intensified (media exchange) and fed-batch experiments. (A). Comparison of viable cell density (Xv ) measurement of intensified
cultures 5-7 (black cross, star and open circle) with the model simulation of the intensified culture (solid black line) and the fed-batch culture (solid
red-line) performed using the parameters value identified on the whole set of fed-batch experiments 1-4. (B–D) present, respectively, a comparison
of the lysed cells density (Xl), biomaterial concentration (∅b) and growth rate (μeff ) simulated for the intensified culture (solid black line) and the
fed-batch culture (solid red-line) using the parameters value identified on the whole set of fed-batch experiments 1–4.

TABLE 3 Details of switch in process operations for perfusion
simulation and experimental run.

Event time (days) P (Vol/day) Xv,target (106 cells/mL)

0 2.25 50

12.9 3 50

14.1 2.25 50

21.1 1.75 50

24 1.75 70
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Different events for process operation changes were

introduced to test the capabilities of the model and the cell’s

response to switch in operations (Table 3):

- The culture began with an intensification phase to

reach the cell density target (Xv,target = 50 × 106 cells/

mL). The feed and harvest rate were equal (Ff = Fh)

and defined as presented in Methods for a perfusion

rate (P ) of 2.25 vol/day. The bleed rate (Fh) was equal

to zero

- Once the cell density reached 95% of the desired target

Xv,target, a PI controller was used for adjusting the bleed

rate and maintaining a desired setpoint (details of the PI

control setup presented in Section 3.3)

- An increase in the perfusion rate (P ) was introduced for

more than a day to test the PI control (in between 12,9 and

14.1 days) before being set back to its original defined value

of 2.25 vol/day

- A decrease of the perfusion rate (P) was imposed at

21.1 days to assess the response of the cells to an

increase of biomaterial accumulation

- Finally, an increase of the cell density target (to

Xv,target = 70 × 106 cells/mL) was introduced to

evaluate the capacity of the cells to cope with strong

switch in operations

The simulation of this perfusion experiment is

presented in Figure 4 and Figure 5 along with the

experimental data collected during a 2L perfusion

bioreactor run performed under the same operations

(Table 3) and with the same PI controller. Specifically, the

PI controller relied on the model prediction of the viable cell

density evolution for the simulated run while the viable cell

density measured on-line was used when the controller was

implemented for the experimental run. The model prediction

accurately captured the dynamic of the cell culture in

FIGURE 4
Comparison between measurements of 2L perfusion experiment 8 (red dots closed loop PI control of the viable cell density measured on-line
at Xv,target setpoint value using Fb as manipulated variable) and the model simulation (blue curve—closed loop PI control of the viable cell density
predicted by the model at Xv,target setpoint value using Fb as manipulated variable) performed using the parameter values identified on the whole set
of fed-batch experiments 1–4. The dashed red lines represent the experimental confidence interval.
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perfusion based on parameter values identified using Ambr®
250 fed-batch experiments. As observed in the model

simulations of the fed-batch experiments 1-4 (Figure 2), the

viability is associated to larger residuals than the viable cell

density, but still holding close to the experimental confidence

area. Importantly, the model accurately identified the decrease

of cell viability (due to the accumulation of biomaterials)

initiated once the perfusion rate was reduced (P =1.75 vol/

day). The model was also able to predict the maximum stable

target cell density for the last process operation switch

(Xv,target = 70 × 106 cells/mL).

The PI controller adequately adjusted the bleed rate to hold

a stable cell density during the simulation and the experimental

run. The observed discrepancies between the outflow (Fb and

Fh) simulations and the associated stream rates experimentally

implemented by the closed-loop PI controller (Figure 5) can be

explained by small variations in the on-line viable cell

concentration measurements. Also, we encountered some

issues with the outflow pumps and associated recording

devices during the week-end periods that this experiment

covered, as highlighted by the missing experimental points

in between days 21 and 24. Such discrepancies could be

reduced by further optimizing the controller parameters to

ensure a more adequate tuning.

To our knowledge this is the first design of a perfusion

culture using a model identified based on fed-batch

experiments. Typically, models are developed for one type

of culture (batch, fed-batch or continuous) and cannot be

transferred to other process operation without changes in the

model structure and/or parameter values. Shirahata et al.

(Shirahata et al., 2019) modified the formalism of the growth

rate function depending on the operation mode. Specifically,

FIGURE 5
Comparison between the feed (Fh), harvest (Fh) and bleed (Fb) rates implemented during 2L perfusion experiment 8 (red dots—closed loop PI
control of the viable cell density measured on-line at Xv,target setpoint value using Fb as manipulated variable) and the model simulation (blue
curve—closed loop PI control of the viable cell density predicted by the model at Xv,target setpoint value using Fb as manipulated variable) using the
parameter values identified on the whole set of fed-batch experiments 1–4.
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in batch mode, they simulated the viable cell dynamic using

an activation by glucose and the onset of massive cell death

when a glucose depletion occurs. In perfusion mode, the

growth rate was no longer modelled in function of substrate

consumption but rather with an inhibition due to ammonia

accumulation in the culture medium. Lourenço da Silva et al.

(Lourenço da Silva et al., 1996) successfully validated a

kinetic model for hybridoma fed-batch culture and

mentioned that they were capable to simulate

experimental results obtained during batch and

continuous processes with minor changes of few kinetic

parameters. Unfortunately, the data were not shown.

Finally, Craven et al. (Craven et al., 2013) developed a

unique model structure for CHO cell culture operated

under 3 different modes (batch, bolus fed-batch and

continuous fed-batch) and grown under 2 scales (3 and

15 L) but the model parameters identified changed with

scale and mode of operation.

The presented model-based approach enabled to drastically

improves the process performance (Table 4). This represents a

reliable alternative to existing experimental procedure such as the

ones presented in Janoschek et al. (Janoschek et al., 2018) and Wolf

et al. (Wolf et al., 2019). These protocols rely on the evaluation and

optimization of different feed, harvest and bleed strategies similar to a

Design of Experiments (DoE) approach. While these methods have

been proven to be successful, they are experimentally intensive and do

not allow the user to test the system response to joint variation of

multiple control variables and setpoints.

5 Conclusion

The era of digital transformation has reached biopharma. In

this context, in-silico computational tools will be essential to help

optimize upstream bioprocesses and accelerate product

development and production (Luo et al., 2021).

The goal of this study was to propose a model-based

strategy to improve upstream cell culture development

within biopharmaceutical manufacturing thanks to its

process operation transfer capabilities. Often referred to as

in-silico experimentation, subject matter experts (SME) can

use the proposed framework to digitally test various

hypothetical operating policies. Ideas can be honed and

proposed before verifying in the lab. The hypothesized

model was built from limited data with a focus on core

growth kinetics and sensitivity to biomaterials. It can be

used to investigate growth trajectories and evaluate media

exchange operating modes (intensified growth and perfusion).

To demonstrate these capabilities, the model was calibrated

with Ambr® 250 fed-batch experiments and successfully used

to forecast growth profiles under various operating modes

including the cell line’s response to media exchange. The

proposed model-based process design strategy was also

tested by collaborators from biopharmaceutical companies

with other cell lines producing different products (data not

shown). While the set of parameters values identified varied

for each case study, the proposed model structure was

always capable of predicting changes in culture

behavior for different operating conditions, as presented in

this study.

As more experiments are run and data is collected, this generic

model structure can continuously be extended to include additional

metabolic information from shifts in pH, temperature, media

composition and other important process conditions. Such model

could therefore also be used to optimize media composition

and recipe decisions to maximize productivity while maintaining

Critical Quality Attributes (CQAs) within specification.

However, models describing the influence of spent media

composition on productivity and product quality are far

more complex and, currently, not as mature as those for

growth description. This relates to growth and death

kinetics being driven strongly by the extracellular

environment, while productivity and CQAs (e.g., glycan

profile) are influenced through more subtle shifts in the

intracellular metabolism. For the moment, intracellular

measurements are expensive and not practical for typical

product development workflows or high throughput

experimental designs. Therefore, analytical tool such as

machine learning and other data driven methods would

most likely be used to relate extracellular process

measurements to the CQAs.

To conclude, using simulation is common practice in

many process industries but a relatively new tool for

biopharmaceutical manufacturing. Being able to test

operating strategies digitally reduces wet lab experimental

needs, speeding up the product development process. The

big picture then - and the takeaway for biopharma companies

- is to move toward an enhanced, optimized approach for

upstream process development that makes use of existing

information to bring transformation, optimization and

ultimately, profitability. The key dynamic behind all of it is

TABLE 4 Volumetric Productivity (VP—106 cells/mL.day) and Space-
Time Yield (STY—106 cells/mL.day) associated with the fed-batch
(FB), intensified (I) and perfusion (P) experiments at different days of
culture (days 7, 10 and 20). Metrics calculated following the standards
presented in Bausch et al. (Bausch et al., 2019).

VP STY

FB - Exp 1–4 d7 2.3 2.9

I - Exp 5–7 d7 19.3 4.6

I - Exp 5–7 d10 138.7 36.7

P - Exp 8 d7 116.0 30.5

P - Exp 8 d10 112.5 52.6

P - Exp 8 d20 112.5 81.1
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an integration of advanced data analytics, process knowledge

and digital tools that transcend the traditional method of

process monitoring and move toward digital twins powered by

a systems approach of bio-simulation.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

AR, BC, PA, AV, and CM performed the modeling

development and analyses. AR, JT, and CC wrote the

manuscript. All authors reviewed the manuscript.

Funding

This work was funded by the employer of the authors

(Sartorius).

Acknowledgments

We thank Steffi Scholze and others in the Sartorius Corporate

Research team for their support in in the development of this

study. We also thank Timo Schmidberger and the Sartorius Data

Analytics team for their investment in the model evaluation,

validation and benchmarking. The US Food and Drug

Administration for their support in the development of in-

silico process design and optimization strategies. Our

collaborators at GSK and Sanofi for testing the proposed

model-based process design strategy.

Conflict of interest

All authors are employees of Sartorius AG.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fbioe.2022.

948905/full#supplementary-material

References

Babi, D. K., Griesbach, J., Hunt, S., Insaidoo, F., Roush, D., Todd, R., et al. (2022).
Opportunities and challenges for model utilization in the biopharmaceutical
industry: Current versus future state. Curr. Opin. Chem. Eng. 36, 100813. doi:10.
1016/j.coche.2022.100813

Banner, M., Alosert, H., Spencer, C., Cheeks, M., Farid, S. S., Thomas, M.,
et al. (2021). A decade in review: Use of data analytics within the
biopharmaceutical sector. Curr. Opin. Chem. Eng. 34, 100758. doi:10.
1016/j.coche.2021.100758

Bausch, M., Schultheiss, C., and Sieck, J. B. (2019). Recommendations for
comparison of productivity between fed-batch and perfusion processes.
Biotechnol. J. 14, 1700721. doi:10.1002/biot.201700721

Berdigaliyev, N., and Aljofan, M. (2020). An overview of drug discovery and
development. Future Med. Chem. 12 (10), 939–947. doi:10.4155/fmc-2019-
0307

Bielser, J. M., Wolf, M., Souquet, J., Broly, H., and Morbidelli, M. (2018).
Perfusion mammalian cell culture for recombinant protein manufacturing – a
critical review. Biotechnol. Adv. 36 (4), 1328–1340. doi:10.1016/j.biotechadv.2018.
04.011

Chen, C., Wong, H. E., and Goudar, C. T. (2018). Upstream process
intensification and continuous manufacturingdoi :10.1016/
j.coche.2018.10.006. Curr. Opin. Chem. Eng. 22, 191–198. doi:10.1016/j.
coche.2018.10.006

Craven, S., Shirsat, N., Whelan, J., and Glennon, B. (2013). Process model
comparison and transferability across bioreactor scales and modes of operation
for a mammalian cell bioprocess. Biotechnol. Prog. 29, 186–196. doi:10.1002/btpr.
1664

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. (2016). Innovation in the
pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 47, 20–33.
doi:10.1016/j.jhealeco.2016.01.012

Dowden, H., and Munro, J. (2019). Trends in clinical success rates and
therapeutic focus. Nat. Rev. Drug Discov. 18 (7), 495–496. doi:10.1038/d41573-
019-00074-z

Finelli, L. A., and Narasimhan, V. (2020). Leading a digital transformation
in the pharmaceutical industry: Reimagining the way we work in global drug
development. Clin. Pharmacol. Ther. 108 (4), 756–761. doi:10.1002/cpt.
1850

Ha, T. K., Kim, D., Kim, C. L., Grav, L. M., and Lee, G.M. (2022). Factors affecting
the quality of therapeutic proteins in recombinant Chinese hamster ovary cell
culture. Biotechnol. Adv. 54, 107831. doi:10.1016/j.biotechadv.2021.107831

Janoschek, S., Schulze, M., Zijlstra, G., Greller, G., and Matuszczyk, J. (2018). A
protocol to transfer a fed-batch platform process into semi-perfusion mode: The
benefit of automated small-scale bioreactors compared to shake flasks as scale-down
model. Biotechnol. Prog. 35, e2757. doi:10.1002/btpr.2757

Klein, T., Heinzel, N., Kroll, P., Brunner, M., Herwig, C., Neutsch, L., et al. (2015).
Quantification of cell lysis during CHO bioprocesses: Impact on cell count, growth
kinetics and productivity. J. Biotechnol. 207, 67–76. doi:10.1016/j.jbiotec.2015.
04.021

Kroll, P., Eilers, K., Fricke, J., and Herwig, C. (2016). Impact of cell lysis on the
description of cell growth and death in cell culture. Eng. Life Sci. 17 (4), 440–447.
doi:10.1002/elsc.201600088

Landhuis, E. (2018). Outsourcing is in. Nature 556 (7700), 263–265. doi:10.1038/
d41586-018-04163-8

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Richelle et al. 10.3389/fbioe.2022.948905

https://www.frontiersin.org/articles/10.3389/fbioe.2022.948905/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.948905/full#supplementary-material
https://doi.org/10.1016/j.coche.2022.100813
https://doi.org/10.1016/j.coche.2022.100813
https://doi.org/10.1016/j.coche.2021.100758
https://doi.org/10.1016/j.coche.2021.100758
https://doi.org/10.1002/biot.201700721
https://doi.org/10.4155/fmc-2019-0307
https://doi.org/10.4155/fmc-2019-0307
https://doi.org/10.1016/j.biotechadv.2018.04.011
https://doi.org/10.1016/j.biotechadv.2018.04.011
https://doi.org/10.1016/j.coche.2018.10.006
https://doi.org/10.1016/j.coche.2018.10.006
https://doi.org/10.1002/btpr.1664
https://doi.org/10.1002/btpr.1664
https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/10.1038/d41573-019-00074-z
https://doi.org/10.1038/d41573-019-00074-z
https://doi.org/10.1002/cpt.1850
https://doi.org/10.1002/cpt.1850
https://doi.org/10.1016/j.biotechadv.2021.107831
https://doi.org/10.1002/btpr.2757
https://doi.org/10.1016/j.jbiotec.2015.04.021
https://doi.org/10.1016/j.jbiotec.2015.04.021
https://doi.org/10.1002/elsc.201600088
https://doi.org/10.1038/d41586-018-04163-8
https://doi.org/10.1038/d41586-018-04163-8
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948905


Lourenço da Silva, A., Marc, A., Engasser, J. M., and Goergen, J. L. (1996). Kinetic
model of hybridoma cultures for the identification of rate limiting factors and
process optimisation. Math. Comput. Simul. 42 (2–3), 197–205. doi:10.1016/0378-
4754(96)83703-7

Luo, Y., Kurian, V., and Ogunnaike, B. A. (2021). Bioprocess systems analysis,
modeling, estimation, and control. Curr. Opin. Chem. Eng. 33, 100705. doi:10.1016/
j.coche.2021.100705

Mallapaty, S. (2017). Outsourcing discovery. Nature 552 (7683), S5. doi:10.1038/
d41586-017-07419-x

Müller, D., Klein, L., Lemke, J., Schulze, M., Kruse, T., Saballus, M., et al. (2022).
Process intensification in the biopharma industry: Improving efficiency of protein
manufacturing processes from development to production scale using synergistic
approaches. Chem. Eng. Process. - Process Intensif. 171, 108727. doi:10.1016/j.cep.
2021.108727

Narayanan, H., Sponchioni, M., and Morbidelli, M. (2022). Integration and
digitalization in the manufacturing of therapeutic proteins. Chem. Eng. Sci. 248 (A),
117159. doi:10.1016/j.ces.2021.117159

Papathanasiou, M. M., and Kontoravdi, C. (2020). Engineering challenges in
therapeutic protein product and process design. Curr. Opin. Chem. Eng. 27, 81–88.
doi:10.1016/j.coche.2019.11.010

Papathanasiou, M. M., Quiroga-Campano, A. L., Steinebach, F., Elviro, M.,
Mantalaris, A., Pistikopoulos, E. N., et al. (2017). Advanced model-based
control strategies for the intensification of upstream and downstream
processing in mAb production. Biotechnol. Prog. 33, 966–988. doi:10.1002/
btpr.2483

Portela, R. M. C., Varsakelis, C., Richelle, A., Giannelos, N., Pence, J., Dessoy, S.,
et al. (2021). When is an In Silico representation a digital twin? A biopharmaceutical
industry approach to the digital twin concept. Adv. Biochem. Eng. Biotechnol., 176:
35–55. doi:10.1007/10_2020_138

Rathore, A. S., Zydney, A. L., Anupa, A., Nikita, S., and Gangwar, N. (2022).
Enablers of continuous processing of biotherapeutic products. Trends Biotechnol.
40, 804–815. doi:10.1016/j.tibtech.2021.12.003

Richelle, A., Fickers, P., and Bogaerts, P. (2014). Macroscopic modelling of
baker’s yeast production in fed-batch cultures and its link with trehalose
production. Comput. Chem. Eng. 2014 (61), 220–233. doi:10.1016/j.
compchemeng.2013.11.007

Schwarz, H., Mäkinen, M. E., Castan, A., and Chotteau, V. (2022). Monitoring of
amino acids and antibody N-glycosylation in high cell density perfusion culture
based on Raman spectroscopy. Biochem. Eng. J. 182, 108426. doi:10.1016/j.bej.2022.
108426

Shirahata, H., Diab, S., Sugiyama, H., and Gerogiorgis, D. (2019). Dynamic modelling,
simulation and economic evaluation of two CHO cell-based production modes towards
developing biopharmaceutical manufacturing processes. Chem. Eng. Res. Des. 150,
218–233. doi:10.1016/j.cherd.2019.07.016

Smiatek, J., Jung, A., and Bluhmki, E. (2020). Towards a digital bioprocess replica:
Computational approaches in biopharmaceutical development and manufacturing.
Trends Biotechnol. 38 (10), 1141–1153. doi:10.1016/j.tibtech.2020.05.008

Steinwandter, V., Borchert, D., and Herwig, C. (2019). Data science tools and
applications on the way to Pharma 4.0. Drug Discov. Today 24 (9), 1795–1805.
doi:10.1016/j.drudis.2019.06.005

Strober, W. (2015). Trypan blue exclusion test of cell viability. Curr. Protoc.
Immunol. 111, A3.B.1–A3.B.3. doi:10.1002/0471142735.ima03bs111

Strube, J., Ditz, R., Kornecki, M., Huter, M., Schmidt, A., Thiess, H., et al. (2018).
Process intensification in biologics manufacturing. Chem. Eng. Process. - Process
Intensif. 133, 278–293. doi:10.1016/j.cep.2018.09.022

Tsopanoglou, A., and Jiménez del Val, I. (2021). Moving towards an era of hybrid
modelling: Advantages and challenges of coupling mechanistic and data-driven
models for upstream pharmaceutical bioprocesses. Curr. Opin. Chem. Eng. 32,
100691. doi:10.1016/j.coche.2021.100691

Wang, G., Haringa, C., Noorman, H., Chu, J., and Zhuang, Y. (2020). Developing
a computational framework to advance bioprocess scale-up. Trends Biotechnol. 38
(8), 846–856. doi:10.1016/j.tibtech.2020.01.009

Wasalathanthri, D. P., Shah, R., Ding, J., Leone, A., and Li, Z. J. (2021). Process
analytics 4.0: A paradigm shift in rapid analytics for biologics development.
Biotechnol. Prog. 37 (4), e3177. doi:10.1002/btpr.3177

Wolf, M., Pechlaner, A., Lorenz, V., Karst, D. J., Souquet, J., Broly, H., et al. (2019).
A two-step procedure for the design of perfusion bioreactors. Biochem. Eng. J. 151,
107295. doi:10.1016/j.bej.2019.107295

Wouters, O. J., McKee, M., and Luyten, J. (2020). Estimated research and
development investment needed to bring a new medicine to market, 2009-2018.
JAMA 323 (9), 844. doi:10.1001/jama.2020.1166

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Richelle et al. 10.3389/fbioe.2022.948905

https://doi.org/10.1016/0378-4754(96)83703-7
https://doi.org/10.1016/0378-4754(96)83703-7
https://doi.org/10.1016/j.coche.2021.100705
https://doi.org/10.1016/j.coche.2021.100705
https://doi.org/10.1038/d41586-017-07419-x
https://doi.org/10.1038/d41586-017-07419-x
https://doi.org/10.1016/j.cep.2021.108727
https://doi.org/10.1016/j.cep.2021.108727
https://doi.org/10.1016/j.ces.2021.117159
https://doi.org/10.1016/j.coche.2019.11.010
https://doi.org/10.1002/btpr.2483
https://doi.org/10.1002/btpr.2483
https://doi.org/10.1007/10_2020_138
https://doi.org/10.1016/j.tibtech.2021.12.003
https://doi.org/10.1016/j.compchemeng.2013.11.007
https://doi.org/10.1016/j.compchemeng.2013.11.007
https://doi.org/10.1016/j.bej.2022.108426
https://doi.org/10.1016/j.bej.2022.108426
https://doi.org/10.1016/j.cherd.2019.07.016
https://doi.org/10.1016/j.tibtech.2020.05.008
https://doi.org/10.1016/j.drudis.2019.06.005
https://doi.org/10.1002/0471142735.ima03bs111
https://doi.org/10.1016/j.cep.2018.09.022
https://doi.org/10.1016/j.coche.2021.100691
https://doi.org/10.1016/j.tibtech.2020.01.009
https://doi.org/10.1002/btpr.3177
https://doi.org/10.1016/j.bej.2019.107295
https://doi.org/10.1001/jama.2020.1166
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948905


Nomenclature

Fb L/h bleed rate

Ff L/h feeding rate

Fh L/h harvest rate

kd 1/h primary death rate

kl 1/h lysing rate

kt 106 cells/h.mL toxicity factor associated to the accumulation of

lysed cells

KI,Øb g/L biomaterial inhibition parameter of the effective

growth rate

P vol/day perfusion rate

Øb g/L biomaterial concentration

μd 1/h effective death rate

μef f 1/h effective growth rate

μmax 1/h maximal growth rate

V L bioreactor volume

Viab % viability

Xd 106 cells/mL dead cell concentration

Xl 106 cells/mL lysed cell concentration

Xv 106 cells/mL viable cell concentration

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Richelle et al. 10.3389/fbioe.2022.948905

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.948905

	Model-based intensification of CHO cell cultures: One-step strategy from fed-batch to perfusion
	1 Introduction
	2 Materials and methods
	2.1 Cell line, inoculum development, medium and analytical methods
	2.2 Fed-batch and intensified cultures in Ambr® 250
	2.3 Perfusion cultures in 2L bioreactor

	3 Theory/calculation/modeling/theoretical aspects
	3.1 Bioprocess description
	3.2 Model development
	3.3 Perfusion operations
	3.4 Parameter identification
	3.5 Parameter sensitivity analysis and predicted model output uncertainty

	4 Results
	4.1 Model identification using fed-batch cultures
	4.2 Model-based prediction of intensified operations performance
	4.3 Design and analysis of perfusion process conditions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Nomenclature


