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Molecular hallmarks of renal medullary carcinoma: more to c-MYC than meets the eye
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ABSTRACT
Renal medullary carcinoma (RMC) is a lethal disease that predominantly afflicts young individuals with 
sickle cell trait. Our recently reported molecular profiling of primary untreated RMC tissues elucidated 
distinct genomic and immune hallmarks of RMC, and identified MYC-induced replication stress as 
a targetable vulnerability for this disease.
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Renal medullary carcinoma (RMC) is a lethal renal cell carci-
noma (RCC) that predominantly afflicts young individuals of 
African descent with sickle cell trait or other sickle 
hemoglobinopathies.1 All RMC tumors demonstrate loss by 
immunohistochemistry of the potent tumor suppressor 
SMARCB1 (also known as INI1, hSNF5 or BAF47), a subunit 
of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chroma-
tin remodeling complex.2 The targeted therapies used for other 
RCCs are typically ineffective against RMC and the best avail-
able cytotoxic chemotherapies achieve a greater than 3 year 
overall survival in less than 5% of patients diagnosed with 
RMC.1 There is clearly a need to develop new therapies 
informed by a deeper understanding of the biological pathways 
that drive RMC. We accordingly investigated the molecular 
landscape of RMC by performing comprehensive genomic and 
transcriptomic profiling of untreated primary RMC tisses.3 To 
determine features unique to RMC, we compared our data to 
that of other closely related malignancies including collecting 
duct carcinoma (CDC), upper tract urothelial carcinoma 
(UTUC) and kidney malignant rhabdoid tumors (MRT). This 
integrative strategy produced new insights into the immune 
microenvironment of RMC, and identified a complex RMC 
genome harboring recurrent focal copy number alterations 
(CNAs). We further established a tumor-derived cell line and 
patient-derived xenograft (PDX) model of RMC, which 
allowed us to investigate a new treatment approach that 
exploits the therapeutic vulnerability to DNA damage repair 
(DDR) inhibition that we discovered characterizes this highly 
malignant tumor.3

We found that the frequency of single-nucleotide varia-
tions (SNVs) in RMC is some of the lowest seen across all 
cancers. However, RMC is characterized by an abundance 
of larger structural alterations such as recurrent focal copy 

number alterations (often in chromosomal fragile sites), 
gain of chromosome 8q (where c-MYC is located), as well 
as deletions and inactivating translocations of the 
SMARCB1 gene.3 Notably, we previously postulated that 
red blood cell sickling in the hypoxic renal medulla of 
individuals with sickle cell trait can induce such chromo-
somal structural alterations, particularly in known hotspots 
for genomic rearrangements.2

CDC arises from the same anatomical epicenter within the 
renal medulla and is morphologically very similar to RMC but 
expresses SMARCB1 by immunohistochemistry and is not 
associated with sickle hemoglobinopathies.1–3 UTUC origi-
nates anatomically close to the renal medulla and is treated 
with similar platinum-based cytotoxic chemotherapy regimens 
to those used for RMC.1 MRT is negative for SMARCB1 by 
immunohistochemistry and can often arise from the kidney 
but morphologically appears like an undifferentiated rhabdoid 
malignancy, whereas RMC manifests as a high grade 
adenocarcinoma.1,4 Our transcriptomic analysis suggested 
that both RMC and CDC originate from the collecting ducts, 
in contrast to kidney MRTs.3 Furthermore, the gene expression 
signature of RMC clearly distinguished this disease from 
UTUC and kidney MRT, whereas it shared similar core meta-
bolic and hypoxia-associated gene expression patterns with 
CDC.3 Conversely, pathways associated with MYC-induced 
replication stress were significantly upregulated in RMC com-
pared with CDC tumors. Mechanistically, we demonstrated 
that SMARCB1 loss increases the binding of c-MYC to gene 
promoters that regulate DNA replication and cell cycle pro-
gression, and accelerates replication fork progression thus 
inducing replication stress and subsequent upregulation of 
DDR and cell cycle checkpoint (CCC) pathways.3 Platinum 
salts, nucleoside analogs such as gemcitabine, and 
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topoisomerase inhibitors such as doxorubicin can augment 
replication stress leading to cell death3 and this may explain 
why these chemotherapies are clinically effective against 
RMC.1,5 To prevent this mitotic catastrophe, RMC cells 
become dependent on their DDR and CCC pathways which 
can be targeted by drugs such as the poly ADP ribose poly-
merase (PARP) inhibitors nirapatib and olaparib or the WEE1 
inhibitor adavosertib.3 Furthermore, c-MYC activation by 
SMARCB1 loss increases proteotoxic stress rendering cells 
susceptible to perturbation of their proteostatic machinery by 
proteasome inhibitors such as bortezomib and ixazomib.6,7 

Indeed, RMC cell lines and xenograft models are vulnerable 
to proteasome inhibitors6,8 and there is evidence of clinical 
activity in patients with RMC that is more likely to be potent 
and durable if proteasome inhibitors are rationally combined 
with other therapies.9 We have accordingly activated an 
ongoing phase II trial (NCT03587662 at clinicaltrials.gov) 
that targets both replication and proteotoxic stress by combin-
ing gemcitabine and doxorubicin with ixazomib (Figure 1).

We noted that RMC does share some commonalities with 
urothelial carcinomas: 1) RMC profoundly upregulates the can-
cer-associated long non-coding RNA (lncRNA) urothelial cancer 
associated 1 (UCA1) to similar levels as those found in UTUC.3 No 
other RCCs, including CDC, upregulate UCA1 and the biological 
role of this lncRNA in RMC remains to be elucidated. 2) RMC 
tumors often harbor NOTCH2 amplifications and concurrent 
deletions of NOTCH1 and NOTCH3,3 a distinct pattern associated 
with increased aggressiveness in the basal subtype of bladder 
urothelial carcinoma.10 Similarly to urothelial carcinoma, our 
results suggest that Notch pathway targeting in RMC should 
specifically focus on NOTCH2 inhibition.

Our immune profiling revealed RMC to be a highly inflamed 
tumor characterized by upregulation of the cyclic guanosine 
monophosphate–adenosine monophosphate synthase - 

stimulator of interferon genes (cGAS-STING) innate immune 
pathway, and an abundance of myeloid dendritic cells, neutro-
phils, and B lineage cells that distinguish RMC from kidney 
MRTs.3 Although the expression of programmed death-ligand 
1 (PD-L1) is heterogeneous, many immune checkpoints such as 
programmed cell death protein 1 (PD-1), cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), and lymphocyte- 
activation gene 3 (LAG3) are upregulated in RMC tumors.3 We 
have accordingly activated a tissue-rich phase II trial 
(NCT03274258 at clinicaltrials.gov) to investigate the role of 
immune checkpoint inhibition in RMC. These ongoing clinical 
and co-clinical efforts will investigate why cGAS-STING is so 
upregulated, how best to harness immunotherapy, and what is 
the optimal strategy to target stress-induced vulnerabilities in 
RMC.
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Figure 1. MYC-induced stress responses are renal medullary carcinoma (RMC) hallmarks. The loss of SMARCB1 and gain of 8q promote proteotoxic and replication 
stress responses mediated by c-MYC. The abundance of copy number alterations (CNAs) can be both a source and a consequence of replication stress which can be 
therapeutically targeted by agents that further induce replication stress including platinum salts, nucleoside analogs (such as gemcitabine) and topoisomerase 
inhibitors (such as doxorubicin). Replication stress may also be aggravated by the inhibition of DNA damage repair (DDR) pathways using drugs such as Poly (ADP- 
ribose) polymerase (PARP) inhibitors or the inhibition of cell cycle checkpoint (CCC) pathways using drugs such as the WEE1 inhibitor adavosertib. MYC-induced 
proteotoxic stress additionally confers a vulnerability to proteasome inhibitors such as ixazomib.
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