
PROCEEDINGS Open Access

A systematic comparison of genome-scale
clustering algorithms
Jeremy J Jay1†, John D Eblen2†, Yun Zhang3†, Mikael Benson4, Andy D Perkins5, Arnold M Saxton6, Brynn H Voy6,
Elissa J Chesler1, Michael A Langston6*

From 7th International Symposium on Bioinformatics Research and Applications (ISBRA’11)
Changsha, China. 27-29 May 2011

Abstract

Background: A wealth of clustering algorithms has been applied to gene co-expression experiments. These
algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical
clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA)
and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to
algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has
focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global
analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier
methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering
algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces
cerevisiae.

Methods: For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used
to measure each cluster’s agreement with every GO and KEGG annotation set, and the highest Jaccard score was
assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the
top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the
particular method.

Results: Clusters produced by each method were evaluated based upon the positive match to known pathways.
This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were
also tested to determine whether they were able to identify clusters consistent with those identified by other
clustering methods.

Conclusions: Validation of clusters against known gene classifications demonstrate that for this data, graph-based
techniques outperform conventional clustering approaches, suggesting that further development and application
of combinatorial strategies is warranted.

Background
Effective algorithms for mining genome-scale biological
data are in high demand. In the analysis of transcriptomic
data, many approaches for identifying clusters of genes
with similar expression patterns have been used, with
new techniques frequently being developed (for reviews

see [1,2]). Many bench biologists become mired in the
challenge of applying multiple methods and synthesizing
or selecting among the results. Such a practice can lead
to biased selection of “best” results based on preconcep-
tions of valid findings from known information, which
raises the question of why the experiment was per-
formed. Given the great diversity of clustering techniques
available, a systematic comparison of algorithms can help
identify the relative merits of different techniques [3,4].
Previous reviews and comparisons of clustering methods

* Correspondence: langston@eecs.utk.edu
† Contributed equally
6University of Tennessee, Knoxville, TN 37996, USA
Full list of author information is available at the end of the article

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

© 2012 Jay et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:langston@eecs.utk.edu
http://creativecommons.org/licenses/by/2.0

have often concluded that the methods do differ, but
offer no consensus as to which methods are best [3,5-9].
In this paper, we compare a broad spectrum of conven-
tional, machine-learning, and graph-theoretic clustering
algorithms applied to a high quality, widely used refer-
ence data set from yeast.
A popular and diverse set of clustering approaches that

have readily available implementations were employed in
this analysis (Table 1). These include five traditional
approaches: k-means clustering [10], and the de facto
standard hierarchical clustering, on which we tested four
agglomeration strategies: average linkage, complete link-
age, and the methods due to McQuitty [11] and Ward
[12]. These approaches create clusters by grouping genes
with high similarity measures together.
Seven graph-based approaches are examined: k-clique

communities [13], WGCNA [14], NNN [15], CAST [16],
CLICK [17], maximal clique [18-20], and paraclique [21].
These methods use a graph approach, with genes as
nodes and edges between genes defined based on a simi-
larity measure. These methods can be divided into two
groups: heuristic approaches, and clique-based methods.
WGCNA, CAST, and CLICK are all heuristic approaches,
computing approximations to various graph-based
metrics. The remaining methods (k-clique communities,
NNN, maximal clique, and paraclique) depend upon
finding cliques, or completely connected subgraphs, but
use these resulting cliques in different manners. For
example, NNN connects each gene to n similar genes
and merges overlapping cliques in the resulting graph to

form an initial set of networks, while paraclique begins
with a clique as a dense core of vertices and gloms on
other highly connected genes.
Finally, two other approaches are included: self-orga-

nizing maps [22], and QT Clust [23]. SOM is a machine
learning approach that groups genes using neural net-
works. QT Clust is a method developed specifically for
expression data. It builds a cluster for each gene in the
input, outputs the largest, then removes its genes and
repeats the process until none are left.
Many issues influence the selection and tuning of clus-

tering algorithms for gene expression data. First, genes can
either be allowed to belong to only one cluster or be
included in many clusters. Non-disjoint clustering con-
forms more accurately to the nature of biological systems,
but at a cost of creating hundreds to thousands of clusters.
Second, because each method has its own set of para-
meters for controlling the clustering process, one must
determine the ideal parameter settings in practice. There
are many different metrics for this problem, which have
been evaluated extensively [6,24]. Because there is no way
of measuring bias of one metric for a particular clustering
method and data set, most clustering comparisons evenly
sample the reasonable parameter space for each method
[7,25].
There are commonalities between parameters used by

some of these methods (shown in Table 1), for example
the average cluster size k used by hierarchical methods is
directly related to the number of clusters required by the
k-means algorithm. Other methods such as NNN and

Table 1 Overview of algorithms tested

Allows Overlapping Clusters

Pre-specified Number of Clusters (k)

Thresholded Correlations

Method Type Result Range Parameters Tested

Ward Hierarchical k Y Average cluster size

Average Hierarchical k Y Average cluster size

McQuitty Hierarchical k Y Average cluster size

Complete Hierarchical k Y Average cluster size

k-Means Partitioning k Y Number of clusters

SOM Neural network k Y Grid size/typea

QT Clust Partitioning 24-385 Maximum cluster diameters

CAST Graph-based 1-6162 Y Threshold

CLICK Graph-based 4-32 Cluster homogeneity

WGCNA Graph-based 4-160 Power, Module detection method

NNN Graph-based 23-52 Yb Minimum neighborhood size

k-Cliques Communities Graph-based 1-68 Y Y Threshold, Clique size

Maximal Clique Graph-based 1,000-64,000 Y Y Threshold

Paraclique Graph-based 8-615 Yc Y Threshold, Glom factor

Clustering methods are listed by name, along with the type of algorithm, and a general listing of parameters tested. Number of clusters in the result, given the
parameters and data set tested, is only provided here as an approximate figure. Empty results are obviously not included. aGrid type can be either rectangular or
hexagonal, in an m x n layout. We tested both types, but used an m x m layout for simplicity (k = m2). bRarely occurs in practice. On this data set we observed
no overlap with NNN. cOptional, not used in this analysis.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 2 of 12

QtClust employ readily-computable graph metrics such
as minimum neighborhood size and maximum cluster
diameter. The clique-based methods all utilize a thresh-
old value, the variation of which often affects the above
metrics such as cluster size. Higher threshold values gen-
erally result in a less connected graph and therefore
smaller cluster sizes. WGCNA relies upon a power para-
meter, to which correlation values are raised. This results
in a form of soft thresholding, where the disparity
between low and high correlation values is emphasized.
CLICK employs a cluster homogeneity parameter, which
is a measure of similarity between items in a cluster. This
is related to the idea of using a threshold value, since any
two vertices in a threshold-filtered graph are guaranteed
to possess a minimum pairwise similarity.
Metrics for comparing clusters can be categorized into

two types: internal and external [26]. Internal metrics are
based on properties of the input data or cluster output,
and are useful in determining how or why a clustering
method performs as it does. It provides a data-subjective
interpretation that is typically only relevant to a single
experimental context. Examples of internal metrics include
average correlation value, Figure of Merit (FOM) [27], or
diameter [23] which are difficult to compare. External
metrics, on the other hand, provide an objective measure
of the clusters based on data not used in the clustering
process, such as biological annotation data. An external
metric does not depend on the experimental context that
produced it. Such metrics enable a comparison of the rela-
tive merits of these algorithms based on performance in a
typical biological study, and can be compared regardless of
the annotation source.
External metrics have been used in many previous stu-

dies of clustering performance. Some comparisons use
receiver operating characteristic (ROC) or precision-recall
curves [5]. These metrics are simple to calculate, but they
provide too many dimensions (two per cluster) for a
straightforward comparison of the overall performance of
the methods. While it is possible to give an area under
curve (AUC) summary of the entire dataset, this is often
not useful to an experimentalist. A full ROC plot would
cover every single cluster produced, though the majority
of these would normally not be considered. Many other
studies [7,25,27,28] have used the Rand Index [29], which
generates a single value to measure similarity of clustering
results to a known categorization scheme such as GO
annotation [30]. However, it is subject to many sources of
bias, including a high number of expected negatives typi-
cally confirmed when comparing clustering results to cate-
gorized gene annotations [5,26]. The Jaccard similarity
coefficient ignores true negatives in its calculation, result-
ing in a measure less dominated by the size of the refer-
ence data, particularly in the large number of true
negatives that are often confirmed. This idea has been

raised in early work using the Rand Index and other parti-
tion similarity measures [31] and in the context of com-
paring clustering algorithms [1]. The Jaccard coefficient
has not been widely adopted, due in part to the historical
sparseness of annotations in reference sets for comparison.
With deep ontological annotation now more widely avail-
able, however, external metrics such as the Jaccard coeffi-
cient provide a much more relevant, objective, and
simplified basis for comparison.
A variety of tools are available to calculate functional

enrichment of biological clusters [32-34]. Most are not
suitable for high-throughput genome-scale analysis due to
interface, speed or scalability limitations. (They often can-
not easily handle the large number of clusters produced
from whole genome clustering.) Several of the tools are
meant exclusively for Gene Ontology terms, precluding
the use of the large variety of publicly available annotation
sources.
In the present study, we perform an evaluation of both

combinatorial and conventional clustering analyses using
an evenly distributed parameter set and biological valida-
tion performed using Jaccard similarity analysis of KEGG
and GO functional gene annotations. For this analysis we
implemented a new enrichment analysis tool, specifically
designed to handle genome-scale data (and larger) and any
gene category annotation source provided. Results of clus-
tering algorithms were compared across all parameters
and also in a manner that simulates use in practice by
selection of the optima generated from each method.

Methods
Data
Saccharomyces cerevisiae was fully sequenced in 1996 [35]
and has been extensively studied and annotated since. It is
therefore an ideal source for biological annotation. We
compared the performance of the selected clustering tech-
niques using the extensively studied gene expression data
set from Gasch et al. [36]. This data was created to observe
genomic expression in yeast responding to two DNA-
damaging agents: the methylating agent methylmethane
sulfonate (MMS) and ionizing radiation. The set includes
6167 genes from seven yeast strains, collected over
52 yeast genome microarrays.
The microarray data for yeast gene expression across the

cell cycle was obtained from http://www-genome.stanford.
edu/mec1. These data are normalized, background-
corrected, log2 values of the Cy5/Cy3 fluorescence ratio
measured on each microarray. We performed clustering
either directly on this preprocessed data or on the correla-
tion matrix computed from the data. In the latter case,
correlations for gene pairs with five or fewer shared
measurements were set to zero. The absolute values of
Pearson’s correlation coefficients were used, except when a
particular clustering approach demands otherwise.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 3 of 12

http://www-genome.stanford.edu/mec1
http://www-genome.stanford.edu/mec1

Clustering methods
In order to evaluate a wide spectrum of approaches
likely to be used in practice, and to avoid the difficult
task of choosing the arbitrary “best” parameter setting,
we selected roughly 20 evenly distributed combinations
of reasonable parameter settings for each implementa-
tion. To facilitate comparison, we reduced the myriad of
output formats to simple cluster/gene membership lists,
grouped into three sizes (3-10, 11-100, and 101-1000
genes). For example, hierarchical clustering produces a
tree of clusters, which we simply “slice” at a particular
depth to determine a list of clusters.
To generate results that were used in scoring, CAST,

QT Clust and SOM were run with MeV 4.1 [37]. When
running the CAST method, we selected threshold values
evenly distributed between 0.5 and 1.0. For QT Clust,
we selected maximum cluster diameters evenly distribu-
ted from 0.05 to 1.00. SOM requires several parameters,
making it difficult to select a narrow parameterization
range. We therefore restricted testing to a × a grids,
choosing 11 values so that the numbers of clusters mir-
rored the desired cluster sizes. We then ran each of
these sizes for both rectangular and hexagonal
topologies.
CLICK was run as implemented in Expander4 [17], and

we provided homogeneity values evenly distributed from
0.05 to 1.00. k-means and hierarchical clustering were
run using the R statistical package [38], with 20 different
cluster sizes. Default values for k-means were altered so
that the method iterated until convergence and so that
each run was repeated ten times (nstart = 10). For NNN,
we used publicly available software [15] and varied the
minimum neighborhood size from 10-30 (the default is
20). A standalone software package was also used for
WGCNA [14]. We applied ten different powers (2, 4, 6,
8, 10, 14, 18, 22, 26, and 30) across two different module
detection methods (dynamic height branch cutting and
dynamic hybrid branch cutting) and set the minimum
module size to 3 (default is 10). WGCNA requires a sig-
nificance measure for each gene, which was set to 1 for
all genes.
Our own implementations were employed for maximal

clique and paraclique runs. For maximal clique, we used
our highly efficient implementation of the well-known
algorithm of Bron and Kerbosch [19], executed on graphs
at 21 threshold values evenly distributed from 0.80 to
0.90. For paraclique, we applied four threshold values
(0.50, 0.60, 0.70, and 0.80) with five glom factors each
(1, 3, 5, 7, and 9).
For k-clique communities, we employed the publicly

available CFinder software [39]. CFinder produced
results in a matter of seconds for thresholds as high as
0.90, but failed to halt within 24 hours for thresholds
0.85 and below. To speed computation, we created our

own implementation of the k-clique communities algo-
rithm, using our maximal clique codes. We verified the
software by confirming CFinder’s clusters at threshold
0.90. We ran our implementation at thresholds 0.80,
0.85, and 0.90, selecting eight values for parameter k at
each threshold, and evenly distributing them between
three and the maximum clique size for that threshold.
Three methods (k-means clustering, hierarchical clus-

tering and SOM) required specification of the number
of clusters desired. We selected 20 values based on aver-
age cluster size, as computed from the total number of
genes (6167) divided by number of clusters. We chose
two size intervals, 10-100 genes and 100-500 genes, and
then selected ten evenly distributed cluster sizes per
interval.

Comparison metrics
Given the prevalence of publicly available gene annota-
tion information, we compared the computationally-
derived clusters with manually-curated annotations.
Yeast annotation sources include Gene Ontology [30],
KEGG Pathways [40], PDB [41], Prosite [42], InterPro
[43] and PFAM [44]. For clarity and brevity, and to take
advantage of their evenly distributed annotation sizes,
the results presented here employ only the Gene Ontol-
ogy and KEGG Pathways as sources.
We used Jaccard similarity as the basis for our analysis.

It is easy to calculate, and concisely compares clusters
with a single metric. Jaccard similarity is usually computed
as the number of true positives divided by the sum of true
positives, false positives, and false negatives.

JaccardSimilarity =
TruePositives

TruePositives + FalsePositives + FalseNegatives

In the case of cluster comparisons, this equates to the
number of genes that are both in the cluster and anno-
tated, divided by the total number of genes that are
either in the cluster or annotated.

JaccardSimilaritycluster =
Genescluster ∩ Genesannotation

Genescluster ∪ Genesannotation

Thus Jaccard measures how well the clusters match
sets of co-annotated genes, from 0 meaning no match
to 1.0 meaning a perfect match.
We implemented a simple parallel algorithm to search

all annotation sources for the genes in each cluster. For
each annotation source, we found all annotations that
match at least 2 genes in a given cluster. We then com-
puted the number of genes in the cluster that match the
annotation (true positives), the number of genes with
the annotation but not in the given cluster (false nega-
tives), and the number of genes in the cluster that did
not match the annotation (false positives). We ignored

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 4 of 12

genes in the cluster not found in the annotation source.
Finally, the highest matching Jaccard score and annota-
tion is assigned to the cluster.
We grouped Jaccard computations by method and

parameter settings and then separated each grouping
into three cluster size bins: 10 or fewer genes (“small”),
11-100 genes (“medium”), and 101-1000 genes (“large”).
When running a clustering algorithm to validate a
hypothesis, one generally has an idea of the desired clus-
ter size, which we try to account for with these size clas-
sifications. A researcher looking for small clusters is
often not interested in a method or tuning that produces
large clusters, and vice versa. It is important to note that
the use of average cluster size to determine cluster num-
ber (as is needed in k-means, hierarchical and SOM clus-
tering) does not mean that all clusters will be of average
size. Thus we find that these methods still generate clus-
ters with small, medium and large sizes.
Each individual cluster was scored against the entire

annotation set, and the highest Jaccard score match was
returned for that cluster. This list of scores was then
grouped by cluster size and sorted by Jaccard score. The
highest 5 Jaccard scores per cluster size class were aver-
aged to get the Average Top 5 (AT5). This process was
then repeated for each parameter setting tested, amassing
a list of around 20 AT5 scores per size class. From each
list of AT5 scores, the largest value was selected and
assigned to the Best Average Top 5 (BAT5) for that size
class. This process is then applied to the next clustering
algorithm’s results. When all data has been collected, the
BAT5 scores are output to a summary table, averaged, and
sorted again (Table 2).
Clusterings produced by each method were compared

pairwise using the variation of information metric [45].

A custom Python script was created to compute this
metric, which measures the difference in information
between two clusterings. Minimum and maximum varia-
tion of information values were extracted for each method
pair (additional file 1). This comparison is not applicable
to methods with non-disjoint clusters such as maximal cli-
que, so this method was excluded from the analysis.

Timings
Execution of each method at the parameters producing
the optimal BAT5 score for each size class was timed.
All timings were generated on a Intel Xeon X5550 2.66
GHz quad core workstation with 12 GB main memory,
running 64-bit Ubuntu Linux version 10.04. Methods
implemented in the MeV GUI reported run times, while
R-based methods were timed using the system.time()
function within R. Stand-alone programs paraclique,
maximal clique, and k-clique communities were timed
using the Unix time function, with the total elapsed
time reported by the system being reported. When
possible, data load time was excluded. However, this
was not possible with several of the methods tested.
Similarly, output was suppressed when possible to avoid
including the time to write results to disk. The CFinder
program allows the specification of various parameters
to possibly speed computation of the k-clique commu-
nities method such as employing an approximate algo-
rithm and specifying a maximum time to spend for each
node, however these options were not used.

Results
For each clustering method and parameter, clusters of
different sizes were obtained. Because there is an expo-
nential distribution of annotation category sizes, matches

Table 2 Algorithms ranked by quartile comparisons

Average Quartile Small (3-10 genes) Medium (11-100 genes) Large (101-1000 genes)

Clustering Method Quartile BAT5 Jaccard Quartile BAT5 Jaccard Quartile BAT5 Jaccard

K-Clique Communities 1.00 1 0.7531 1 0.4465 1 0.4915

Maximal Clique 1.00 1 0.8433 1 0.4081 0.0000

Paraclique 1.00 1 0.7576 1 0.4285 1 0.4169

Ward (H) 1.33 2 0.5782 1 0.4011 1 0.5723

CAST 1.67 1 0.7455 3 0.3146 1 0.4994

QT Clust 2.00 2 0.5473 2 0.3670 2 0.3944

Complete (H) 2.33 3 0.3933 2 0.3677 2 0.3419

NNN 2.67 2 0.5521 2 0.3705 4 0.2406

K-Means 3.00 4 0.2573 3 0.3015 2 0.3463

SOM 3.00 4 0.3260 2 0.3286 3 0.3282

WGCNA 3.00 3 0.4391 3 0.3106 3 0.2949

Average (H) 3.33 3 0.4087 4 0.2792 3 0.3037

McQuitty (H) 3.33 3 0.4594 3 0.3065 4 0.2868

CLICK 4.00 4 0.0339 4 0.1453 4 0.2817

Results from Figure 1 are displayed by quartile (1 = top 25% - 4 = bottom 25%), with missing values for maximal clique discarded. (H) denotes Hierarchical
Clustering agglomeration method.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 5 of 12

among small categories are more readily detectable. We
binned these results into three size categories (3-10, 11-
100, and 101-1000 genes), and ranked the clusters based
on Jaccard similarity scores. In practice, users generally
are only interested in the few highest-scoring clusters. In
many biological studies, only the top 5 to 10 clusters are
scrutinized. Data torturing is unfortunately not uncom-
mon in microarray studies due to the wealth of tools
available, and in practice, some individuals may perform
clustering until a satisfactory result is found. To simulate
this practice, we therefore focused on the top five cluster
scores for each size grouping (i.e., those with highest
Jaccard similarity to annotations), whether derived from
match to GO or KEGG annotations, and computed their
average score (Average Top 5 or AT5). We chose AT5 as
a comparison score because most of the methods pro-
duce at least five clusters of each size bin, but for some of
the methods, cluster scores drop off quickly after these
top five results, making a larger average meaningless. It is
also significant that in practice users often adjust para-
meter settings to improve clusters. Accordingly, for each
choice of method and cluster size category, we chose the
highest AT5 values across all parameter settings (Best
Average Top 5 or BAT5) for that method-size combina-
tion. These values are reported in Figure 1. It should be
noted that for AT5 and BAT5, maximal clique, like any
method that allows non-disjoint cluster membership, cre-
ates bias in this score by including results from similar
clusters. BAT5 values show that clique-based methods
(maximal clique, paraclique, and k-clique communities)
perform well, when clusters are compared with available

annotation, in all size classes. The CAST method pro-
duced high-scoring clusters for small and large groups,
and the Ward method of hierarchical clustering was in
the top 5 in each case. Most variation was observed at
the lower end of the BAT5 scores, though CLICK, along
with some hierarchical variants (Average linkage and
McQuitty, were consistently low-scoring. Some methods
show improved performance in one or more size class.
For example, K-Means performed poorly for small and
medium clustering, while its BAT5 value was in the
upper half of all methods for large clusters.
Another metric of clustering performance is whether a

given method is able to find clusters that are readily iden-
tified by other methods. This is a direct comparison of
the consistency of clustering algorithms. We identified
any annotation category that received a Jaccard score
greater than 0.25 in any of the hundreds of clustering
runs we performed over all parameter settings. This pro-
duced a list of 112 annotation categories, 97 from Gene
Ontology and 15 from KEGG. We then found the best
category match score that each clustering method
received on each of these selected annotations and aver-
aged them. Graph based methods scored highest on this
internal consistency metric. The best scoring among
these were CAST, maximal clique and paraclique. Like-
wise, the same methods observed to produce low BAT5
values (CLICK, average linkage, and McQuitty) were also
unable to identify many genes from these high-scoring
annotation categories. It is interesting to note that the
K-clique communities method, in contrast to the high
BAT5 values produced for all size classes, performed

Figure 1 Algorithms ranked by best average top 5 clusters. BAT5 Jaccard values are shown for each clustering method and cluster size
classification. (H) = Hierarchical clustering agglomeration method.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 6 of 12

poorly on this metric. For each clustering algorithm, we
averaged the BAT5 scores from the three size bins, and
ranked them by their average. High-averaging methods
not only found good results, but they found them in all
three size classifications, indicating robustness to varia-
tion in cluster size. These values provide a straightfor-
ward way to compare clustering methods irrespective of
cluster size.
Figure 3 shows a relative comparison of the number of

clusters produced by each clustering method at the opti-
mal parameters for each size class on a log scale. Some
methods produced a single cluster at one or more of the
size classes. For instance, CLICK generated one cluster in
the small and medium size classes while k-Clique Com-
munities produced one cluster in the medium and large
size classes. While the maximal clique method did not
produce any clusters in the large size class, it produced
many more relative to the other methods in the other two
size classes. We also examined the average size of the clus-
ters produced, which is displayed in Figure 4. With some
variation, all methods produced clusters with a compar-
able average size. This is possible for the maximal clique
method in spite of the much larger number of clusters due
to the overlapping nature of the resulting cliques.
To determine the effect of parameter selection on each

method, as well as the level of agreement of the various
methods over all parameter settings, a comparison of clus-
tering methods using the variation of information metric
is presented in additional file 1. Minimum and maximum

values are given for variation of information values over all
parameters for each pair of methods. Examining the main
diagonal, we can see which methods are least affected by
changes in input parameters. CLICK, K-Clique Commu-
nities, NNN, and QT Clust, for example, all exhibit a
small range. Looking at off-diagonal elements can show
which methods are very similar or different to one another
at some parameter setting. We can observe that many of
the hierarchical approaches (Average, Complete, and
McQuitty) produce the same set of clustering, indicated
by a 0.00 variation of information value, for some para-
meter selections. This is expected, because for larger k
values, very tight clusters will not be merged regardless of
the agglomeration strategy used.
Consideration of execution time is also an important

aspect when selecting a method for clustering large bio-
logical data sets. Table 3 shows the execution time for
each of the methods tested at the parameters found to
produce the optimal BAT5 Jaccard scores. Most results
ranged from just under one minute to more than a min-
ute. Several algorithms such as k-means, QT clust, and
k-clique communities took considerably longer. Analysis
of algorithm runtimes shows the hierarchical methods
to be the fastest. Though graph-based methods are gen-
erally expected to take longer to execute, most of these
methods finished in roughly 25-80 seconds. Exceptions
were paraclique and k-clique communities, with paracli-
que executing in under 10 seconds for all size classes
and k-clique communities unfinished after 2 days.

Table 3 Runtimes for each clustering method

Small (3-10 genes) Medium (11-100 genes) Large (101-1000 genes)

Clustering Method Param Time (s) Param Time (s) Param Time (s) Implementation

K-Clique Communities 0.80/03 0.80/57 0.80/48 Standalone,***

Maximal Clique 0.80 26.510 0.80 26.510 N/A N/A Standalone,***

Paraclique 0.80/01 5.120 0.80/09 0.780 0.60/09 9.050 Standalone,***

Ward (H) N/A 2.863 N/A 2.863 N/A 2.863 R 2.13.0

CAST 0.875 37.324 0.85 34.242 0.90 34.121 MeV 4.5.1

QT Clust 030 6 904.518 035 6 759.073 050 5 559.467 MeV 4.5.1

Complete (H) N/A 2.721 N/A 2.721 N/A 2.721 R 2.13.0

NNN 11 25.550 24 30.610 27 34.370 Standalone,***

K-Means 617 6 711.143 308 4 060.351 21 1 068.069 R 2.13.0

SOM 25/r 6.159 25/h 6.121 18/r 2.956 MeV 4.5.1

WGCNA 2/10 79.430 1/06 80.962 2/06 80.962 R 2.13.0

Average (H) N/A 2.452 N/A 2.452 N/A 2.452 R 2.13.0

McQuitty (H) N/A 2.445 N/A 2.445 N/A 2.445 R 2.13.0

CLICK 015 38.270 060 45.310 065 52.570 Standalone,***

Parameters used to produce the best Jaccard score, and the associated runtime for the given method and parameters are displayed. Specific parameter
descriptions are listed in Table 1. MeV times were reported by GUI results. Hierarchical methods use the “flashClust” package for R, which is a C++
implementation of the standard “hclust” package. Hierarchical timings do not include the time for tree cutting (which is negligible). flashClust and WGCNA
packages were downloaded from the CRAN repository June 22, 2011. Versions reported refer to the version used for runtime calculation; in some cases, previous
versions were used to generate clusters for scoring. r = rectangular, h = hexagonal. *A GUI-based graphical tool which is no longer maintained was used to
generate clusters for Jaccard scoring while the latest R implementation was using in timing, **Total elapsed time reported by the system.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 7 of 12

Discussion
In our comparison of clustering results by size, we
found that maximal clique and paraclique perform best
for small clusters; k-clique communities and paraclique
perform best for medium clusters; Ward and CAST are
the top performing methods for large clusters (Figure
1). Combined analysis of the clustering results across
result sizes based upon the quartile of the results reveals
that the performance is best for k-clique communities,
maximal clique, and paraclique, shown in the first three
rows of Table 2.
For the analysis of consensus of clustering methods

for cluster matches to annotation, we found that CAST,
maximal clique and paraclique are best at identifying
clustering results found by any other method (Figure 2).
This analysis of the performance of diverse clustering

algorithms reveals a performance distinction between
graph-based and conventional parametric methods. In
our study, the best ranking methods are almost uni-
formly graph-based, building upon the rigorous cluster
definition provided by cliques. Traditional methods suf-
fer from relatively poor performance due to their less
rigorous cluster definition or their heuristic nature,
which often rely on growth of clusters around individual
genes in a neighborhood joining or centroid proximity.
These methods do not necessarily result in high inter-
correlation among all cluster members, whereas clique
and other combinatorial algorithms typically require this
by definition.
Although users perform clustering to obtain a decom-

position of major co-variation in expression data, con-
ventional clustering algorithms frequently focus on
details rather than the bigger picture, by starting from a
single gene instead of the full genome. Thus, these
methods, such as hierarchical and k-means, lack a global

consideration of the data set. Clusters are built incre-
mentally at each step, beginning with a single gene’s
neighborhood, not a highly correlated geneset. Clusters
will therefore tend to converge to a local optimum. This
is why repeated randomizations, as is frequently done
with k-means, can typically improve results simply by
selecting genes with larger neighborhoods. Neural net-
work approaches like SOM suffer from a similar pro-
blem, as training takes place with incomplete views of
the full data. Even QT Clust suffers from these issues,
but to some extent overcomes them through additional
computation. Clusters are built incrementally for each
gene, but only the highest scoring cluster is partitioned
from the rest of the data, at which time its individual
genes are partitioned out. The process continues itera-
tively until no genes remain. Thus, QT clust avoids bias
introduced by arbitrarily selecting genes, but still has
the same problem of incremental local growth of
clusters.
Three of the combinatorial approaches, CAST, CLICK

and WGCNA, represent data as graphs, but compute
only heuristic solutions to the underlying graph-theore-
tic metrics. CAST approximates a solution to cluster
editing. CLICK approximates a minimum weight cut.
WGCNA represents data as a weighted graph, but
applies hierarchical clustering to compute its final set of
clusters.
NNN computes exact solutions to somewhat arbitrary

problem parameters. The poor performance that we
observe for it on this data may be because its objectives
differ from those of other clustering algorithms. NNN
connects genes based on relative correlation among
gene pairs. Two genes G and G’ are considered related
if their correlation is high compared to all other correla-
tions involving G and G’, as opposed to all correlations

Figure 2 Algorithms ranked by prominent annotations. 112 annotations received a Jaccard score above 0.25. Each clustering method was
ranked by the average of its highest Jaccard score for each of these annotations. (H) = Hierarchical agglomeration method.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 8 of 12

for all genes. Thus, NNN may find clusters that have
less pronounced relationships among all cluster mem-
bers. These clusters may not be present in the high-level
GO annotations, but may have biological relevance
through more distant and indirect functional
relationships.
Variation of information results (additional file 1) indi-

cate that while some methods have a relatively high
agreement between individual clustering runs at various
parameter settings, there does not seem to be many
commonalities between these methods. While some
methods such as K-Clique Communities routinely
appear in the list of top-scoring methods, others such as
CLICK were not able to identify clusters with high-scor-
ing matches to annotation categories. This tells us that
consistency over parameter settings is not a good indica-
tor of performance, since many high scoring methods
exhibited a wide range of variation over parameter set-
tings. These results further motivate our approach of
selecting many common and evenly-spaced parameter
settings for our tests.
Our work suggests that graph-based algorithms pro-

vide superior reliability and a highly promising approach
to transcriptomic data clustering. Most of these methods
attempt to find and exploit cliques), with the exception
of CLICK which uses minimum cut. It has been sug-
gested that clique-based approaches possess the best
potential for identifying sets of interacting genes, due to
the highly inter-correlated nature of the clusters pro-
duced [46]. The results reported here appear to corro-
borate that, given that four of the six best performing
clustering methods in Table 2 are based upon finding
cliques. It should be noted that we applied the algo-
rithms on a single data set for which both deep experi-
mental data and strong biological ground truth are
available, and that results may differ when a different
data set is used. It is challenging, however, to conceive
of a correlation matrix that would be fundamentally
biased toward one type of algorithm, especially given
that we provided the selection of parameters over a
large range of values.
Graph-based problems relevant to clustering are often

thought to be difficult to solve (that is, they are NP-
hard) because globally optimal solutions are required.
This can explain both the effectiveness of exact solu-
tions and also why so few algorithms rely on exact solu-
tions. Our results suggest that exact solutions are truly
valuable in practice, and that continued research into
computing exact solutions to NP-hard problems is prob-
ably worthwhile.
Though combinatorial approaches to clustering may

perform better, implementation challenges have limited
widespread adoption to date. Maximal clique’s stand-
alone utility is rather limited. Even with the best current

implementations, it can take a staggering amount of time
to run to completion. It tends to overwhelm the user by
returning an exhaustive collection of vast numbers of
overlapping clusters, even for a small genome such as
yeast, which is illustrated in Figure 3. Maximal clique
also failed to produce clusters for scoring in the large size
class due to its very stringent cluster membership
requirement. Paraclique and k-clique communities are
appealing alternatives due to the more manageable nat-
ure of their results. They employ a form of soft thresh-
olding, which helps to ameliorate the effects of noise and
generate nicely-enriched clusters without excessive over-
lap. From a sea of tangled correlations, they produce
dense subgraphs that represent sets of genes with highly
significant, but not necessarily perfect, pair-wise correla-
tions. Paraclique relies on maximum clique, and thus
operates in a top-down fashion. It generates impressive
results through the use of its rigorous cluster definition
followed by more lenient expansion, leading to very high
average intra-cluster correlations. By avoiding the enu-
meration problems of maximal clique, it is also highly
scalable. Moreover, through its complementary duality
with vertex cover, it is amenable to advances in fixed-
parameter tractability [47]. Paraclique’s main drawback is
its use of multiple parameters, making algorithm tuning
more challenging. In contrast, k-clique communities
relies on maximal clique and so operates in a bottom-up
manner. It also generates impressive results, but its
dependence on maximal clique severely restricts its scal-
ability. Even for a small genome such as that of S. cerevi-
siae, and even for graphs in which there are no large
maximal cliques, we could not run k-clique communities
to completion without resorting to our own maximal cli-
que implementation. A faster version of community’s
CFinder exists (I. Farkas, private comm.), but it achieves
speed only by setting timeout values for maximal clique
computations, thereby creating an approximation
method rather than an optimization method. Thus, given
the exponential growth rate of maximal cliques, exact
algorithms that rely on such cliques are hobbled by mem-
ory limitations on larger genomes and denser correlation
graphs. We are rather optimistic, however, that
approaches exploiting high performance architectures
[20] may have the potential to change this picture. The
fourth clique-based approach, this time via cluster edit-
ing, is CAST. Although its execution is relatively fast, its
heuristic nature ensures only mediocre results and diffi-
cult tuning. CAST is simply not an optimization techni-
que. It seems able to detect pieces of important clusters
(as evidenced by its prominence in Figure 2), but it is
often not comprehensive. Given the extreme difficulty of
finding exact solutions to cluster editing [48], we think
an optimization analog of CAST is unlikely to be feasible
in the foreseeable future.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 9 of 12

Examination of algorithm runtimes put hierarchical
methods at the top. However, the performance gain
from using graph-based methods appears to come at a
runtime cost on the order of seconds. This is particu-
larly true for methods such as paraclique, CAST, NNN,
and even maximal clique. With paraclique and maximal
clique Jaccard scores falling in the first quartile for all
size classes, and CAST in the first quartile for 2 of the 3
size classes, this should be considered further evidence
for the utility and applicability of graph-based methods
to the clustering of microarray data.

Conclusions
Using Jaccard similarity to compare clustering results to
gene annotation categories, we performed a comparative
analysis of conventional and more recent graph-based
methods for gene co-expression analyses using a well-
studied biological data set. Jaccard similarity provides a
simple and objective metric for comparison that is able
to distinguish between entire classes of clustering meth-
ods without the biases associated with the Rand Index.
Our analysis revealed that the best performing algo-
rithms were graph based. Methods such as paraclique

Figure 4 Average cluster size produced by each method. The number of clusters produced by each method at the optimal parameter
settings for each size class is shown on a log10 scale.

Figure 3 Number of clusters produced by each method. The number of clusters produced by each method at the optimal parameter
settings for each size class is displayed on a log10 scale. Note that some methods produced a single cluster for one or more of the size classes,
which appears as absent on the graph. Maximal clique generated no clusters in the large size class, also showing as 0 on the graph.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 10 of 12

provide an effective means for combining mathematical
precision, biological fidelity and runtime efficiency.
Further development of these sorts of algorithms and of
user-friendly interfaces is warranted to facilitate wide-
spread application of these techniques among
experimentalists.

Additional material

Additional file 1: Clusterings compared using the variation of
information metric. Results of a pairwise comparison using the variation
of information metric is shown. Each entry consists of a minimum and
maximum variation of information value of clusters for each pair of
methods and selection of parameters. High values indicate very different
cluster structures while low values indicate similarity. Values on the main
diagonal indicate within-method consistency, with a small range
indicating that parameters have little effect on clustering results.

Acknowledgements
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 10, 2012: “Selected articles from the 7th International
Symposium on Bioinformatics Research and Applications (ISBRA’11)”. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/S10.
This research was supported in part by the National Institutes of Health
under grants R01-MH-074460, U01-AA-016662 and R01-AA-018776, by the
Department of Energy under the Low Dose Radiation Research Program of
the Office of Biological and Environmental Research ERKP650 and the
EPSCoR Laboratory Partnership Program, and by the National Science
Foundation under grant EPS-0903787. The research leading to these results
has received funding from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement number 223367. This
research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. Illes Farkas
provided us with useful information about the CFinder software. Khairul
Kabir and Rajib Nath helped generate sample results.

Author details
1The Jackson Laboratory, Bar Harbor, ME 04609, USA. 2Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA. 3Pioneer Hi-Bred International
Incorporated, Johnston, IA 50131, USA. 4Linköping University, SE-581 85,
Linköping, Sweden. 5Mississippi State University, Mississippi State, MS 39762,
USA. 6University of Tennessee, Knoxville, TN 37996, USA.

Authors’ contributions
JJJ, JDE and YZ produced and collected clusters using the many clustering
algorithms. JJJ wrote the software to calculate Jaccard scores and provided
the integrative analysis. ADP assisted with analysis, timings and manuscript
preparation. MB, AMS, and BHV provided valuable direction for refinement of
the results. EJC and MAL conceived of the study and participated in its
design, coordination and manuscript preparation. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 25 June 2012

References
1. Jiang DX, Tang C, Zhang AD: Cluster analysis for gene expression data: A

survey. IEEE Trans Knowl Data Eng 2004, 16(11):1370-1386.
2. Quackenbush J: Computational analysis of microarray data. Nat Rev Genet

2001, 2(6):418-427.

3. Kerr G, Ruskin HJ, Crane M, Doolan P: Techniques for clustering gene
expression data. Comput Biol Med 2008, 38(3):283-293.

4. Laderas T, Mcweeney S: Consensus framework for exploring microarray
data using multiple clustering methods. Omics 2007, 11(1):116-128.

5. Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG: Finding
function: evaluation methods for functional genomic data. BMC
Genomics 2006, 7(1):187.

6. Giancarlo R, Scaturro D, Utro F: Computational cluster validation for
microarray data analysis: experimental assessment of Clest, Consensus
Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC
Bioinformatics 2008, 9(1):462.

7. de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A: Clustering
cancer gene expression data: a comparative study. BMC Bioinformatics
2008, 9(1):497.

8. Mingoti SA, Lima JO: Comparing SOM neural network with Fuzzy c-
means, K-means and traditional hierarchical clustering algorithms. Eur J
Oper Res 2006, 174(3):1742-1759.

9. Datta S, Datta S: Methods for evaluating clustering algorithms for gene
expression data using a reference set of functional classes. BMC
Bioinformatics 2006, 7(1):397.

10. Hartigan JA, Wong MA: Algorithm AS 136: A K-Means Clustering
Algorithm. Appl Stat 1979, 28(1):100-108.

11. McQuitty LL: Similarity Analysis by Reciprocal Pairs for Discrete and
Continuous Data. Educ Psychol Meas 1966, 26(4):825-831.

12. Ward JH: Hierarchical Grouping to Optimize an Objective Function. J Am
Stat Assoc 1963, 58(301):236-244.

13. Palla G, Derenyi I, Farkas I, Vicsek T: Uncovering the overlapping
community structure of complex networks in nature and society. Nature
2005, 435(7043):814-818.

14. Zhang B, Horvath S: A general framework for weighted gene co-
expression network analysis. Stat Appl Genet Mol 2005, 4(1).

15. Huttenhower C, Flamholz AI, Landis JN, Sahi S, Myers CL, Olszewski KL,
Hibbs MA, Siemers NO, Troyanskaya OG, Coller HA: Nearest Neighbor
Networks: clustering expression data based on gene neighborhoods.
BMC Bioinformatics 2007, 8(1):250.

16. Ben-Dor A, Shamir R, Yakhini Z: Clustering gene expression patterns. J
Comp Biol 1999, 6(3-4):281-297.

17. Sharan R, Maron-Katz A, Shamir R: CLICK and EXPANDER: a system for
clustering and visualizing gene expression data. Bioinformatics 2003,
19(14):1787-1799.

18. Abu-Khzam FN, Baldwin NE, Langston MA, Samatova NF: On the Relative
Efficiency of Maximal Clique Enumeration Algorithms, with Applications
to High-Throughput Computational Biology. International Conference on
Research Trends in Science and Technology Beirut, Lebanon; 2005.

19. Bron C, Kerbosch K: Algorithm 457: Finding All Cliques of an Undirected
Graph. Commun ACM 1973, 16(9):575-577.

20. Zhang Y, Abu-Khzam FN, Baldwin NE, Chesler EJ, Langston MA,
Samatova NF: Genome-Scale Computational Approaches to memory-
Intensive Applications in Systems Biology. Supercomputing Seattle,
Washington; 2005, 12.

21. Chesler EJ, Langston MA: Combinatorial Genetic Regulatory Network
Analysis Tools for High Throughput Transcriptomic Data. RECOMB Satellite
Workshop on Systems Biology and Regulatory Genomics San Diego, California;
2005, 150-165.

22. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander ES, Golub TR: Interpreting patterns of gene expression with self-
organizing maps: methods and application to hematopoietic
differentiation. Proc Natl Acad Sci USA 1999, 96(6):2907-2912.

23. Heyer LJ, Kruglyak S, Yooseph S: Exploring expression data: identification
and analysis of coexpressed genes. Genome Res 1999, 9(11):1106-1115.

24. Milligan G, Cooper M: An Examination of Procedures for Determining the
Number of Clusters in a Data Set. Psychometrika 1985, 50(2):159-179.

25. Thalamuthu A, Mukhopadhyay I, Zheng XJ, Tseng GC: Evaluation and
comparison of gene clustering methods in microarray analysis.
Bioinformatics 2006, 22(19):2405-2412.

26. Handl J, Knowles J, Kell DB: Computational Clustering Validation in
Postgenomic Data Analysis. Bioinformatics 2005, 21(15):3201-3212.

27. Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene
expression data. Bioinformatics 2001, 17(4):309-318.

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1471-2105-13-S10-S7-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S10
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S10

28. Yao J, Chang C, Salmi ML, Hung YS, Loraine A, Roux SJ: Genome-scale
cluster analysis of replicated microarrays using shrinkage correlation
coefficient. BMC Bioinformatics 2008, 9(1):288.

29. Hubert L, Arabie P: Comparing Partitions. Journal of Classification 1985,
2(1):193-218.

30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: tool for the
unification of biology. Nat Genet 2000, 25(1):25-29.

31. Wallace DL: A Method for Comparing Two hierarchical Clusterings:
Comment. J Am Stat Assoc 1983, 78(383):569-576.

32. Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene
Ontologies within a group of genes. Bioinformatics 2004, 20(9):1464-1465.

33. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: Database for Annotation, Visualization, and Integrated Discovery.
Genome Biol 2003, 4(5):P3.

34. Khatri P, Draghici S: Ontological analysis of gene expression data: current
tools, limitations, and open problems. Bioinformatics 2005,
21(18):3587-3595.

35. Goffeau A, Barrell B, Bussey H, David R, Dujon B, Feldmann H, Galibert F,
Hoheisel J, Jacq C, Johnston M, et al: Life with 6000 Genes. Science 1996,
274(5287):546-567.

36. Gasch AP, Huang MX, Metzner S, Botstein D, Elledge SJ, Brown PO:
Genomic expression responses to DNA-damaging agents and the
regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 2001,
12(10):2987-3003.

37. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,
Currier T, Thiagarajan M, et al: TM4: a free, open-source system for
microarray data management and analysis. Biotechniques 2003,
34(2):374-378.

38. R Development Core Team: R: A Language and Environment for
Statistical Computing. 2011.

39. Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T: CFinder: locating clique
and overlapping modules in biological networks. Bioinformatics 2006,
22(8):1021-1023.

40. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T,
Kawashima S, Okuda S, Tokimatsu T, et al: KEGG for linking genomes to
life and the environment. Nucleic Acids Res 2008, 36:D480-D484.

41. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000,
28(1):235-242.

42. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C,
Langendijk-Genevaux PS, Sigrist CJA: The 20 years of PROSITE. Nucleic
Acids Res 2008, 36:D245-D249.

43. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P,
Buillard V, Cerutti L, Copley R, et al: New developments in the InterPro
database. Nucleic Acids Res 2007, 35:D224-D228.

44. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G,
Forslund K, Eddy SR, Sonnhammer ELL, et al: The Pfam protein families
database. Nucleic Acids Res 2008, 36:D281-D288.

45. Meila M: Comparison clusterings-an information based distance. Journal
of Multivariate Analysis 2006, 98(5):873-895.

46. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional
relationships between RNA expression and chemotherapeutic
susceptibility using relevance networks. P Natl Acad Sci USA 2000,
97(22):12182-12186.

47. Abu-Khzam FN, Langston MA, Shanbhag P, Symons CT: Scalable Parallel
Algorithms for PFT Problems. Algorithmica 2006, 45(3):269-284.

48. Dehne F, Langston M, Luo X, Pitre S, Shaw P, Zhang Y: The Cluster Editing
Problem: Implementations and Experiments. International Workshop on
Parameterized and Exact Computation Zurich, Switzerland; 2006, 13-24.

doi:10.1186/1471-2105-13-S10-S7
Cite this article as: Jay et al.: A systematic comparison of genome-scale
clustering algorithms. BMC Bioinformatics 2012 13(Suppl 10):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Jay et al. BMC Bioinformatics 2012, 13(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/13/S10/S7

Page 12 of 12

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Clustering methods
	Comparison metrics
	Timings

	Results
	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

