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L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue
growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the
present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU), adenosine
deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of
male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme,
5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide
metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and
decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic,
vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the
cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased
AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during
dietary L-arginine intake.

1. Introduction

L-arginine is a conditionally essential amino acid important
for a number of biochemical functions in protein synthe-
sis, ammonia detoxification, energy fuel via conversion to
glucose, the structural component of nucleic acid bound
proteins (histones), protein hormones (vasopressin, insulin),
polyamines, the component of some enzyme active sites
(alkaline phosphatase), component of ejaculate (seminal
fluid and sperm), and component of skin and connective
tissues proteins (collagen); it is involved in synthesis of
creatine and nitric oxide (NO) [1–5]. L-arginine exerts the
antioxidant property and the immunomodulatory effect and
can reduce the accumulation of ammonia and plasma lactate,
toxic byproducts during physical exercise [6–8]. Endogenous

L-arginine content is maintained constantly according to the
balance between dietary intake, synthesis, and its metabolic
pathways. Replenishment of arginine at a similar rate is
achieved by a combination of dietary intake and a low rate
of endogenous synthesis [9–11].

Adenine nucleotide catabolism and salvage pathway rep-
resent important pathways of the intermediary metabolism,
as the regulatory effectors (adenosine) or cell energy com-
pound (ATP). The mechanism responsible for the mainte-
nance of optimal adenine nucleotide pool in most tissues
interrelates with the AMP metabolism [12]. The initial path-
way of AMP metabolism generally occurs via two possible
enzyme sequences: the deamination of AMP via enzyme
AMP deaminase when IMP is generated or by dephosphory-
lation via enzyme 5′-nucleotidase (5′-NU) when adenosine

mailto:kocicrg@yahoo.co.uk


2 The Scientific World Journal

is generated [13]. The catabolism of adenosine occurs via
adenosine deaminase (ADA) reaction in which inosine is
generated. The salvage of performed purines can occur
through the utilization of IMP or inosine. Terminal degra-
dation of purine bases is catalyzed via enzyme xanthine
oxidase (XO), and the product of catabolism is uric acid.
During XO reaction, the free radical species are generated.
The regulation of purine metabolism, including the steady-
state concentration of adenosine, may be brought about
the modifications in the activity of the above-mentioned
enzymes [14–16].

In recent time, the attention is to the use of L-arginine
supplementation by athletes, a strategy used widely to
enhance tissue growth and general performance, in the
treatment of men sterility and prevention of male impotence.
Modulation of the arginine-NO pathway through dietary
supplementation with L-arginine may be beneficial in the
prevention and treatment of the metabolic syndrome in
obese humans and in reduction of fat mass [4, 5, 9, 11, 17].
All these functions may be related to the adenylate energy
charge, ATP, and adenosine content. The aim of the present
study was to estimate the activity of main enzymes of adenine
nucleotide metabolism: 5′-NU, ADA, AMP deaminase, and
XO during rat dietary intake of L-arginine for a period of
four weeks.

2. Materials and Methods

2.1. Animals. White male Wistar rats (6 months old),
200–220 g body weight, were divided in two groups, where
one of them received L-arginine as 0.5% solution dissolved
in drinking water, while the other was control. Each group
consisted of 8 animals. The rats were sacrificed under Ketalar
anesthesia four weeks after. The tissues (liver, kidney, and
testis) were quickly removed, rinsed, and homogenized in
physiological saline as 1% homogenate. In order to remove
cell debris, received homogenate was centrifuged at 600 g on
4◦C for 30 min. Received supernatant was used for estimating
the enzyme activities and protein concentration.

2.2. Enzyme Assays. The activity of 5′-NU was measured
according to the method of Wood and Viliams [18] by using
10 mmol/L AMP (Sigma USA) as substrate, where phos-
phorus liberation was measured. The activity of ADA and
AMP deaminase was determined by measuring the ammonia
liberation by using 10 mmol/L AMP or 4 mmol/L adenosine
(Sigma USA) as substrates [19]. A slight modification of this
method was made in measuring of the liberated ammonia
[20]. The activity of xanthine oxidase was measured by
the formation of uric acid by using 0.05 mmol/L xanthine
(Serva-Germany) as substrate [21]. Tissue proteins were
measured by Lowry method [22]. The activity of enzymes
was expressed as U/g proteins, and the protein content was
expressed as mg/g wet weight (mg/gWW).

2.3. Statistical Analysis. Mean values ± SD are given. Statis-
tical significance was estimated by the Student t-test.

3. Results

The results are shown on the Figures 1 and 2. The activity
of 5′-nucleotidase (5

′
NU) significantly increased in kidney

and testis tissue; the activity of ADA significantly decreased
in all investigated tissues. Since the first enzyme is involved
in adenosine production and former in its degradation,
obtained results may point out that the metabolism of
adenosine would be directed toward its increased production
and limited degradation (Figure 1). The activity of AMP
deaminase significantly increased in all tissues, while the
activity of XO significantly decreased. It may suggest that the
metabolism of adenine nucleotides would be directed to the
interconversion process and limited degradation during the
L-arginine intake (Figure 2). The mean content of proteins
did not change significantly during the L-arginine intake
(Figure 2).

4. Discussion

L-arginine metabolism involves various organs such as the
kidney, the muscle, the intestines, the liver, the testis, and
the CNS, acting together in an interorgan axis. Dietary
supplementation of L-arginine was suggested presumably
for three main reasons: its role in the secretion of endoge-
nous growth hormone, its involvement in the synthesis of
creatine, and the role in augmenting NO production. NO
mediates many of the vasoactive properties of adenosine
and may modulate adenosine metabolism. Production of
nitric oxide from L-arginine has been implicated in the
regulation of steroidogenesis. These aspects of L-arginine
supplementation may be discussed in the light of clinical
investigations involving antiatherogenic, vasoactive, antiox-
idant, immunomodulatory effect, and wound-repair activity
[13]. L-arginine deficiency could result delay in sexual
maturity and development of sterility, impairment of the
production of insulin, glucose intolerance, and impaired liver
lipid metabolism and detoxification. When administered in
high doses, L-arginine stimulates pituitary release of growth
hormone and prolactin, pancreatic release of glucagon and
insulin, decreased platelet aggregation, and decreased blood
pressure. The effect is improved blood circulation in the body
and especially in the extremities and in genitalia [8, 10, 17].

The enzymes of purine metabolism have proved to
be particularly sensitive to the effect of dietary L-arginine
supplementation (Figures 1 and 2). The activity of 5′-
NU significantly increased. Ecto-5′-nucleotidase is mainly
located in plasma membrane and its activity is a main
source of adenosine production. ADA represents the enzyme
involved in recycling of purines and in reducing intracellular
accumulation of adenosine [23]. The dynamic ratio of
these enzymes (5′-NU/ADA) increased in L-arginine-treated
group, suggesting that adenine nucleotide metabolism may
be directed toward stimulated adenosine production and
increased adenosine pool. Extracellular adenosine may exert
several physiological effects by stimulation of specific adeno-
sine receptors via decreasing vascular tone [24–27]. Beside
this, the adenosine is an important anti-inflammatory agent
[28], which inhibits TNF-α production in macrophages
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Figure 1: The effect of dietary L-arginine on the activity of 5′-
nucleotidase (5′-NU) and adenosine deaminase (ADA) of rat liver,
kidney, and testis tissue. The activity of 5′-NU was measured by
using 10 mmol/L AMP as substrate, where phosphorus liberation
was measured. The activity of ADA was determined by measuring
the ammonia liberation by using 4 mmol/L adenosine as substrate.
The activity of enzymes was expressed as U/g proteins. Mean
values ± SD are given. Each group consisted of 8 animals.

and monocytes, suppresses arachidonic acid release and
leukotriene biosynthesis in human neutrophils [29], and
is shown to act as an endogenous activator of cellular
antioxidant enzyme systems [30]. As a regulator of vascular
cell proliferation and death, it was a powerful endogenous
protector against atherosclerotic and vasoocclusive disorders
[12–14, 31–33]. Taking together the multiple actions of both,
adenosine or L-arginine, for the regulation of metabolic
functions of different organs, it seems that the accumulation
of adenosine may reproduce similar effect as that of L-
arginine product, NO, and that in some circumstances,
they can also act in a synergistic manner [2, 34, 35]. The
activity of AMP deaminase, the ATP regenerating enzyme,
significantly increased. In relation to the role of AMP
deaminase in the interconversion of IMP to ATP or guanine
nucleotides and the stabilization of the adenylate energy
charge (ATP + 2ADP)/(ATP + ADP + AMP), highly active
AMP deaminase may additionally contribute to intracellular
ATP regeneration, which depends on the adenylate pool
and on the energy charge [12, 14]. Increased activity of
AMP deaminase induces the activity of phosphofructokinase
and pyruvate kinase, maintaining in this way intermediary
metabolism [36].

The L-arginine-induced decrease of XO activity is of par-
ticular interest. Xanthine oxidase is a rate-limiting enzyme in
terminal step of purine nucleotide degradation. Since the XO
represents one of the main sources of free radical production,
decreased activity may contribute to the decreased lipid
peroxidation by dietary L-arginine supplementation [6].

In conclusion, L-arginine exerted effect on purine
metabolism in liver, kidney, and testis tissue by activation of
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Figure 2: The effect of dietary L-arginine on the activity of AMP
deaminase, Xanthine oxidase (XO), and total protein concentration
of rat liver, kidney, and testis tissue. The activity of AMP deaminase
was determined by measuring the ammonia liberation by using
10 mmol/L AMP as substrate. The activity of xanthine oxidase
was measured by the formation of uric acid by using 0.05 mmol/L
xanthine as substrate. The activity of enzymes was expressed as U/g
proteins. Mean values ± SD are given. Each group consisted of 8
animals.

adenosine production, salvage pathway, and ATP regenera-
tion, which may have the protective effects on male metabolic
and reproductive functions.
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