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Abstract

Background: Guidelines for localizing prostate cancer on imaging are ideally 
informed by registered post‑prostatectomy histology. 3D histology reconstruction 
methods can support this by reintroducing 3D spatial information lost during 
histology processing. The need to register small, high‑grade foci drives a need for high 
accuracy. Accurate 3D reconstruction method design is impacted by the answers to 
the following central questions of this work. (1) How does prostate tissue deform 
during histology processing?  (2) What spatial misalignment of the tissue sections is 
induced by microtome cutting?  (3) How does the choice of reconstruction model 
affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin 
block face and magnetic resonance images were acquired for 18 whole mid‑gland tissue 
slices from six prostates. 7-15 homologous landmarks were identified on each image. 
Tissue deformation due to histology processing was characterized using the target 
registration error  (TRE) after landmark‑based registration under four deformation 
models (rigid, similarity, affine and thin‑plate‑spline [TPS]). The misalignment of histology 
sections from the front faces of tissue slices was quantified using manually identified 
landmarks. The impact of reconstruction models on the TRE after landmark‑based 
reconstruction was measured under eight reconstruction models comprising one of 
four deformation models with and without constraining histology images to the tissue 
slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all 
results reported as 95% confidence intervals), while skew or TPS deformation 
improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9° (angle) and 
0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean 
TRE by 0.6-0.8  mm. Conclusions: For sub‑millimeter accuracy, 3D reconstruction 
models should not constrain histology images to the tissue slice front faces and should 
be flexible enough to model isotropic scaling.
Key words: Correlative histopathology, image registration, prostate cancer imaging, 
validation, 3D histology reconstruction
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INTRODUCTION

The localization of aggressive prostate cancer tissue 
before therapy may support improved targeted biopsy and 
selection of treatment  (whole gland vs. focal ablation) 
as well as the form of ablative energy.[1] Several in  vivo 
imaging modalities are showing promise for staging and 
grading prostate cancer;[2‑5] however, there is a knowledge 
gap in how to localize aggressive prostate cancer with these 
modalities.[6] The development of interpretation guidelines 
for localizing aggressive cancer on imaging ideally 
includes the comparison of in  vivo images to spatially 
concordant post‑prostatectomy histology images on which 
Gleason grade, an accepted surrogate for prostate cancer 
aggressiveness,[7] has been assessed. This comparison 
involves determining the 3D spatial relationship between 
corresponding histology and in  vivo images, often 
performed in two steps:  (1) a  reconstruction of histology 
images to the 3D ex vivo spatial context and (2) an 
alignment of reconstructed histology to in vivo images.

The challenges in 3D histology reconstruction can be 
illustrated in the context of the process of collecting 
histology from radical prostatectomy specimens, which 
typically proceeds as follows  [shown in the first row of 
Figure 1]. After surgery, the prostate is fixed in a formalin 
solution and then cut into 3-5  mm thick tissue slices 

at the pathology bench. These tissue slices proceed 
through a series of chemical baths to replace water in 
the tissue with paraffin and the slices are embedded in 
a block of translucent paraffin. This block is mounted 
to a microtome by hand, aligned by eye to square the 
tissue face  (as seen through the translucent paraffin) 
with the microtome blade and tissue is cut until a full 
cross‑section can be collected. Once a sufficient depth 
has been reached, the operator cuts a 4 μm histological 
section, allows it to expand on a water bath to flatten the 
section and mounts it on a glass slide.

The 3D reconstruction of histology consists of 
retroactively determining the positions of cutting 
and the deformation of the tissue to determine the 
original 3D spatial relationships of histological tissue, a 
process that remains an active area of research.[8‑11] 2D 
to 3D deformable reconstructions for clinical prostate 
specimens have many degrees of freedom and sparse 
out‑of‑plane information content. A  common approach 
to mitigate these challenges is to make simplifying 
assumptions about the spatial relationship of histological 
tissue to the corresponding tissue in the specimen. 
Some assumptions made in existing approaches for 3D 
histology reconstruction are enumerated below. The focus 
of this paper is on testing the strength of the first two 
assumptions in this list.

Figure 1: Overview of the specimen processing, imaging and analysis
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•	 The deformation of the histological tissue after 
coarse slicing fits a specified constrained deformation 
model, such as the rigid,[8] rigid  +  isotropic scaling 
(referred to as similarity throughout this paper),[12,13] 
affine,[9,14] or thin‑plate‑spline (TPS)[15,16] deformation 
models. This is referred to as the deformation model 
assumption throughout this paper.

•	 Each histological section corresponds to the front 
face of the 3-5  mm thick tissue slice from which it 
was taken.[10,12‑14,16‑18] This is referred to as the front 
face assumption throughout this paper.

•	 Each histological section corresponds to a planar 
surface in the specimen.[8‑10,14,17,18]

•	 Each histological section corresponds to a surface 
in the specimen defined prospectively by carefully 
controlling the position and orientation of the cuts 
made during specimen slicing.[10,17,19,20]

•	 The histological sections correspond to parallel, 
evenly spaced surfaces in the specimen  (typically 
justified based on controlled cutting of tissue slices), 
which are determined retrospectively using additional 
imaging (typically photographs of the faces of tissue 
slices) during or after the slicing of specimens into 
thick tissue slices.[12,14,16,18]

By constraining the allowable spatial relationship 
between each histology section and the tissue from 
which it was cut, these assumptions may simplify 
the registration problem by decreasing the degrees 
of freedom but may also impact the accuracy of 3D 
reconstruction methods. In the context of imaging 
validation studies that evaluate imaging modalities by 
comparison to a 3D reconstructed histological reference, 
reconstruction accuracy affects the statistical power 
(i.e.,  the probability of a study finding an existing 
statistically significant effect) of studies that apply the 
reconstruction methods.[21] Because of this relationship, 
3D histology image reconstructions with greater error 
create a requirement for more patients to be enrolled 
in the study, which can have a substantial impact on 
the cost of the study [see discussion for an illustrative 
case study] or run the risk of improperly evaluating the 
imaging modality if the study is underpowered for the 
error inherent in the technique. Thus, it is important 
to consider these simplifying assumptions, and their 
impact on reconstruction error, in the development and/
or selection of reconstruction methods for such studies.

The strengths of these assumptions depend upon their 
fidelity to the processes the tissue undergoes throughout 
the preparation of histological sections. For example, the 
correspondence of the histological sections to the front 
faces of tissue slices depends in part on the skill and 
experience of the microtome operator determining the 
paraffin block face orientation and cutting depth. This 
task is complicated by the fact that the tissue face is 
hidden behind a translucent layer of paraffin, challenging 

the assessment of tissue face orientation until the tissue 
has already been exposed by the microtome blade and 
thus sectioned. The strengths of these assumptions 
and their impact on the reconstruction error have not, 
to the best of our knowledge, been quantified in the 
literature. This complicates the selection of appropriate 
assumptions for reconstruction method developers and 
also complicates the selection of reconstruction methods 
(that may incorporate such assumptions) for study 
designers.

In this work, our objective was to quantify the spatial 
relationships between histological sections, paraffin 
embedded blocks and the corresponding tissue slices from 
which the sections were taken to answer three questions, 
referred to according to the following enumeration 
throughout this paper.
•	 Question 1: How does prostate tissue deform 

during histology processing? Specifically, with 
what accuracy can rigid, similarity, affine or TPS 
deformation models align homologous landmarks 
on histology sections  [Figure  2f, labeled hi,j], on 
the cut paraffin‑embedded tissue blocks  [Figure  2e, 
labeled pi,j] and on magnetic resonance (MR) images 
of formalin‑fixed tissue slices  [Figure  2c and d, 
labeled mi,j]. This question constitutes a test of the 
strength of the deformation model assumption.

•	 Question 2: What spatial misalignment of the 
tissue sections is induced by microtome cutting? 
Specifically, relative to the front faces of the tissue 
slices, from what depth [Figure 2c, labeled dj] and at 
what orientation  [Figure  2c, labeled θj] are histology 
sections taken? This question constitutes a test of 
the strength of the front face assumption.

•	 Question 3: How does the choice of reconstruction 
model affect the accuracy of histology reconstructions? 
A reconstruction model is defined in this paper by a 
choice of one of four deformation models (rigid, affine, 
similarity, TPS) and a choice of whether or not to make 
the front face assumption. This question resolves to the 
following two more specific questions: for all possible 
reconstruction models as defined above,  (1) what are 
the target registration errors (TRE) and (2) the fiducial 
registration errors  (FRE) of least squares best‑fit 
landmark‑based reconstructions? These questions 
constitute an evaluation of the impact on registration 
error of making the deformation model assumption 
and the front face assumption. The answers to these 
questions were quantified using homologous landmarks 
manually identified on histology images, paraffin block 
face images and MR images of the tissue slices, and 
the resulting errors were evaluated in the context of a 
type of imaging validation study that relies on histology 
image reconstruction. Preliminary experiments from 
this work were reported in a previous conference 
proceeding.[22]
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MATERIALS AND METHODS

Materials and Imaging
As part of an ongoing prospective imaging validation 
study, we obtained prostate specimens from 6  subjects 
after radical prostatectomy with the following 
inclusion criteria:  (1) male,  (2) age 18  years or older 
and (3)  clinical prostate cancer stage T1 or T2 with 
histological confirmation from biopsy. The exclusion 
criteria were (1) prior therapy for prostate cancer, (2) use 
of 5‑alpha reductase inhibitors within 6  months of the 
study start,  (3) inability to comply with pre‑operative 
imaging,  (4) allergy to contrast agents,  (5) sickle cell or 
other anemias,  (6) hip prosthesis,  (7) sources of artifact 
within the pelvis and  (8) contraindications to MR 
imaging. This research was approved by our institutional 
human subjects research ethics board and informed 
consent was obtained from each subject.

An overview of the processing, imaging and measurement 
of these data is shown in Figure  1. After resection, 
fixation (10% buffered formalin for 48  h) and marking 
with fiducial strands,[10] the prostatic apex was removed 
and the mid‑gland was gross‑sectioned into 4.4‑mm 
thick tissue slices  (3-5/specimen, 21 total). MR images 
of these tissue slices were acquired using a Discovery 
MR750  (GE Healthcare, Waukesha, WI, USA) at 3T 
using an endorectal coil (Prostate  eCoil, Medrad, Inc., 
Warrendale, PA, USA). Tissue slices were immobilized in 
tissue processing and embedding cassettes and immersed 
in Christo‑Lube  (Lubrication Technology Inc., Franklin 
Furnace, OH, USA) to provide a black background and 
minimize boundary artifacts on imaging. Imaging used 
a T1‑weighted protocol  (3D spoiled gradient recalled 
sequence, repetition time  (TR) 6.5 ms, echo time  (TE) 

2.5 ms, bandwidth  ±  31.25  kHz, eight averages, field of 
view  (FOV) 14  cm  ×  14  cm  ×  6.2  cm, slice thickness 
0.4 mm, 256 × 192 matrix, 312 slices, flip angle 15°, duration 
25  min) and a T2‑weighted protocol  (3D fast spin echo 
sequence, TR 2000 ms, TE 151.5 ms, bandwidth ± 125 kHz, 
three averages, FOV 14  cm  ×  14  cm  ×  6.2  cm, slice 
thickness 0.4  mm, 320  ×  192 matrix, 312 slices, duration 
25  min). These images are referred to as  tissue slice MR 
images throughout this paper.

Following MR imaging, formalin‑fixed tissue slices were 
decalcified in a hydrochloric acid and chelating agent 
solution (Cal‑Ex Decalcifier, Fisher Chemical, Ottawa, 
Canada) overnight and then dehydrated and embedded 
in paraffin using a series of chemical baths of formalin, 
ethanol, xylene and paraplast under our hospital’s 
standard clinical pathology laboratory protocol for large 
blocks  (wherein the duration of ethanol, xylene and 
paraplast are lengthened). The full processing schedule is 
given in Appendix A.

The embedded blocks were sectioned by one of fifteen 
clinical histotechnologists in our hospital’s clinical 
pathology laboratory. Each block was mounted by hand 
on the chuck of a microtome  (RM2245 or RM2255, 
Leica Biosystems, Nussloch, Germany) and the operator 
attempted to align the front face of the tissue, as seen 
through the semi‑transparent paraffin covering, with the 
cutting axis by manually adjusting mechanical control 
knobs on the microtome. Sections were repeatedly cut 
until a full cross‑section of the tissue block was reached. 
A final 4 μm section was cut from the block, floated on a 
hot water bath to remove distortion and mounted on a 
positively charged glass slide. All sections were stained 
with hematoxylin and eosin.

Figure 2: Schematic representations of tissue, landmarks and measurements, including (a) a surface rendering of a tissue slice magnetic 
resonance image, (b) a schematic rendering of the tissue slice with the front face fiducials fi,j and the best fit front face plane Fj, (c) a projected 
side view of the tissue slice as oriented over the microtome blade with the front face fiducials fi,j, the best fit front face plane Fj, the 
histology‑visible landmarks mi, j, the best fit histology section plane Hj, the orientation θj and the depth measurement dj, (d) a schematic 
rendering of the tissue slice with the histology‑visible landmarks and the best fit histology section plane Hj, (e) a schematic rendering of the 
paraffin block face after histological sectioning showing the homologous landmarks pi, j and (f) a schematic rendering of the corresponding 
histology section with the homologous landmarks hi,j

dcb fa e
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After the clinical pathology assessment was complete, 
stained histology sections were digitized on a ScanScope 
GL  (Aperio Technologies, Vista, CA, USA) bright field 
slide scanning system with a 0.5 μm pixel size. These 
images are referred to as histology images throughout this 
paper.

Photographs of the exposed face of paraffin‑embedded 
tissue blocks were acquired using a Pentax K200D with a 
100 mm F2.8 macro lens (super-multi-coating Pentax-D 
FA, Pentax Imaging Company, Denver, CO, USA). The 
camera was attached to the camera‑mount column of 
the photography table to ensure the optical axis was 
perpendicular to the tissue blocks. Labels containing a 
4  mm long scale marker were affixed to the cut surfaces 
and used to calibrate the pixel size of the images. These 
images are referred to as paraffin images throughout.

Three sections were excluded from our analysis, because 
we identified an insufficient number of homologous 
landmarks on the three imaging modalities  (histology, 
paraffin and tissue slice MR images). Five sets of 
homologous landmarks were necessary for our evaluation; 
see discussion for details.

Methods
Our method is illustrated in the “Analysis” portion of 
Figure  1 and is summarized at a high level as follows. 
To characterize prostate tissue deformation due to 
histology processing  (Question 1), we determined 
the class of deformation that best mapped tissue on 
histology sections to the homologous tissue on the 
paraffin block faces and on the formalin‑fixed tissue 
slices. Specifically, we assessed which of the four 
evaluated classes of transformation  (rigid, similarity, 
affine or TPS) best mapped homologous landmarks on 
histology images [Figure  2f, labeled hi,j], on paraffin 
images [Figure  2e, labeled pi,j] and on tissue slice MR 
images [Figure  2c and d, labeled mi,j]. To measure the 
spatial misalignment of tissue sections induced by 
microtome cutting  (Question 2), we characterized the 
locations from which histology sections were taken from 
within tissue slices, by estimating the depth [Figure 2c, 
labeled dj] and the orientation  [Figure  2c, labeled 
θj] relative to the front face of the tissue slice from 
which the histology sections were taken. To assess the 
impact of the choice reconstruction model  (i.e.,  the 
choice of deformation model, plus the choice of 
whether or not to make the front face assumption) on 
3D reconstruction error  (Question 3), we estimated 
two reconstruction error measures, the TRE and the 
FRE, using different reconstruction models. The 
impact of these assumptions will depend, in part, on 
the reconstruction algorithm that is used. We used 
least‑squares best‑fit alignment of manually identified 
homologous intrinsic fiducials for these measurements. 
This approach is parameter‑free, has an analytic 

solution for each considered reconstruction model and 
has  an accuracy that depends only on the number and 
placement of fiducials and not on image properties. 
In the four subsections that follow, we describe the 
details of the selection of these landmarks, as well as 
the details of the methods used to address each of the 
three central questions of this work.

Identification of Landmarks and Tissue Slice 
Faces
All of these measurements rely on identifying homologous 
landmarks in histology images, paraffin images and tissue 
slice MR images. For each tissue slice, we identified 
7-15  distinct landmarks  (162 in total), comprising the 
centers of atrophic ducts, cysts and corpora amylaceae 
with diameters less than 1  mm. Illustrative examples of 
these images and identified homologous landmarks are 
shown in Figure  3. The positions of the landmarks  (2D 
for histology and paraffin images, 3D for tissue slice 
MR images) on these modalities are denoted hi,j, pi,j and 
mi,j, respectively, for the ith landmark on the jth tissue 
slice. Landmarks were interactively localized using 3D 
Slicer  (Surgical Planning Lab, Harvard Medical School, 

Figure  3: Illustrative examples of the T1‑weighted tissue slice 
magnetic resonance (left), paraffin (middle) and histology (right) 
images transformed by a best‑fit affine transformation aligning 
manually identified landmarks. The three highlighted regions in row 
1 are shown magnified in rows 2, 3 and 4, with the corresponding 
landmarks denoted by arrows
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Boston, USA), which required that the histology images be 
loaded into random‑access memory; as the full resolution 
images typically occupy 15-20 GB, we downsampled them 
to a 30 µm × 30 µm voxel size for landmark identification, 
yielding images 10-40 MB in size.

We estimated the front face of the jth tissue slice by first 
manually identifying seven 3D points  {fi,j  |  i  =  1…7} 
evenly distributed across the face of the jth tissue slice 
on the tissue slice MR image  [approximately in the 
configuration shown in Figure  2b] and then computing 
the least squares best‑fit plane Fj to these points.

Because variability in landmark localization introduces 
uncertainty into spatial relationships measured in 
this work, the fiducial localization error  (FLE) was 
estimated on histology images  (denoted FLEh), on 
paraffin images  (denoted FLEp) and on tissue slice MR 
images (denoted FLEm). Based on previous measurements 
using these histology images and MR images of intact 
prostate specimens using the same protocols,[23] FLEh 
and FLEm were taken to be 0.05  mm and 0.16  mm 
respectively. These measurements quantified FLE as an 
unbiased estimator of the standard deviation  (SD) of 
repeated localizations of landmarks. FLEp was estimated 
to be 0.05  mm, the same as FLEh, because the types 
of fiducials and the pixel sizes were similar  (30  µm for 
histology images, 18 µm for paraffin images).

Tissue Deformation Due to Histology Processing 
(Question 1)
To assess the fidelity of the different deformation models, 
we quantified deformation between formalin‑fixed tissue 
slices, paraffin blocks and histology sections under each 
of the models. Thus, we assessed the deformation due 
to three histology processes:  (1) Paraffin processing 
and embedding  (denoted with superscript m  ←  p, 
corresponding to the transformation Tj

m←p from the 
paraffin images  [p] to the tissue slice MR images  [m]), 
(2)  histological sectioning and mounting  (denoted 
with superscript p  ←  h, corresponding to the 
transformation Tj

p←h from the histology images  [h] to 
the paraffin images [p]) and (3) the combination of both 
processes (denoted with superscript m ← h, corresponding 
to the transformation Tj

m←h from the histology images [h] 
to the tissue slice MR images [m]).

Deformation models were compared using the mean 
TRE of homologous landmark pairs identified on images 
before and after each process after landmark‑based 
registrations constrained by four deformation models of 
increasing flexibility: rigid, similarity  (rigid  +  isotropic 
scaling), affine  (rigid  +  scaling  +  skewing) and 
non‑linear TPS.[24] The mean TRE was estimated as 
the misalignment between homologous landmarks after 
transformation by a least squares best fit transformation 
constrained by the deformation model and was calculated 
using a leave‑one‑out cross‑validation:
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the jth slice on the target modality t ∈  {p, m}, J  =  21 
tissue slices and v denotes which landmark is left out. 
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3,2 3,2
ˆˆ

,
,
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T  is the best‑fit rigid transformation 
for the second tissue slice that maps from histology to 
tissue slice MR image coordinates that is fit to all but the 
3rd identified fiducial.

The sensitivity of these measurements to FLE depends 
upon the spatial configuration and number of landmarks 
identified for each tissue slice. For example, the best fit 
transformation, and hence the leave‑one‑out TRE, of a 
section with few landmarks centrally clustered near the 
urethra and one landmark near the prostate boundary 
could be more sensitive to a misplaced landmark than 
that of a section with many widely spaced landmarks. 
Although relationships between TRE and FLE with 
respect to the spatial distribution of the landmarks have 
been characterized for rigid transformations,[25] to the 
best of our knowledge, there is no closed form solution 
for calculating this sensitivity for a leave‑one‑out TRE 
for all four deformation models. Thus, we assessed this 
sensitivity instead by Monte Carlo simulation. For each 
tissue slice, landmarks on histology, paraffin and tissue 
slice MR images were modeled as hi,j  +  G2D, pi,j  +  G2D 
and mi,j + G3D, respectively, where G2D is a 2D Gaussian 

random variable sampled for each landmark with x and y 

components distributed as 
 
  

2FLE
0,

2
hN  and G3D is a 3D 

Gaussian random variable sampled for each landmark 

with x, y and z components distributed as 
 
  

2FLE
0,

3
mN . For 

each tissue slice, the TRE measurements were calculated 
for 5000 sets of perturbed landmarks and the SD of these 
measurements was calculated. The sensitivity of the TRE 
measurements to FLE was quantified as the average of 
these SDs across all tissue slices. The number of samples 
was chosen such that the standard error of the SD would 
be 1% of the SD itself.

Spatial Misalignment of  Tissue Sections Induced 
by Microtome Cutting (Question 2)
To assess the strength of the front face assumption, 
we quantified the depth and orientation of histology 
sections relative to the front face of the tissue slices 
from which they were cut. The depth and orientation of 
each histology section were both estimated based on the 



J Pathol Inform 2013, 1:31	 http://www.jpathinformatics.org/content/4/1/31

spatial relationship between two planes: the best fit plane 
Fj through the points identified on the front face of the 
tissue slice in the tissue slice MR image and the plane 
Hj, an estimate of the tissue from which the histology 
section was cut, computed as the best fit plane through 
the landmark points {mi, j |  i = 1…Ij} in the tissue slice 
MR image corresponding to homologous landmarks 
visible on the histology image.

The orientation θj of the jth histology section within the 
corresponding tissue slice was measured as the angle 
between the normal of plane Fj and plane Hj: specifically, 

( ) ( )( )1 | |j j jcos F Hq -= ×n  n , where n(P) is the 3D unit 

normal of plane P.

The depth dj of the jth histology section from within 
the tissue slice was measured as the minimum, average 
and maximum distances from the tissue points Ωj 
(the intersection of plane Hj with tissue identified on 
the corresponding tissue slice MR image) to the front 
face plane Fj: specifically, ( )( )Ωmin, min ,

jj jD Fd Î= ω ω , 

( )( )ean ω∈Ω= ,m
jj jd D Fω  and ( )( )ω∈Ω=max, max , ,

j jjd D Fω  

where D  (P, ω) is the distance from 3D point ω to the 
plane P. Tissue points on the tissue slice MR image 
were identified by a threshold‑based segmentation of 
the T1‑weighted tissue slice MR image using a manually 
selected threshold, followed by manual editing.

The sensitivity of these measurements to FLE also 
depends on the spatial configuration and number of 
landmarks identified for each tissue slice. For example, 
the estimated orientation of a section with few 
landmarks centrally clustered near the urethra could be 
more sensitive to a misplaced landmark than that of a 
section with many widely spaced landmarks. Because, 
to the best of our knowledge, there is no closed form 
solution for calculating this sensitivity with respect to 
the spatial distribution of the landmarks, we assessed it 
instead by Monte Carlo simulation. For each tissue slice, 
histology‑visible landmarks on tissue slice MR images 
were modeled as mi,j + G3D and front face landmarks were 
modeled as fi,j  +  G3D. As was done for Question 1, the 
sensitivity of the depth and orientation measurements to 
FLE was measured as the mean, across all tissue slices, 
of the SD of each measure across 5000 sets of perturbed 
landmarks.

Impact of Reconstruction Model on 3D 
Reconstruction Error (Question 3)
For a reconstruction algorithm that uses a particular 
reconstruction model  (i.e.,  a specified deformation model 
with or without the front face assumption), reconstruction 
accuracy may decrease if the true spatial relationships 
between histology sections and the tissue slices from 
which they were cut are different from the assumed 

constraints. Although the impact will depend on the 
3D reconstruction methods used, it can be explored by 
examining reconstructions based on the least‑squares 
best‑fit transformation of identified homologous 
intrinsic landmarks under various reconstruction models. 
This reconstruction approach was chosen because the 
reconstructions are parameter‑free, they can be solved 
analytically avoiding reconstruction errors due to local 
optima and their accuracy depends only on the number 
and placement of the fiducials and not on image properties.

The impact of the reconstruction model was quantified 
using the TRE  (calculated in a leave‑out‑out manner). 
This is analogous to the TRE described in Eq. 1, but 
with an expanded set of transformation types K  that 
includes the deformation types {rigid, similiarity, affine, 
TPS} both with and without an additional constraint 
imposed by the front face assumption. Because the TPS 
transformation is an interpolating spline  (i.e.,  source 
fiducials used to define the transformation are mapped 
exactly to target fiducials) and target fiducals may 
lie at a non‑zero depth from the front face, the front 
face assumption cannot be directly applied. However, 
a transformation that does satisfy the front face 
assumption can be realized by first projecting the 
target fiducials used to define the transformation onto 
the front face and then defining a TPS transformation 
from source fiducials to the projected target fiducials. 
For rigid, similarity and affine transformations, the 
constrained least‑squares fitting  (constrained by the 
front face assumption) of transformed source fiducials 
to target fiducials is mathematically equivalent to the 
unconstrained least squares fitting of transformed source 
fiducials to the projected the target fiducials. Thus, for 
the reconstructions where the front face assumption was 
made, the target fiducials were projected onto the front 
face for all four deformation models. The sensitivity 
of TRE to FLE was quantified as for the TRE in 
Question 1.

In addition to quantifying the reconstruction error for 
these particular reconstructions, we can also calculate 
the lower bound on reconstruction error as measured by 
the identified landmarks for any possible reconstruction 
algorithm constrained by a particular reconstruction 
model. This lower bound is quantified as the FRE,

{ } ( )s t← ←

∈ ∈
= −�� ��

… …

, ,
, , ,

{1 }, 1
FRE mean ,

j j
j

t s K t s K
P Q i j i j

j J i I
T � (2)

where ← ,
,j j

t s K
P QT  is the transformation of type K   (the 

expanded set of transformation types described in the 
previous paragraph) that best maps the vector of image 

landmarks { }s= ∈ …, | 1j i j jQ i I  from the jth slice on 

the source modality s ∈  {h, p} to the vector of image 

landmarks { }t= ∈ …, | 1j i j jP i I  from the jth slice on the 
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target modality t ∈ {p, m} and J = 21 tissue slices. Note 
that unlike the TRE, the FRE includes all fiducials when 
fitting the transformation ← ,

,j j

t s K
P QT  and represents a lower 

bound on the TRE as measured using the identified 
intrinsic landmarks. Because the TPS transformation is an 
interpolating spline  (i.e.,  source fiducials used to define 
the transformation are mapped exactly to target fiducials) 
the FRE of an unconstrained TPS transformation is 0, 
by construction, for any configuration of fiducials. The 
sensitivity of FRE to FLE was quantified as for the TRE 
in Question 1.

Statistical Analysis
Statistical analyses were performed in SPSS 20  (IBM, 
Chicago, USA). The depth and orientation measurements 
were characterized with descriptive statistics 
(mean and SD) and 95% confidence intervals (CI) of 
the means were computed. Correlations of the depth 
measurements with the orientation were assessed using 
pairwise Spearman correlations.

The TRE measurements quantifying deformation during 
paraffin processing and embedding, histological sectioning 
and mounting and the combination of both processes 
were characterized with descriptive statistics. We assessed 
differences in mean TRE between the deformation 
models using separate 1‑way repeated measures ANOVA 
tests with Greenhouse–Geisser correction for asphericity 
with the deformation model as the factor. Pairwise  post 
hoc analysis of adjacent levels  (i.e.,  rigid vs. similarity, 
similarity vs. affine and affine vs. TPS deformation 
models) was performed by constructing 95% CI on the 
differences in mean TRE.

To assess the impact of reconstruction assumptions, we 
assessed the differences in mean TRE using a  2‑way 
repeated‑measures ANOVA with a Greenhouse–Geisser 
correction for asphericity, with the two assumptions 
(the deformation model assumption and the front face 
assumption) as factors. Pairwise  post hoc analysis was 
performed by constructing 95% CI on the difference in 
FRE and TRE due to the front face assumption under 
each deformation model and on the pairwise differences 
due to the deformation model between adjacent levels 
with and without the front face assumption. Note that 
FRE of a reconstruction under stricter assumptions is 
mathematically guaranteed to be equal to or higher 
than the FRE under relaxed assumption. For example, 
the rigid deformation assumption is stricter than the 
affine deformation assumption and the front face 
assumption is stricter than eliminating that assumption.

RESULTS

Tissue Deformation Due to Histology Processing 
(Question 1)
The key finding regarding tissue deformation was 

that modeling isotropic scaling as in the similarity 
deformation model improved the mean TRE by 0.8-
1.0  mm, while  modeling skew or TPS deformation 
improved the mean TRE by less than 0.1  mm  [bolded 
intervals in the first row of Table  1]. The mean and 
SD of TRE for the three histology processes under the 
four deformation models are shown in Table  2. For the 
combined deformation from tissue slice to histology 
section  [shown in the first row of Tables  1 and 2 and 
as a box plot in Figure  4], the similarity model had a 
significantly lower mean TRE than the rigid model and 
the affine model has a significantly lower mean TRE 
than the similarity model  (by 0.9  mm and 0.06  mm 
differences respectively), but  post hoc analyses failed 
to show a statistically significant difference between 
the affine and TPS deformation models (0.005  mm 
difference).

For the intermediate deformation due to paraffin 
embedding [second row of Tables 1 and 2], the rigid model 
had a significantly higher mean TRE than the similarity 
model (by a 1.2 mm difference), but post hoc analyses failed 
to show a statistically significant difference between the 
other models (differences < 0.03 mm). For the intermediate 

Table 1: Post hoc analyses comparing mean TRE 
under varying deformation models: 95% CI of 
mean TRE for model A-model B

Deformation model A 
Deformation model B

Rigid 
Similarity

Similarity 
Affine

Affine 
TPS

Tissue slice MR to 
histology images

(0.78, 0.98) (0.03, 0.10) (−0.02, 0.02)

Tissue slice MR to 
paraffin images

(1.07, 1.31) (−0.04, 0.01) (−0.03, 0.01)

Paraffin to histology 
images

(0.12, 0.20) (0.02, 0.07) (−0.01, 0.02)

TRE:  Target registration error, CI: Confidence interval, MR: Magnetic resonance, 
TPS:  Thin‑plate‑spline. Key findings are shown in bold 

Table 2: Mean (SD) TRE (mm) for four models of 
deformation during histological processing 
stages

Deformation 
model

Rigid Similarity Affine Thin plate 
spline

Tissue slice MR 
to histology 
images

1.44 (0.73) 0.56 (0.31) 0.50 (0.28)— 0.50 (0.28)

Tissue slice 
MR to paraffin 
images

1.71 (0.82) 0.54 (0.26) — 0.54 (0.28)— 0.54 (0.28)

Paraffin to 
histology 
images

0.42 (0.27) 0.26 (0.18) 0.21 (0.14)— 0.21 (0.14)

SD: Standard deviation, TRE:  Target registration error, MR: Magnetic resonance. 
Statistical comparisons (performed between adjacent columns) where the statistical 
tests failed to detect a significant difference are connected by lines
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Spatial Misalignment of Tissue Sections 
Induced by Microtome Cutting (Question 2)
The key finding regarding the spatial misalignment 
of tissue sections was that the 95% CI on the mean of 
orientation was 1.1-1.9° and the 95% CI on the mean 
of mean depth was 0.9-1.3  mm  [bolded intervals in 
the second column of Table  3]. The distributions of 
depth and orientation measurements are shown in 
Figure  5 and the correlation plots of orientation with 
the minimum  (Spearman r = −0.4), mean  (Spearman 
r  =  0.4) and maximum  (Spearman r  =  0.75) section 
depth measures are shown in Figure  6. A  subset of the 
tissue slices, chosen to illustrate the range of depths 
and orientations, are shown in Figure  7 with the front 
face Fj and the best fit plane to Hj superimposed. The 
SD, 95% CI on the mean and sensitivity to FLE for the 
orientation, minimum section depth, mean section depth 
and maximum section depth are shown in Table 3.

Impact of Reconstruction Model on 3D 
Reconstruction Error (Question 3)
The two key findings regarding the impact of the 
reconstruction model on 3D reconstruction error were 
as follows.  (1) Modeling isotropic scaling  (as in the 
similarity deformation model) improved the mean TRE 
by 0.5-0.7 mm if the front face assumption was made and by 
0.8-1.0 mm if the front face assumption was not made, but 
modeling skew or TPS deformation improved mean TRE by 
less than 0.1  mm  [bolded intervals in Table  4].  (2) Under 
a similarity deformation model, the front face assumption 

Figure  4: Boxplot showing the target registration errors of 
homologous landmarks under four deformation models for the 
tissue deformation due to histological processing and cutting.  
These results correspond to the descriptive statistics shown in the 
first row of  Table 1

Figure 5: Histograms of histology section depths and orientations. The subset of tissue slices illustrated in Figure 7 is shown in dark gray

dc

ba

deformation due to histological sectioning  [third row of 
Tables 1 and 2], the affine model had a significantly lower 
mean TRE (by 0.05 mm) than the similarity model and the 
similarity model had a significantly lower mean TRE  (by 
0.2  mm) than the rigid model. Post hoc analyses failed to 
show a statistically significant difference between the affine 
and TPS deformation models  (0.009  mm difference). The 
sensitivities of the TRE to the observed FLE ranged from 
0.05 to 0.13 mm.
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the lowest mean TRE (0.5 mm), although the difference 
between the affine and similarity models was 0.06  mm 
and our analysis failed to show a statistically significant 
difference between the affine and TPS models. The 
0.5  mm TRE under the affine and TPS deformation 
model is larger than the 0.2  mm FLE, suggesting 

Table 4: Post hoc analyses comparing TRE/FRE 
after intrinsic landmark reconstruction under 
varying deformation models: 95% CI of mean 
TRE/FRE for model A-model B

Deformation model A 
Deformation model B

Rigid 
Similarity

Similarity 
Affine

Affine 
TPS

95% CI of mean 
TRE (mm) with front 
face assumption

(0.54, 0.70) (0.01, 0.06) (−0.01, 0.01)

95% CI of mean 
TRE (mm) without front 
face assumption

(0.78, 0.98) (0.03, 0.10) (−0.02, 0.02)

95% CI of mean 
FRE (mm) with front 
face assumption

(0.47, 0.62) (0.03, 0.06) (0.04, 0.07)

95% CI of mean 
FRE (mm) without front 
face assumption

(0.75, 0.94) (0.07, 0.13) (0.29, 0.35)1

1The FRE after an unconstrained thin plate spline transformation is 0 by construction. 
TRE:  Target registration error, FRE: Fiducial registration error, CI: Confidence interval, 
TPS:  Thin‑plate‑spline. Key findings are shown in bold

increased the mean TRE by 0.6  mm to 0.8  mm  [bolded 
interval in Table 5]. The mean and SD of TRE and FRE for 
the intrinsic landmark‑based reconstructions are shown in 
Tables 6 and 7, respectively. The 95% CI for the difference 
in TRE and FRE due to deformation model and due to 
the front face assumption are shown in Tables  4 and 5 
respectively. The sensitivities of the TRE to the observed 
FLE ranged from 0.10 to 0.13 mm. The sensitivities of the 
FRE to the observed FLE were 0 mm (by construction) for 
the reconstruction model comprising the TPS deformation 
model without the front face assumption and 0.07-0.09 mm 
for the remaining reconstruction models.

DISCUSSION

In vivo prostate imaging is increasingly being validated 
against 3D reconstructed histology images.[26‑29] Many 
algorithms for 3D reconstruction limit the degrees of 
freedom by making simplifying assumptions about the 
cutting of histology sections from the prostate gland which 
may affect the accuracy of reconstruction. This work 
explored two such assumptions: the deformation model 
assumption that histology sections have been deformed 
under a specified deformation model relative to the fixed 
tissue and the front face assumption that histology section 
corresponds to the front face of the tissue slice from 
which it was cut. Operator variability in sectioning could 
lead to histology sections that are not taken coincident 
with or parallel to the front face of the tissue slice and 
the cumulative deformation of the histology section 
due to dehydration, cutting, water bath expansion and 
slide‑mounting processes may not be accurately modeled 
by the chosen transformation. In this work, we quantified 
the spatial relationship between histology images and the 
formalin‑fixed tissue slices from which they were taken 
and evaluated the impact of the reconstruction model 
assumptions on 3D reconstruction error.

Tissue Deformation Due to Histology Processing 
(Question 1)
Modeling the deformation due to paraffin processing 
and histological sectioning as affine deformation yielded 

Table 3: Descriptive statistics for the orientation, 
minimum depth, mean depth and maximum 
depth of histology sections relative to the tissue 
blocks from which they were cut 

Statistic Standard 
deviation

95% CI of 
the mean

Sensitivity 
to FLE

Orientation (°) 0.9 (1.1, 1.9) 0.30
Minimum depth (mm) 0.4 (0.4, 0.7) 0.12
Mean depth (mm) 0.4 (0.9, 1.3) 0.05
Maximum depth (mm) 0.6 (1.4, 1.9) 0.13

CI: Confidence interval, FLE: Fiducial localization error. Key findings are shown in 
bold. Sensitivity to FLE was quantified as the mean of the standard deviation of 
measurements in a Monte Carlo simulation with perturbed landmark positions

Figure 6: Correlation of minimum, mean and maximum histology section depths with orientations. Tissue slices corresponding to sections 
marked with circles are shown in Figure 7

cba
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that there is some sub‑millimeter‑scale non‑affine 
deformation that occurs, but that is not well‑captured by 
the interpolation of the TPS deformation model with the 
landmark configurations identified in this work.

The analysis of deformation from tissue slice MR to 
paraffin images suggests that most of the deformation 
during the paraffin processing is characterized by isotropic 
scaling, which is consistent with the dehydration that 
occurs during this process. The analysis of deformation 
from paraffin to histology images suggests that some 
further affine deformation occurs during histological 
sectioning, which is consistent with anisotropic cutting 
forces that are applied during sectioning. The larger 

mean TRE across all deformation models and the larger 
change in TRE with isotropic scaling for the paraffin 
processing compared to the microtoming suggests that 
paraffin processing is the source of most of the observed 
deformation. Notably, the mean TRE of the combined 
processes under the rigid deformation model is less than 
that of the paraffin processing alone, which is consistent 
with expansion on the water bath partially cancelling 
out contraction due to dehydration during paraffin 
processing.

To perform these analyses, at least five sets of homologous 
landmarks were required; in particular, four sets of 
landmarks are required for a 2D-3D TPS transformation 
to define a non‑affine transformation and a fifth is 
needed to enable the leave‑one‑out evaluation. Three 
histology sections were omitted from the analysis because 
fewer than five sets of landmarks were identifiable.

Spatial Misalignment of  Tissue Sections Induced 
by Microtome Cutting (Question 2)
The histology sections were taken at a mean depth 
of 1.1  mm and were taken at an average angle of 1.5° 
relative to the front face. To illustrate these values, a 
histology section cut with the mean depth and the mean 
orientation from a hypothetical tissue slice 30  mm in 
diameter  (typical for our sample of tissue slices), would 
be 0.7  mm from the front face at the closest point and 
1.5 mm from the front face at the furthest point.

The SDs of the orientation  (0.9°) and depth 
measurements (0.4  mm) are greater than would be 
expected due to the 0.16  mm FLE alone, suggesting 
that there is operator variability in the alignment of 

Table 5: Post hoc analyses comparing TRE/FRE after 
intrinsic landmark reconstruction under varying 
deformation models: 95% CI for reconstruction 
with-without front face assumption

Deformation 
model

Rigid Similarity Affine TPS

95% CI of 
mean 
TRE (mm)

(0.36, 0.46) (0.60, 0.75) (0.63, 0.77) (0.62, 0.77)

95% CI of 
mean 
FRE (mm)

(0.40, 0.51) (0.68, 0.83) (0.74, 0.89) (1.00, 1.15)1

1The FRE after an unconstrained thin plate spline transformation is 0 by construction. 
TRE:  Target registration error, FRE: Fiducial registration error, CI: Confidence interval, 
TPS:  Thin‑plate‑spline. Key findings are shown in bold

Table 6: Mean (SD) TRE after intrinsic landmark 
reconstruction under varying constraints

Deformation 
model

Rigid Similarity Affine Thin plate 
spline

With front face 
assumption

1.85 (0.71) 1.23 (0.48) 1.20 (0.47) — 1.20 (0.47)

Without front 
face assumption

1.44 (0.73) 0.56 (0.31) 0.50 (0.28) — 0.50 (0.28)

TRE:  Target registration error, SD: Standard deviation. Statistical 
comparisons (performed between adjacent columns and rows) where the statistical 
tests failed to detect a significant difference are connected by lines

Table 7: Mean (SD) FRE after intrinsic landmark 
reconstruction under varying constraints

Deformation 
model

Rigid Similarity Affine Thin plate 
spline

With front face 
assumption

1.72 (0.66) 1.18 (0.48) 1.13 (0.48) 1.08 (0.50)

Without front 
face assumption

1.27 (0.66) 0.42 (0.25) 0.32 (0.19) 0 (0)1

1The FRE after an unconstrained thin plate spline transformation is 0 by 
construction. FRE: Fiducial registration error, SD: Standard deviation. All statistical 
comparisons (performed between adjacent columns and rows) showed significant 
differences

Figure  7: Renderings of the spatial relationships between tissue 
slices, histology‑visible landmarks, front face plane and histology 
section planes for 10 tissue slices, ordered by increasing mean depth 
from left to right. Each tissue slice is shown as a silhouette projected 
along n(Fj) × n(Hj), the cross‑product of the front face and histology 
section plane normals.  With this projection, the front face plane Fj 
and the histology section plane Hj can be represented as solid and 
dashed lines respectively.  The projected histology‑visible landmarks 
mi, j are shown as circles
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the tissue block face with the microtome blade and in 
the depth of cutting. The variability in the minimum 
section depth suggests that the variability in depth 
is not directly caused by variability in tissue block 
alignment; if the variability in depth of cutting were the 
result of variability in tissue block alignment followed 
by consistently cutting until a full cross‑section of tissue 
were barely reached, we would expect the minimum 
depth to have low variability. We speculate that the 
continued cutting beyond the best‑fit front face plane 
could be due to concavity of the tissue front face that 
can be introduced during paraffin embedding, which 
would require a deeper cut to achieve a full face. This 
continued cutting could also be due to the practice of 
removing the paraffin block from the microtome to cool 
the cutting surface with ice, leading to variability in the 
orientation when the block is replaced.

The impact of the observed variability in depth and 
orientation on the relative spatial relationship of histology 
sections in a 3D reconstruction can be seen in Figure  8, 
where the tissue slices were sliced to be parallel at an 
even spacing (by embedding the specimen in an agar gel 
and cutting it on a rotary slicer), but after an alignment 
of tissue slice MR images  (and accompanying registered 
histology sections) with an MR image of the intact ex 
vivo specimen with a 0.5  mm TRE, the non‑parallel and 
uneven spacing of the three midgland histology images 
can be seen.

Impact of Reconstruction Model on 3D 
Reconstruction Error (Question 3)
If a reconstruction algorithm used a reconstruction model 
wherein histology sections corresponded to the front faces 
of tissue slices, the lower bound of the achievable mean 
TRE for any of the tested deformation models would be 
1.1  mm  (for the affine and TPS deformation models), 
suggesting that to achieve sub‑millimeter reconstruction 
error, the front face assumption should not be made. For 
a reconstruction model unconstrained by the front face 
assumption using an affine deformation model, the lower 
bound of the mean TRE is 0.3  mm  (the corresponding 
lower bound of the mean TRE for the TPS model is 
0  mm by construction and therefore does not provide for 
an informative comparison). The improvement in TRE 
for modeling isotropic scaling  (from rigid to similarity 
deformation models) was 0.78-0.98 mm when the front face 
assumption was not made, but the improvement from the 
similarity deformation model to the more flexible affine and 
TPS deformation models was less than 0.1 mm, suggesting 
that a similarity transformation may be sufficient. Note 
that this reconstruction error is only a component of the 
overall registration error from the histology images to 
in  vivo images; Groenendaal et  al.[12] and Orczyk et  al.,[30] 
presented two methods for the registration of reconstructed 
ex vivo images to in  vivo images with reported errors of 

2.1  mm and 1.6  mm, which would, under the assumption 
that these errors are independent, be added in quadrature 
with reconstruction error.

It is important to interpret these reconstruction errors in 
the context of the application in which the reconstructions 
could be used. A recent model quantifying the impact of 
registration error on the statistical power  (and thus the 
required sample size) of imaging validation studies[21] can 
be used to relate the differences in reconstruction error 
in these experiments to an appropriate application. This 
can be illustrated through the scenario of an imaging 
validation study testing for differences between the mean 
imaging signal of tumors and normal tissue regions, under 
the assumptions that the tumors are spherical foci of the 
smallest clinically significant volume  (0.2 cm3)[31] and 
that reconstruction error can be modeled as an isotropic 
Gaussian. For this scenario, our reconstruction is 
combined with a registration of reconstructed histology 
to in vivo images with mean TRE 2.1 mm (as reported by 
Groenendaal et  al.[12]) In this scenario, we can compare 
the required sample sizes for the imaging validation 
study over a range of reconstruction errors as compared 
to an arbitrarily chosen baseline. In this illustration, we 
use landmark‑based reconstruction under the similarity 
deformation model and the front face assumption with 
a mean TRE of 1.23  mm as the baseline. The relative 
required sample sizes for reconstruction errors ranging 
from 0.3 to 2.0  mm mean TRE are shown in Figure  9, 
with each of the assessed combinations of assumptions 
marked. Between the worst and best performing sets of 
assumptions, there is a 1.5‑fold difference in required 
sample size. Based on per‑patient costs of $10,000, from 
an ongoing imaging validation study in our center with 
66 subjects, a 1.5‑fold reduction in sample size could 
yield savings of $220,000 for the same statistical power.

Figure 8:  3D reconstruction of three histology sections aligned (with 
a mean TRE of 0.5 mm) to an anterior view of 3D surface rendering 
of the corresponding intact ex vivo prostate gland with seminal 
vesicles, illustrating the potential for non‑parallel, non‑evenly spaced 
histological tissue sections
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Limitations of Cutting Measurement
The conclusions of this work should be considered 
in the context of the limitations of the performed 
experiments. This study had four notable limitations. 
First, the process of sectioning tissue for histological 
examination varies between laboratories and many 
aspects of the processing can affect the sectioning 
distortion and possibly the amount of trimming before 
a full cross‑section is successfully cut. Examples include 
tissue type, embedding medium, water bath duration and 
temperature,[28] knife quality and angle,[32] and possibly 
operator skill. It is also unclear how these results would 
generalize when prostate tissue slices are cut into quarters 
before paraffin processing, an approach adopted in many 
clinical laboratories. Although this study used histological 
sections sectioned by multiple histotechnologists, the 
use of a consistent processing protocol in a single clinical 
laboratory prevented us from assessing the impact of 
these other factors on the identified spatial relationships. 
A second limitation of the study is that the fidelity of the 
TPS deformation to the true underlying deformation is 
limited in part by the number of homologous landmarks 
identifiable on tissue slice MR, histology and paraffin 
block face images. It is not clear if the 7-15 landmarks 
identified per section are sufficient to characterize the 
unknown underlying deformation. If 7-15 landmarks 
are too few, then the TPS model may not capture the 
underlying deformation  (resulting in a higher reported 
TRE) even if the deformation could be well‑described by a 
TPS model. A third limitation of the study is that only one 
non‑linear deformation model was assessed in this study, 
although there are an infinite number of such models. 

This work does, however, suggest an upper bound of less 
than 0.5  mm for the possible improvement that could 
be derived from better non‑linear deformation models. 
Fourth, our assessment of the impact of the reconstruction 
errors on the statistical power of imaging validation 
studies examines the histology image reconstruction in 
isolation; if the reconstruction were followed by additional 
processing, such as 3D image registration, the impact of 
the reconstruction errors would be challenging to isolate 
and was not assessed by this study.

CONCLUSIONS

This work addressed three questions, as follows. 
(1)  How does prostate tissue deform during histology 
processing?  (2) What spatial misalignment of the tissue 
sections is induced by microtome cutting?  (3) How does 
the choice of reconstruction model affect the accuracy of 
histology reconstructions? The key conclusion from these 
investigations is that for accurate 3D reconstruction of 
whole‑mount histology, the reconstruction model should 
not assume that histology corresponds to the front face 
of the tissue slices from which it was cut because such an 
assumption yields a higher mean TRE by 0.6 to 0.8  mm 
and should use a similarity deformation model because the 
mean TRE under this model is 0.5 to 0.7  mm lower than 
that of a rigid deformation model and within 0.1  mm of 
the affine and TPS deformation models with more degrees 
of freedom. The mean TRE of 0.56  mm was measured 
for the least‑squares best fit fiducial‑based reconstruction 
using a similarity deformation model without the front 
face assumption. In addition, our characterization of the 
misalignment of histology sections revealed a mean section 
depth of 1.1 mm (with maximum depths as high as 2.8 mm) 
and a mean section orientation of 1.5° (with orientations as 
high as 4.2°), which may support commensurate heuristics 
in 3D reconstruction. Finally, in the context of imaging 
validation studies testing for imaging signal differences 
between cancerous and background tissue for the smallest 
clinically significant prostate cancer foci by correlation with 
reconstructed histology images, the range of reconstruction 
errors seen in this work would result in a 1.5‑fold difference 
in the required sample size for such a study under our 
modeling assumptions, potentially translating to a difference 
of hundreds of thousands of dollars.
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Figure 9: Sample sizes, relative to an arbitrarily chosen baseline, for 
imaging validation studies of the image signal differences between 
cancerous and background tissue for 0.2 cm3 cancer foci, under 
assumptions that foci are spherical and reconstruction error can 
be modeled as a translation error distributed as a 3D Gaussian and 
is combined in quadrature with a 2.1 mm TRE due to registration 
to in vivo imaging. Reconstructions under differing deformation 
assumptions and with or without the front face assumption are 
indicated, with the reconstruction using a similarity transform and 
the front face assumption arbitrarily chosen as the 100% baseline 
reference
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Appendix A
Our hospital’s standard clinical pathology laboratory 
protocol for large specimens consists of processing 
tissue slices through baths of graded alcohols, xylene 
and paraplast on a Tissue‑Tek vacuum infiltration tissue 
processor (Sakura Finetek USA, Inc., Torrance, USA) 
following the schedule shown in Table A1.
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Table A1: Our hospital’s standard clinical pathology 
laboratory protocol for large specimens

Solution Duration 
(h)

Temperature 
(°C)

Vacuum 
(inches)

Pressure 
(PSI)

80% ethanol, 
20% formalin

1 40 15 7

95% ethanol, 
5% formalin

2 40 15 7

100% ethanol 1 40 15 7
100% ethanol 2 40 15 7
100% ethanol 2 40 15 7
100% xylene 1 40 15 7
100% xylene 1 40 15 7
100% xylene 2 40 15 7
100% paraplast 1 60 15 7
100% paraplast 1 60 15 7
100% paraplast 1 60 15 7
100% paraplast 1 60 15 7

PSI: Pounds per square inch


