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Abstract

Despite its consequences for ecological processes and population dynamics, intra-
specific variability is frequently overlooked in animal movement studies. Consequently,
the necessary resolution to reveal drivers of individual movement decisions is often
lost as animal movement data are aggregated to infer average or population patterns.
Thus, an empirical understanding of why a given movement pattern occurs remains
patchy for many taxa, especially in marine systems. Nonetheless, movement is often
rationalized as being driven by basic life history requirements, such as acquiring energy
(feeding), reproduction, predator-avoidance, and remaining in suitable environmental
conditions. However, these life history requirements are central to every individual
within a species and thus do not sufficiently account for the high intra-specific vari-
ability in movement behavior and hence fail to fully explain the occurrence of multiple
movement strategies within a species. Animal movement appears highly context de-
pendent as, for example, within the same location, the behavior of both resident and
migratory individuals is driven by life history requirements, such as feeding or repro-
duction, however different movement strategies are utilized to fulfill them. A system-
atic taxa-wide approach that, instead of averaging population patterns, incorporates
and utilizes intra-specific variability to enable predictions as to which movement pat-
terns can be expected under a certain context, is needed. Here, we use intra-specific
variability in elasmobranchs as a case study to introduce a stepwise approach for
studying animal movement drivers that is based on a context-dependence framework.
We examine relevant literature to illustrate how this context-focused approach can
aid in reliably identifying drivers of a specific movement pattern. Ultimately, incor-
porating behavioral variability in the study of movement drivers can assist in making
predictions about behavioral responses to environmental change, overcoming tagging

biases, and establishing more efficient conservation measures.
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1 | INTRODUCTION

Animal movement is often defined as the change of an individual's
location over time (Nathan et al., 2008). This can include large-scale
migrations, nomadic behavior, small-scale displacements, and range
residency. Thus, in this article we consider movement over varying
spatial and temporal scales. Movement enables mobile organisms to
fulfill their life history requirements across time and space and has
important implications for species evolution and ecology (Bauer &
Hoye, 2014; Kingsolver et al., 2002). Large-scale movement, for ex-
ample, is often seen as costly, requiring substantial energetic invest-
ment, and should in theory only persist if it is beneficial by increasing
overall fitness (Dingle, 2014). Movement enables gene flow through
genetic connectivity between populations and sub-populations
(e.g., Rizzo & Schulte, 2009). Furthermore, mobile animals connect
disparate habitats through the transfer of nutrients, energy, para-
sites and propagules, and the translocation of trophic processes
(Bauer & Hoye, 2014). Far-ranging predators, for example, can have
strong seasonal influences on prey animals either through direct
predation or risk effects (Barnett & Semmens, 2012; Hammerschlag
et al,, 2019; Heithaus et al., 2012).

Historically, the study of movement ecology has focused on the
“where and when"—aspect of animal movement. This was the first
step in studying patterns such as residency, seasonality, and migra-
tion patterns which has demonstrated that intra-specific variability
in movement behavior is common in all major taxonomic groups
(Barnett et al., 2011; Block et al., 2011; Chambert et al., 2015;
Chapman et al., 2012; Flack et al., 2016; Geijer et al., 2016; Hatase
et al., 2010; Joly et al., 2019; Papastamatiou et al., 2013). Intra-
specific variability adds substantial complexity to animal movement
studies, as it can occur in many different forms. This includes overall
movement tendency, from resident to migratory behavior, variability
in timing, and distance of movement, as well as destinaton (Chapman
et al., 2011; Shaw, 2020). Additionally, it can occur at multiple scales,
from differences in movement behavior among individuals in dif-
ferent geographic locations, among individuals within the same
location, and within individuals over time (Chapman et al., 2011,
Shaw, 2020).

Despite its consequences for ecological processes and popula-
tion dynamics, intra-specific variability is frequently overlooked in
animal movement studies (Shaw, 2020). The necessary resolution
to reveal drivers of individual movement decisions is often lost as
animal movement data are aggregated to infer average or popula-
tion patterns (Holyoak et al., 2008; Shaw, 2020). Thus, an empirical
understanding of why a given movement pattern occurs remains
patchy for many taxa, especially in marine systems (but see e.g.,
Humphries et al., 2010, 2012, Sims et al., 2012).

Movement drivers are often rationalized as being driven by
basic life history requirements or intrinsic needs, sometimes re-
ferred to as “ultimate drivers” (Mayr, 1963; Scott-Phillips et al., 2011;
Shaw, 2016). These requirements reflect critical constraints, such as
acquiring energy (feeding), reproduction, predator-avoidance, and
remaining within physiological optima, which are central to every

individual within a species (Shaw, 2016). Thus, they alone do not
sufficiently account for intra-specific variability and the occurrence
of multiple movement strategies within a species. For example, the
behavior of both, resident and migratory individuals, is driven by life
history requirements. Yet, different movement strategies are uti-
lized to fulfill them. Therefore, animal movement appears context-
dependent (Bradley et al., 2019; Humphries et al., 2010).

Context-dependence has long been acknowledged in ecological
studies, however, often without establishing or defining the “con-
text” under which ecological relationships and environmental pro-
cesses occur (sensu Bradley et al., 2019). This step is increasingly
appreciated as valuable in quantifying and understanding variability
in the natural world (Bradley et al., 2020). For example, context-
dependence has been used to understand the drivers of variability in
habitat use of inshore fish assemblages and foraging patterns in ma-
rine predators (Bradley et al., 2019, 2020; Humphries et al., 2010).
However, a systematic taxa-wide approach that, instead of aver-
aging population patterns, incorporates intra-specific variability to
determine the context that can be reliably related to a specific move-
ment pattern, is missing.

In this study, we describe a context-focused approach for ani-
mal movement data and evaluate the extent to which it can improve
our understanding of animal movement decisions. Such an approach
is applicable to any taxa with variability in movement behavior.
However, here we focus our discourse on sharks and rays (elasmo-
branchs) as a case study. Elasmobranchs represent a diverse and
globally distributed group containing highly mobile species that ex-
hibit large-scale movements (up to 18,000km, Queiroz et al., 2019)
but also exhibit significant intra-specific variation in movement pat-
terns (e.g., Barnett et al., 2011; Espinoza et al., 2016; Papastamatiou
et al., 2013; Vaudo et al., 2017). The objectives of this study were
to assess how context shapes individual movement decisions by
influencing behavioral traits linked to life history requirements and
apply a context-focused approach to elasmobranchs as a case study
to evaluate the utility of the approach by examining its benefits and
applications to animal movement ecology.

2 | THE RELATIONSHIP BETWEEN
CONTEXT AND MOVEMENT

The overall behavior of animals is driven by fulfilling life history
requirements, such as acquiring energy, avoiding predators and
parasites as well as reproducing, which are critical to an individual's
fitness (Figure 1). Associated with fulfilling those requirements are
certain physiological and behavioral traits. Examples are evolution
of jaw structures for specific prey types, evolution of ornaments and
weapons in males to increase reproductive success, seasonal migra-
tion away from unfavorable conditions, or grooming to avoid para-
sites (Andersson, 1982; Bels & Whishaw, 2019; Hart & Hart, 2018;
Hedrick & Temeles, 1989; Somveille et al., 2015).

At any point in time an individual exists within a certain con-

text which we define here as the product of a range of relatively
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Behavioural traits

Behavioural traits

FIGURE 1 Anindividual, represented by the elephant in center of each circle, is subjected to constraints linked to life history
requirements. Behavioral traits are expressed to fulfill life history requirements within a given context. The context is the sum of contextual
factors. Depending on the context, deviation from a theoretical optimum (blue dots) where all life history requirements can be fulfilled
within one geographical location at all times may occur. Behavioral adjustments then result in a particular movement decision. For each
individual, this is based on an interaction of the environmental, ecological, and individual context in a given time and place. Determined by
which life history requirements an individual can no longer fulfill in the current location at that time, that is, the magnitude and direction

of shift from optimum (blue dot), differences in timing, direction, and distance between individuals will arise. Hypothetical examples below
illustrate different levels of deviation from theoretical optimum caused by differing contextual factors that may give rise to a particular

movement pattern.

predictable contextual factors: The environmental context, the eco-
logical context, and the individual context (Box 1, Figure 1). The en-
vironmental context includes factors such as seasonal temperature
changes, topography, rainfall, and current patterns. The ecological
context encapsulates prey availability, prey species-composition,
levels of competition, and predation pressure, for example, and the
individual context is comprised of individual body condition, sex,
genetic-makeup, and reproductive behavior for example (Box 1).
These contextual factors broadly align with what is often referred
to in the literature as “proximate drivers” (Mayr, 1963; Scott-Phillips
et al., 2011). Hereafter, “driver” refers to one or multiple contextual
factors producing a certain movement outcome (Box 1).

The interaction of life history requirements with the context in
which the individual exists shapes the way physiological and be-
havioral traits are expressed to increase fitness (Figure 1). Possible
intra-specific differences in trait expression can take place on evo-
lutionary time scales through genetic adaptions. For example, ac-
cording to Bergmann's rule, individuals of higher body mass occur
in colder climates compared to conspecifics occupying warmer
areas (Bergmann, 1848; Meiri & Dayan, 2003). Alternatively, trait

expression can be flexible and change over an individual's lifetime
as a response to changing conditions. For instance, gentoo penguins
(Pygoscelis papua) change their foraging patterns and diet with in-
creased competition (Ratcliffe et al., 2018), while in the red jungle-
fowl (Gallus gallus) male reproductive behavior changes with the level
of intensity of sexual competition (Cornwallis & Birkhead, 2008).
Animal movement is also aimed at improving fitness (Dingle, 2014).
This means, when one or more life history requirements can no longer
be fulfilled in the current location, behavioral traits associated with
the life history requirement are combined with movement (Figure 1). If
movement is necessary, it is determined by contextual factors, which
also drive the resulting pattern of movement (Humphries et al., 2010,
2012). For example, If the context in which an animal exists is consis-
tently optimal in time and space, large-scale movement away from an
area would likely not be necessary (Figure 1). However, the context
an individual is subjected to is the result of a complex interaction of a
variety of contextual factors that can vary across time and space. For
example, elk (Cervus elaphus) change between resident and migratory
behavior driven by an interaction of winter severity, wolf abundance,

and elk density (Eggeman et al., 2016). Thus, context is tightly linked
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BOX 1 Definitions of terms

Contextual factor

A factor that drives a process or an individual's behavior. It may vary across time, space, and individuals

The way a process or behavior, which is driven by contextual factors, is expressed (e.g., large-scale movement,

Outcome

small-scale movement or residency)
Context Sum of contextual factors producing an outcome
System

Study systems under investigation: For example, geographically distinct populations of a species or animals

tagged in differing geographic locations, demographic groups (e.g., Males vs. females, mature vs.
immature), individuals at range limits, vs. individuals within the center of distribution

Environmental
context (external)

Ecological context
(external)

Individual context
(internal)
make-up.

to intra-specific variability in movement behavior. It is this dynamic in-
terplay between life history requirements and their associated behav-
joral traits with contextual factors that drives individual movement
decisions (Figure 1, Shaw, 2020).

3 | THE CONTEXT-FOCUSED APPROACH

With the aim of unifying movement studies under acommon concep-
tual framework, Nathan et al. (2008) proposed a movement ecology
paradigm based on principle components of animal and plant move-
ment. This includes how the organism moves, when and toward what
destination the movement occurs, why the organism moves, and the
interaction of these components. However, one of the key chal-
lenges in movement ecology remains the identification of specific
external and internal factors driving the movement of individuals,
especially in light of complexity introduced by intra-specific variabil-
ity (Holyoak et al., 2008; Nathan et al., 2008; Shaw, 2020). Although
previously proposed frameworks are centerd around individuals
and aim to at least recognize intra-specific variability, approaches
to deal with variation and utilize it are missing (Holyoak et al., 2008,
Shaw, 2020, but see e.g., Humphries et al., 2010). Specifically, we
lack a predictable means to determine which movement pattern can
be expected given a combination of contextual factors.

By focusing on relatively predictable and measurable contextual
factors (Box 1) a context-focused approach constitutes a heuristic
tool. Ecological relationships and phenomena, such as movement
behavior are often complex. By trying to remove complexity through
averaging data and inferring population patterns a thorough under-
standing of ecological relationships and behaviors and how they
might be affected by future change is hindered. Thus, in terms of an-
imal movement, for example, the aim of a context-focused approach
is to define the context in which certain patterns occur and simplify
complexity while retaining enough resolution to link specific contex-
tual factors to individual movement decisions.

Includes all abiotic factors encountered by an individual. Examples are temperature changes, topography,
tides and currents, rainfall and substrate, nutrient levels.

Includes all biotic factors encountered by an individual. Examples are food availability, species-composition
and -interactions (predator-prey, competition, prevalence of parasites).

Includes all factors specific to an individual. Examples are sex, reproductive status, body condition, energetic
state, health, individual feeding specialization, body- and appendage size, ontogeny, as well as genetic

Overall, this approach is based on comparing movement patterns
in two or more study systems. A study system can consist of con-
specifics in different geographical locations or animals of different
sex or size classes, for example (Figure 2). The goal is to identify
differences in contextual factors among study systems and relate
those back to potential differences in observed movement patterns.
Contextual factors that are similar among study systems are unlikely
to drive differences in movement patterns, while contextual factors
that differ can then be further investigated as to how those factors
may shape observed movement patterns (Figure 2).

To achieve this, the approach employs a stepwise process that,
first, begins with compiling existing knowledge of life history re-
quirements and associated movement patterns of the species/
study system considered while establishing the context in which
the study systems exist. Second, it investigates the extent to which
intra-specific variability of movement behavior is evident within the
species/study system, such as in geographically distinct groups of
individuals or individuals within a population (such as males and fe-
males, adults and sub-adults). Third, this variability is used to iden-
tify spatio-temporal and individual differences in contextual factors
that may be responsible for the variability in movement patterns
(Figure 2). This aids in revealing how context shapes patterns of
intra-specific variability and ultimately individual movement deci-
sions within each study system.

4 | STEP 1: COMPILING CURRENT
KNOWLEDGE OF LIFE HISTORY
REQUIREMENTS AND ASSOCIATED
MOVEMENT PATTERNS FOR STUDY
SPECIES

As a first step, in Table 1 we compiled current knowledge of life
history requirements and associated movement patterns for
six example species (for an extended version of Table 1 and full
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et al,, 2017)
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. Animals tagged off
North-Eastern USA

. Animals tagged off Isla
Mujeres, Mexico

Red arrows: Outcome S

Mexico):

em A (Mako sharks tagged off

Restricted movements among shelf habitats, little
variability, no pronounced seasonal patterns

Black arrows: Outcome System B (Mako sharks tagged
off the Eastern USA): Large-scale, directed movements
among shelf and pelagic habitats. High variability in
movement patterns, seasonal patterns

Current patterns: Different
Topography: Different

Investigation of contextual factors between System A and System B:
Magnitude of seasonal change in temperature and productivity: Different

Size class of individuals: Similar
Both sexes represented?: Yes
Tracking durations: Similar, many tracks covering entire seasonal cycle

Context-focused discussion based on Vaudo et al. 2017

Highly dynamic oceanographic processes in the North-West Atlantic (NWA) cause mako sharks to roam over a wider
spatial scale compared to conspecifics in in the Gulf of Mexico (GOM). Resources are patchily distributed and seasonal
temperature changes are higher in the NWA, therefore sharks need to move further to find prey and possibly remain
within suitable temperature ranges. Conditions in the GOM are more stable. A constant current flow over the Campeche
Bank likely creates a local environment of high productivity year-round. Seasonal temperature changes are lower in
magnitude and allow mako sharks to remain more localised as compared to conspecifics in the NWA. As some sharks
move between regions, geographical restriction is unlikely to cause differences in patterns.

discussions of movement patterns and movement drivers for 18
species see Appendix S1). Despite an increase in information on
spatio-temporal aspects of elasmobranch movement over the last
decades, and numerous hypotheses as to specific factors shaping
given movement patterns, the underlying mechanisms remain, for
the most part, unknown. This lack of understanding is likely due
to several reasons. First is the practical difficulty in observing be-
haviors of marine species that occur at low densities and can move
over large spatial scales. Second, often studies investigate the
spatio-temporal patterns of movement without testing explicitly
for drivers and then hypothesize possible movement drivers, post-
hoc (Hammerschlag et al., 2011; Papastamatiou & Lowe, 2012).
Few hypothesis-driven studies investigate specific contextual fac-
tors driving movement a priori (Table S1). Basic life history require-
ments, for example, are commonly proposed as driving overall
movement behavior within species without explicitly considering
the role of contextual factors shaping variability in movement
(Table S1).

5 | STEP 2: EVIDENCE OF CONTEXT-
DEPENDENCE IN THE STUDY SPECIES

Despite the commonality of basic life history requirements related
to overall movement behavior for most species found in step 1,
in step 2 it is evident that many elasmobranchs exhibit high intra-
specific variability of movement behavior among and within popu-
lations and that varying movement patterns exist across multiple
scales (Table S2), suggesting context-dependence. Many species
vary in movement behavior across and within regions, and indi-
viduals can change their movement patterns over time (Table S2).
Different movement strategies include differing directions and des-
tinations, the extent of movement (large-scale vs. small- scale, resi-
dent vs. migratory), as well as timing. Sex and size-classes can differ
in movement strategies (Tables S1 and S2). This re-emphasizes the
point made by Nathan et al. (2008) that a key challenge in animal
movement ecology remains the identification of specific external
and internal factors shaping the movement of individuals. While life
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history requirements, such as feeding and reproduction, are cen-
tral to every individual within a mobile species, high variability in
movement patterns supports the notion that the shape movement
patterns take on to fulfill life history requirements is dependent on
contextual factors that change across time, space, and individuals
and shape behavioral trait expression.

6 | STEP 3: PUTTING MOVEMENT INTO
CONTEXT: SYNTHESIZING STEPS 1 AND 2
WITH REMARKS TO AVIAN LITERATURE

The third step of a context-focused approach is based on a system-
atic comparison of the differences in movement patterns within the
study systems (gathered in step one and two) to the differences in
contextual factors (Figure 2). This step specifically investigates how
the behavioral traits exhibited to fulfill life history requirements
are shaped by contextual factors and how predictions can be made
about which contextual factors drive certain movement patterns.

The theoretical basis for how biotic and abiotic factors may drive
movement and the range of possible mechanisms responsible for
intra-specific variability is much more developed in the avian litera-
ture. Additionally, as steps 1 and 2 of our context-focused approach
are also well established in birds, when interpreted under a context-
dependence framework, bird movement studies may aid in filling
knowledge gaps in less-studied taxa. Therefore, we draw on this lit-
erature to provide a useful roadmap for applying a context-focused
approach and to provide examples of mechanisms potentially influ-
encing intra-specific variability not yet explored in other taxa, such
as elasmobranchs (Side-Box 1-3).

6.1 | Environmental context

The influence of environmental context on intra-specific variability of
movement has been extensively studied in birds (see Side-Box 1). In
some species, populations show strong differences in movement pat-
terns based on latitudinal distribution and habitat types (Side-Box 1).
Differing resource distribution, winter conditions at breeding sites and
time-resource trade-offs between populations are well-established
drivers of individual movement decisions in this taxon (Side-Box 1).

In elasmobranchs, many individuals of a species inhabit waters of
varying climatic conditions and as such, experience different current
regimes and habitats. For example, geographically varying ocean-
ographic conditions can result in distinct patterns of resource dis-
tribution and magnitude of seasonal environmental change. While
reef manta rays (Manta alfredi) undergo large-scale movements in
the dynamic, highly seasonal East Australian Current, small-scale
movements are evident in the Red Sea where oceanographic con-
ditions result in year-round productivity and less environmen-
tal fluctuations, such as in temperature (Braun et al., 2015; Jaine
et al., 2014). This comparison between the two populations suggests
that oceanographic conditions influence behavioral trait expression

SIDE-BOX 1 Environmental context: Comparison
to a well-studied system—birds

Globally, intra-specific variability in bird movement pat-
terns is driven by differences in environmental context,
principally temperature conditions, resource availability,
and geographical distance between breeding and non-
breeding sites (Ketterson et al., 2015). Variability provides
detailed insights into bird movement drivers. It is well
established that bird movement patterns, such as routes
and timing, vary based on local environmental conditions
(e.g., Vardanis et al., 2011). However, movement patterns
are also shaped by expected conditions at the destination
(Kuang et al., 2020). A strong relationship between latitude
and movement patterns exists in the East of North America
as well as Western Europe. Individuals at higher latitudes,
with stronger seasonal changes in temperature and food
availability show higher migration propensity (Ketterson
et al.,, 2015; Newton & Dale, 1996). Pied avocets, for exam-
ple, are mostly resident in France, while undergoing longer
movements at higher latitudes. This is due to more severe
winters resulting in a stronger decrease in habitat suitabil-
ity (Chambon et al., 2018).

Leapfrog migration is a common source of movement
variability between bird populations. Here, populations
breeding further north, overwinter further south than more
southerly breeding populations. Therefore, these more
northerly breeding populations migrate further and skip over
southerly breeding populations. Such patterns are attributed
to latitudinal differences in spring arrival, thus creating a
time-resource trade-off for different populations (Bell, 1996).

Even within smaller geographical regions, individuals of
the same population may encounter different environmental
conditions causing them to migrate differently. Nonmigratory
vs. migratory greater sage-grouses, for example, experience
different degrees of seasonal change in terms of plant desic-
cation, snow accumulation and precipitation causing partial

altitudinal migration in this species (Pratt et al., 2017).

linked to foraging and behavioral thermoregulation, which results in
differences in movement patterns (Armstrong, Armstrong, Bennett,
et al., 2020; Braun et al., 2015; Jaine et al., 2014).

Overall, animals at the range-limit of their distribution are often
subject to larger environmental fluctuations, especially in tempera-
ture (Heupel et al., 2015; Holmes et al., 2014). The optimal tempera-
ture niche at which Tiger sharks (Galeocerdo cuvier) exhibit highest
activity levels and abundance has been found to be 22-24°C (Payne
et al., 2018). Along Australia's East Coast this species demonstrates
differences in movement strategies based on latitudinal distribution
(Holmes et al., 2014; Lipscombe et al., 2020). Animals tagged at the
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SIDE-BOX 2 Ecological context: Comparison to a
well-studied system—birds

Movement theory on birds provides well-established ex-
amples of how ecological context creates intra-specific
variability in movement patterns and how variability can
offer great insights into overall movement drivers. Chain
migration, where northerly breeding populations overwin-
ter at breeding sites of more southerly populations which
in turn move even further south to overwinter have been
observed in swifts (Akesson et al., 2020). Competition may
force some individuals to overwinter further north, while
others remain south to breed. These southern breeding
birds are also able to time their movements south earlier
than northern conspecifics in order to take advantage of
seasonally predictable insect abundance at lower latitudes
(Akesson et al., 2020).

Altitudinal migration in neo-tropical birds is driven by
density-dependent predation risk (Boyle, 2008a). As pre-
dation risk can vary between location movement may also
differ. Indeed, Lank et al. (2003) showed that different
sandpiper populations vary in timing and distance of sea-
sonal movement. This variability appears to be a response
to varying levels of predation risk in each region (Lank
et al., 2003). Furthermore, barnacle geese migrating from
the Netherlands to Russia changed their migratory behav-
ior in response to increasing predator populations at Baltic
stop-over sites (Jonker et al., 2010). In contrast, barnacle
geese migrating from the United Kingdom to Norway did
not show a change in migratory behavior suggesting that
local predation risk in the Baltic rather than long-term en-
vironmental change caused the shift in movement in the

former population (Tombre et al., 2008).

range limit, in New South Wales, where temperatures drop below
the optimal temperature niche in the Austral winter, move north to
warmer latitudes (Holmes et al., 2014; Lipscombe et al., 2020). In the
center of distribution, such as Central and North Queensland, where
seasonal temperatures rarely drop below this temperature niche
(Payne et al., 2018), individuals show high variability in movement pat-
terns, with localized movements, longitudinal offshore movements,
and resident behavior (Fitzpatrick et al., 2012; Holmes et al., 2014;
Lipscombe et al., 2020). Thus, tiger sharks along the east coast of
Australia are subject to differing environmental contexts. Animals
in subtropical and tropical areas are not bound to behavioral traits
aimed at avoiding low winter temperatures, compared to individuals
at the range limit, thus allowing for diversification of movement strat-
egies. However, in Northern Queensland, temperatures can often
exceed the optimal niche found by Payne et al. (2018). For example,
around Raine Island, the world's largest green turtle (Chelonia mydas)
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SIDE-BOX 3 Internal context: Comparison to a
well-studied system—birds

Intra-specific variability in bird movement patterns is often
related to internal differences of individuals. Such variation
has been attributed to energetic condition, for example.
Differences in fat stores and molting stage produce vary-
ing movement patterns (Goymann et al., 2010; Stutchbury
etal., 2011).

Benefits of arriving early at breeding areas for males
and dominance patterns have been established as drivers
of movement in birds creating intra-specific variability
(Chapman et al., 2011; Fudickar et al., 2013).

Body size also plays an important role in bird movement
and intra-specific variability. In general larger individuals
often migrate less than smaller conspecifics in winter, as
they have higher thermal tolerance or are able to fast longer
during unfavorable conditions (Boyle, 2008b; Ketterson &
Nolan Jr, 1976). Conversely, in hotter climates, movement
of larger individuals of a population can be driven by limited
tolerance to warmer temperatures (Alonso et al., 2009).

Some evidence from diet studies on partially migratory
kestrels suggests that intra-specific differences in feeding
niche could explain why some individuals migrate as sea-
sonal shifts in food availability might affect individuals dif-
ferently (Aparicio, 2000).

Philopatry to nesting and mating sites has been demon-
strated to shape movement patterns in birds (Alonso
et al, 2000). Additionally, Skipped-breeding migrations
are a common source of intra-specific variability in sea bird
movement (Shaw & Levin, 2011). Individuals in less good

condition may skip migration to breeding grounds.

nesting site, some tiger sharks are exposed to temperatures over
30°C for prolonged periods (Fitzpatrick et al., 2012). Here, abundant
and easily available prey in the form of dead and weakened green
turtles (Hammerschlag et al., 2016) may create a trade-off that allows
tiger sharks to remain in sub-optimal temperatures.

6.2 | Ecological context

Studies on bird migration show that ecological factors drive intra-
specific variability in movement (Side-Box 2). Competition among
conspecifics, varying predation risks among regions and seasonally
varying prey availability are thought to drive bird movement (side-
Box 2). For elasmobranchs seasonally changing prey availability and
prey species composition have been shown to drive movement pat-
terns, while the role of predation risk and competition are less well
understood (Tables 1 and 2).
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A suite of studies on broadnose sevengill sharks (Notorynchus ce-
pedianus) in southern Tasmania, Australia provided insight into their
drivers of migration into coastal systems (Abrantes & Barnett, 2011;
Awruch et al., 2014; Barnett, Abrantes, Stevens, Bruce, &
Semmens, 2010; Barnett, Abrantes, Stevens, Yick, et al., 2010;
Barnett, Redd, Frusher, Stevens, & Semmens, 2010; Barnett &
Semmens, 2012; Barnett, Stevens, Frusher, & Semmens, 2010).
Although most sevengill sharks leave coastal areas in winter, some
females remain, suggesting that temperature per se is not the only
key driver of their movement (Barnett et al., 2011; Barnett, Stevens,
Frusher, & Semmens, 2010). The absence of neonates and smaller ju-
veniles (<100cm) (Barnett, Stevens, Frusher, & Semmens, 2010), low
number of females with mating scars and their reproductive status
(e.g., no near-term pregnant individuals) ruled out reproduction as a
driver for movement into the area (Awruch et al., 2014). Diet analy-
sis and estimates of predator—prey abundance combined with similar
movement patterns, seasonality, and high spatial overlap with prey
provide strong, contextually explicit support that sevengill sharks
move into coastal systems in Tasmania following seasonally abun-
dant prey resources (Barnett & Semmens, 2012). Here, a comparison
across contexts, involving the tracking of prey animals, ruled out fac-
tors unlikely to be responsible for movement while narrowing down
the most likely driver—high seasonal prey availability.

Individuals within a population can also be distributed across dif-
ferent ecological contexts (Meyer et al., 2018). Tiger sharks from the
Hawaiian archipelago are reproductively connected and show spatial
overlap around Maui during the proposed breeding season (Meyer
et al., 2018). For the rest of the year, some individuals spread out
across the Hawaiian Islands, while some remain localized near Maui
(Meyer et al., 2018). The context of this island likely provides optimal
feeding opportunities as well as suitable environmental conditions, as
residents fulfill all requirements there. Meyer et al. (2018) state that
this region has some of the highest levels of primary production of any
Pacific Island area and likely offers year-round prey. In contrast, con-
ditions at other Hawaiian Islands may drive seasonal movements of
nonresident individuals, for example, in other parts of the archipelago
tiger sharks make large-scale movements tracking prey aggregations
that are dispersed and only seasonally available, such as fledging alba-
tross (Meyer et al., 2010). Due to differences in the spatio-temporal
distribution of prey resources across the archipelago varying foraging
strategies result in differential movements within this population of
tiger sharks (Humpbhries et al., 2010; Meyer et al., 2010, 2018).

6.3 | Individual context

There is extensive literature showing that individual context drives
intra-specific variability in bird movement patterns. Dominance,
physical condition, body size, breeding strategies, and individual
feeding specialization have been established as drivers of move-
ment in birds (Side-Box 3). Thus, the avian literature allows for a
context-focused approach to study movement drivers (see Side-
Box 3).

The influence of individual context has been less studied in elas-
mobranchs. Nevertheless, some information suggests it may play a
role in shaping movement patterns. For instance, some species have
distinct nursery grounds that females migrate to, to give birth. For ex-
ample, bull sharks (Carcharhinus leucas) are believed to exhibit natal
philopatry where females return to the same river they were born in
to pup each reproductive cycle (Lea, Humphries, et al., 2015; Tillett
etal.,, 2012). Being a species that can roam over large distances outside
of the pupping season (over 1700km along the East Coast of Australia,
Espinoza et al., 2016, Heupel et al., 2015), natal philopatry may drive
overall variability in how females fulfill their life history requirements
because of the distance between individual pupping and feeding sites.

White sharks in the Eastern Pacific show different periodicity and
spatial scales of movements between males and females. Such sex
differences suggest variability in behavioral traits linked to reproduc-
tion (Domeier & Nasby-Lucas, 2013). Both sexes overlap spatially for
short periods, increasing mate encounter rates. While males visit ag-
gregation sites every year, females only do so every two years, likely
based on their reproductive cycle (Domeier & Nasby-Lucas, 2013).
After aggregating, females move over large distances and experience
higher water temperatures than males, potentially to expedite ges-
tation (Domeier & Nasby-Lucas, 2013). Some females then return to
coastal sites for parturition (Domeier & Nasby-Lucas, 2013). This co-
incides with young-of-the-year white sharks observed along the coast
(Domeier & Nasby-Lucas, 2013). In this example, sex differences in
behavioral traits linked to reproductive success result in differential
movements. Females possibly require three distinct locations, as they
need to mate, gestate, and give birth. Hence, female sharks move fur-
ther and show bi-annual periodicity in movement. Males, on the other
hand aim to increase reproductive output by mating every year and
thus move over smaller spatial scales with annual return movements
(Domeier & Nasby-Lucas, 2013).

Individual context also incorporates other aspects, such as body
size. In elasmobranchs different size classes often show varying
movement patterns (Lea et al., 2018) and size-related diet changes
may drive differential movements as size classes track different
prey animals (Ajemian et al., 2020; Lea et al., 2018; Lea, Wetherbee,
et al., 2015). Additionally, differences in movement patterns may
relate to differences in energetics and locomotive abilities (Fu
et al., 2016; Lawson et al., 2019). According to allometric scaling of
metabolic rates in elasmobranchs, larger body size may reduce cost
of transport and allow larger individuals to roam further (Lawson
et al., 2019) utilizing a wider range of habitats for foraging.

7 | IMPLICATIONS OF A CONTEXT-
FOCUSED APPROACH AND FUTURE
RESEARCH DIRECTIONS

The strength in a comparative, context-focused approach lays in its
macroecological perspective (e.g., Somveille et al., 2015). For example,
seasonal migration in many species is believed to be driven by thermal
constraints based on low winter temperatures (Shaw, 2016). However,
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a correlation between animal movement and temperature can often
mask the actual set of contextual factors responsible for a given move-
ment such as prey species occurrence, competition, and low resource
availability (Barnett, Stevens, Frusher, & Semmens, 2010; Somveille
et al., 2015). Thus, a context-approach comparing movement patterns
and temperature exposure for individuals across different latitudes
and/or investigating multiple contextual factors can aid in reducing
masking effects (e.g., Barnett, Stevens, Frusher, & Semmens, 2010;
Daly et al., 2014; Espinoza et al., 2016; Lee et al., 2019).

Additionally, taxa-wide, tagging biases have long been a problem
in tracking studies (Hays et al., 2020). Estimates of spatio-temporal
patterns of animal movement are often weighted toward the tag-
ging location, with areas further away from the tagging site being
underrepresented (Hays et al., 2020). Context could be utilized to
overcome tagging-location biases. If the contextual factors driving
certain movement patterns of one study system have been identified,
increased confidence in predictions and models about movements in
other systems, similar in context, could help close gaps in knowledge
of movement patterns in new or understudied systems/locations.
Furthermore, locations where animals are tagged are often chosen
based on accessibility and high abundance of study species. If the
context under which study species aggregate is established (such as
in Copping et al., 2018) further tagging locations could be explored
based on similar contextual factors which could then produce more
representative sample sizes from the greater population. A context-
focused approach can also aid in predictions about movement as a
behavioral response, if the contextual factors driving movement are

known, models and predictions about future environmental change

TABLE 3 Avenues of future research into movement drivers

e Systematic comparisons of movement patterns and
environmental factors between different regions (see e.g., Vaudo
et al., 2017)

e Increased incorporation of remotely sensed environmental data
into elasmobranch movement studies (see e.g., Lee et al., 2019)

e Context-focused investigations of global aggregation sites (see
e.g., Copping et al., 2018)

e Incorporation of trophic and dietary information into movement
studies to track individual foraging patterns across diverse and
distant environments

e Incorporation of health and energetics through analysis
of body condition, blood hormones and lipid reserves, as
well as energetics models into movement studies (see e.g.,
AtallahBenson et al., 2020; Gallagher et al., 2014; Moorhead
et al, 2021)

e |dentification of important prey species and simultaneous
tracking of potential prey and predator (see e.g., Barnett &
Semmens, 2012, Hammerschlag, Luo, et al., 2012)

e Combination of hormone studies and ultra-sounds to study
female reproductive movements (see e.g., Awruch et al., 2014;
Barnett et al., 2019; Sulikowski et al., 2016)

e Genetics studies in combination with movement studies
to elucidate the relationship between individually varying
movement patterns and natal philopatry

e Systematic investigation of global nursery areas to reveal
potential relationship between regional differences in juvenile
survival benefits and female movement strategies for parturition
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can be more precise. For example, climate change, habitat degrada-
tion, and overfishing influence populations of many shark species
(Dulvy et al., 2014; Vedor et al., 2021) and a context-focused ap-
proach can be utilized to predict how future anthropogenic change
will affect movement patterns. Shifts and changes in migration tim-
ing and routes potentially due to changing climates have already
been observed in birds (Jenni & Kéry, 2003) and similar shifts are ex-
pected in sharks and rays (Birkmanis et al., 2020; Niella et al., 2020).
However, without systematically understanding the contextual
factors driving movement for populations and individuals, the scale
and direction of shifts in movement behavior due to global change
cannot be easily predicted. Much of the variation in movement pat-
terns likely constitutes individual responses to specific contextual
factors that differ across time, space, and individuals. Thus, blanket
management/conservation measures might not be applicable to a
species across its range and future measures can benefit from being
informed by a context-approach that disentangles movement drivers
of different populations and demographic groups and takes into ac-

count variability among regions (Table 3).

8 | CONCLUSION

A stepwise, context-focused approach to studying animal move-
ment can aid in elucidating internal and external factors shaping
individual movement patterns. While life history requirements
such as breeding, feeding, and remaining in suitable environmental
conditions drive overall behavior and are central to each individ-
ual, many taxa, including elasmobranchs show high variability and
complexity in movement patterns across and within populations.
The occurrence of multiple movement strategies within a species
is driven by contextual factors that differ across time, space, and
individuals. These factors shape how behavioral traits related to
life history requirements are expressed across time and space and
thus shape individual movement decisions. Overall, our system-
atic comparison between study systems with regard to contex-
tual factors, provides a framework to incorporate variability as a
tool to determine combinations of contextual factors that can be
reliably related to a specific movement outcome. Capturing com-
plexity and variability across populations and demographic groups
can help further our understanding of animal movement. This ap-
proach is applicable to any taxa showing variability in movement
patterns. Additionally, a context-focused approach can aid in
overcoming tagging biases, making predictions about movement
responses to environmental change and designing efficient con-

servation measures.
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