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Abstract: Well-focused and accurately scaled high-resolution inverse synthetic aperture radar (ISAR)
images provide a sound basis for feature extraction and target recognition. This paper proposes a novel
high-resolution ISAR imaging algorithm, namely modified joint range spatial-variant autofocus
and azimuth scaling algorithm (MJAAS). After motion compensation, the shift of the equivalent
rotational center (ERC) of the target destroys the linear relationship between the azimuth chirp rates
(ACR) of echo signals and the range coordinates of scattering points, thereby leading to the failure of
azimuth scaling. Accordingly, a new joint equivalent rotational center position and effective rotational
velocity (JERCP-ERV) signal model is established, serving as the basis of MJAAS. By recourse to
the Davidon-Fletcher-Powell (DFP) algorithm, MJAAS can jointly estimate the ERCP and ERV by
solving a minimum entropy optimization problem, so as to simultaneously achieve accurate azimuth
scaling and range spatial-variant autofocus, which further improves the image focusing performance.
MJAAS is not restricted by the modes of motion errors (coherent or non-coherent) and the motion
compensation methods, so it can be widely applied to real data with the advantages of strong
practicality and high accuracy. Extensive experimental results based on both simulated and real data
are provided to corroborate the effectiveness of the proposed algorithm.

Keywords: inverse synthetic aperture radar (ISAR); autofocus; azimuth scaling; equivalent rotational
center (ERC); minimum entropy optimization lower case

1. Introduction

Inverse synthetic aperture radar (ISAR) can image non-cooperative targets and obtain
high-resolution two-dimension (2-D) images, serving as an effective tool for radar target recognition
with broad applications in civilian and military fields [1–6]. The Range-Doppler (RD) algorithm is
usually adopted to generate the target’s ISAR images [7], but the obtained images only reveal the
Doppler information of the target in the azimuth dimension rather than the information about the
actual size of the target. In order to better identify the target, it is necessary to perform the azimuth
scaling of the target. However, motion compensation is a prerequisite for azimuth scaling regarding
a set of echo data. Motion compensation algorithms can realize error correction by adjusting the phase
information of the echo signal, but most of them inevitably cause the deviation of the target’s rotational
center, which impedes the subsequent azimuth scaling. In addition, mainly aimed at the same motion
errors of all scattering points on the target, the existing motion compensation algorithms neglect the
range spatial-variant phase errors of different scattering points caused by the target’s rotational motion,
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producing defocused ISAR images. Therefore, it is of vital importance to develop an ISAR imaging
algorithm that can jointly achieve accurate azimuth scaling and range spatial-variant autofocus.

The commonly used ISAR azimuth scaling algorithms fall into three main categories. The first
is the trajectory tracking method [8] which uses the target’s motion information measured by the
narrow band radar to fit the trajectory and then calculates the total rotational angle of the target relative
to the radar line of sight (RLOS), so as to achieve azimuth scaling. Due to the large tracking errors
made by the narrow band radar, this method offers relatively low accuracy. The second one is the
slope-based method [9]. Though intuitionistic and clear, it demands the prior information about
the target’s geometric features and has high requirements for the shape of the target on the image
used for scaling, thus, its scope of application is narrow. The third is the azimuth chirp rates (ACR)
estimation method [10]. It estimates the ACR of echo signals and solves the linear coefficient according
to the linear relationship between ACR and range coordinates of the scattering points. The effective
rotational velocity (ERV) of the target can be obtained by the estimated linear coefficient, and therefore,
the azimuth scaling can be achieved. This kind of method has been widely applied because of its small
computation and high accuracy. However, it is easily affected by motion compensation algorithms.
Once the motion compensation algorithm destroys the linear relationship between the ACR and the
range coordinates of the scattering points, the method fails. Therefore, it is necessary to develop
an azimuth scaling algorithm to ensure that the echo signal can still achieve accurate azimuth scaling
after completing motion compensation.

The motion compensation can be divided into two parts: range alignment and phase autofocus.
Generally, the range alignment is completed first followed by the phase autofocus. The commonly used
range alignment algorithms include the maximum cross-correlation method [11] and the minimum
entropy method [12]. This paper employs an improved maximum cross-correlation method (IMCM) [8]
to achieve range alignment. This algorithm works out the weighted sum of all the aligned envelopes,
which replaces the adjacent echoes in the traditional maximum cross-correlation method as the reference
in the cross-correlation operation; thus, it has good robustness. In terms of phase autofocus, methods
such as the multiple dominant scatterers method [13,14], the phase gradient autofocus algorithm
(PGA) [15–17] and the minimum entropy method [18,19] are frequently adopted. In this paper, we use
PGA to realize phase autofocus in light of its strong practicality and low computational complexity.
The algorithm compensates the phase errors of the whole echo signal by calculating the phase gradient
of the dominant scatterer. That is to say, the dominant scatterer (usually the composite point of multiple
dominant scatterers) is regarded as the rotational center and recorded as the equivalent rotational
center (ERC). It is easy to know that, after the processing of PGA, the ACR of the echo signal is no
longer linear with the range coordinates of the scattering points, which renders the azimuth scaling
algorithm based on the ACR invalid. In addition to the cascaded motion compensation method above,
a joint translational motion compensation algorithm is proposed in [20]. The algorithm is highly robust
against noise but not suitable for the non-coherent mode of the motion errors; thus, its practicality
is poor. Furthermore, the aforementioned motion compensation algorithms only consider the same
motion errors of all scattering points and neglect the exclusive range spatial-variant phase errors
of different scattering points caused by the target’s rotational motion [21,22]. Thus, it is desired
to advance an algorithm by jointly estimating the equivalent rotational center position (ERCP) and
effective rotational velocity (ERV), which can achieve the range spatial-variant autofocus while precisely
accomplishing azimuth scaling.

Inspired by the aforementioned challenges, this paper presents a novel high-resolution ISAR
imaging algorithm, namely the modified joint range spatial-variant autofocus and azimuth scaling
algorithm (MJAAS). The main contributions of the proposed algorithm are as follows:

(1) By analyzing the processing results of the motion compensation algorithm, a novel joint
equivalent rotational center position and effective rotational velocity (JERCP-ERV) signal model is
established. It takes into account the deviation of the ERC caused by the motion compensation
algorithm, and jointly estimates the ERCP and ERV, so as to achieve the modification of the ERCP.
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(2) Based on the JERCP-ERV signal model, MJAAS is proposed. In this technique, the Davidon-
Fletcher-Powell (DFP) [23] algorithm is used to solve a minimum entropy optimization problem,
thereby jointly realizing the accurate estimation of ERCP and ERV. Furthermore, the precise range
spatial-variant autofocus and azimuth scaling can be simultaneously completed on the basis of the
estimation results. It is noteworthy that the application of MJAAS is not limited to certain types of
motion compensation algorithms. MJAAS can jointly achieve accurate azimuth scaling and range
spatial-variant autofocus by estimating the corresponding ERCP and ERV with regard to different
motion compensation algorithms.

Based on MJAAS as well as combined with IMCM and PGA, a complete high-resolution ISAR
imaging framework is formed, which is not restrained by the modes of motion errors (coherent or
non-coherent) of the target. With low computational complexity, the framework has the advantages of
strong practicality and high efficiency.

This paper is organized as follows. Section 2 introduces the echo signal model, motion
compensation algorithms and azimuth scaling algorithms, and analyzes the influence of the motion
compensation algorithm on the azimuth scaling algorithm. On this basis, a novel JERCP-ERV signal
model is established. Section 3 proposes the MJAAS algorithm to jointly achieve accurate range
spatial-variant autofocus and azimuth scaling. Section 4 provides the experimental results of both
simulated and real data to verify the effectiveness of the proposed algorithm. The paper ends with
a brief conclusion in Section 5.

2. Signal Model and Related Work

2.1. Signal Model

The three-dimension (3-D) ISAR imaging geometry model is shown in Figure 1a, where the radar
line of sight (RLOS) direction from the radar to the rotational center of the target O is defined as
the Y-axis. Point p is a scattering point on the target whose coordinate on the XOY plane is

(
xp, yp

)
.

The synthetic rotational motion ω of the target can be divided into two orthogonal parts: one along
the Y-axis, recorded as ωr, and the other along the Z-axis, recorded as effective rotational motion
ωe. According to the Y-axis and Z-axis, the X-axis is determined using the right-hand rule so that
the Cartesian coordinate system (X, Y, Z) can be established as shown in Figure 1a. Given that ωr

does not change the slant distance between the radar and the target, it makes no contribution to ISAR
imaging. ωe is the only effective part, serving as the essential source of ISAR imaging. In this paper,
it is assumed that the direction and magnitude of ωe are constant, that is, the target makes 2-D uniform
rotational motion. Therefore, the 3-D imaging geometry model in Figure 1a can be simplified to the
2-D imaging model shown in Figure 1b, where Rp(tm) represents the instantaneous range between
radar and p; ∆Rp(tm) is the instantaneous range between the scattering point p and the radar caused by
rotational motion; R0 represents the initial range between the rotational center of the target O and the
radar; r(tm) is the instantaneous range between the target and the radar caused by translational motion,
which remains the same for all scattering points; and θ(tm) is the instantaneous rotational angle of the
target along Z-axis at tm. The radar is assumed to transmit a linear frequency modulated (LFM) signal.
After preprocessing (range compression and de-modulation to the baseband), the received signal of
the pth scattering point can be given by Equation (1).

sp(t̂; tm) = σp · sinc
[
B
(
t̂−

2Rp(tm)

c

)]
· exp

[
− j

4π fc ·Rp(tm)

c

]
(1)

where t̂ and tm represent fast time and slow time; σp denotes the scattering coefficient of the scattering
point p; B and fc refer to the bandwidth and carrier frequency of the transmitted signal; c is the light



Sensors 2020, 20, 5047 4 of 21

velocity; and the instantaneous range between radar and p is represented by Rp(tm), which is expressed
as Equation (2) [10]:

Rp(tm) = R0 + r(tm) + ∆Rp(tm)

≈ R0 + r(tm) + xp · sin[θ(tm)] + yp · cos[θ(tm)]
(2)

where xp and yp are the abscissa and ordinate of p on the XOY plane, respectively. ∆Rp(tm) is expanded
using the Tayler series, which can be approximated as Equation (3):

∆Rp(tm) ≈ xp · θ(tm) + yp ·
[
1− θ2(tm)/2

]
= xp ·ωe · tm + yp ·

(
1−ω2

e · t2
m/2

) (3)

where cos[θ(tm)] ≈ 1− θ2(tm)/2 and sin[θ(tm)] ≈ θ(tm) = ωe · tm. Assigning Equations (2) and (3) to
(1), Equation (1) can be rephrased as Equation (4):

sp(t̂; tm) = σp · sinc
{
B
{
t̂−

2[R0+r(tm)+∆Rp(tm)]
c

}}
· exp

{
− j

4π fc·[R0+yp+r(tm)+xpωetm−ypω2
e t2

m/2]
c

} (4)

where sinc{·} represents the range envelope term and exp{·} the phase term. In the envelope term,
r(tm) causes the range shift. The migration through resolution cells (MTRC) caused by ∆Rp(tm) can
be neglected since it is usually less than half of a range bin in a short coherent processing interval
(CPI). Even if MTRC exists, there are some algorithms available to eliminate it [24]. For the phase
term, r(tm), which is identical for all scattering points, leads to phase errors. Due to the coupling of
the quadratic term of tm and the ordinate yp of the scattering point p, the range spatial-variant phase
errors arise. In order to create high-resolution ISAR images, apart from correcting the translational
motion errors caused by the range spatial-variant phase errors caused by the quadratic term of tm also
need to be accurately compensated. Note that, since the quadratic term of tm contains the target’s
effective rotational velocity (ERV) ωe, it can be used to estimate ωe so as to achieve the azimuth scaling
of ISAR images [13]. Based on the above analysis, with MTRC and the constant phase term neglected,
the discrete form of Equation (4) can be expressed as Equation (5):

sp(n; m) = σp · sinc
{
B
{
n · ∆t̂−

2[R0+yp+r(m·∆tm)]
c

}}
· exp

{
− j

4π fc·[r(m·∆tm)+xpωe·m·∆tm−ypω2
e (m·∆tm)

2/2]
c

} (5)

where n and m refer to the indexes of the range bin and azimuth bin, respectively, −N/2 ≤ n ≤ N/2− 1,
−M/2 ≤ m ≤M/2− 1; N and M denote the total numbers of the range bin and azimuth bin, respectively;
and ∆t̂ and ∆tm represent the sampling interval of fast time and slow time, respectively.
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Figure 1. Inverse synthetic aperture radar (ISAR) model© 2020 IEEE. (a) Three-dimensional (3-D)
scenario geometry model. (b) Simplified two-dimensional (2-D) scenario geometry model.

2.2. Related Work

It can be seen from Equation (5) that the motion errors of the echo signal lie in the envelope term
and phase term. Therefore, the motion compensation consists of two parts: range alignment and phase
adjustment. In addition, instead of the information about the actual size of the target, the ISAR image
obtained by the range-Doppler (RD) algorithm displays the Doppler information of each scattering
point in the azimuth dimension, which has an adverse effect on the subsequent feature extraction
and target recognition. Therefore, for a complete ISAR imaging framework, in addition to motion
compensation, it is necessary to carry out accurate azimuth scaling of the RD image. This section will
briefly introduce the commonly used motion compensation and azimuth scaling algorithms in practice.

2.2.1. Range Alignment

Range alignment, the premise of phase autofocus, is to remove the r(m · ∆tm) in the envelope
term of Equation (5). Various algorithms such as the maximum cross-correlation method and the
minimum entropy method have been proposed to achieve range alignment, while this paper employs
an improved maximum cross-correlation method. A brief introduction to the principle of this algorithm
is given in what follows.

The traditional maximum cross-correlation method calculates the cross-correlation coefficient
between the envelopes of two adjacent echoes and determines the delay value through peak search
so as to achieve the alignment of adjacent pulses. However, since envelope drifting and jump errors
often occur when processing the real data [8], the robustness of the algorithm is poor. To solve this
problem, an improved maximum cross-correlation method (IMCM) is proposed. When aligning
a certain envelope, this algorithm uses the weighted sum of all the aligned envelopes rather than the
previous one envelope as the reference for cross-correlation processing. The employment of multiple
echoes helps avoid the envelope drifting and jump errors, thereby improving the robustness of the
range alignment.

2.2.2. Phase Adjustment

A phase adjustment is performed to eliminate the motion error in the phase term of Equation (5).
A large number of phase adjustment algorithms have been proposed, including the multiple dominant
scatterers synthesis method, PGA and the minimum entropy method. In the experiments of this paper,
we use PGA to realize the phase adjustment. It is worth noting that the above algorithms only consider
the same phase errors of each scattering point but neglect the exclusive spatial-variant phase errors.
That is to say, these algorithms can only eliminate r(m · ∆tm) in the phase term of Equation (5), but find
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it difficult to eliminate ypω2
e (m · ∆tm)

2/2. In addition, they will cause deviation of equivalent rotational
center (ERC), which distorts the subsequent azimuth scaling. Next, we will give a brief introduction
to PGA to show its influence on the azimuth scaling algorithm. PGA is an iterative algorithm with
operations in every iteration repeated, thus, what follows only introduces the process of one iteration
to illustrate its rationale.

In general, PGA firstly extracts 20–30 dominant scatterers to calculate the phase gradient. For clarity,
the principle of the algorithm is elucidated by one extracted dominant scatterer, and the same applies
to the case of multiple dominant scatterers. For instance, the scattering point p in Equation (5) is used
as the dominant scatterer. Mark that the phase of the scattering point p is φp(m) and m ·∆tm is m. Then,
φp(m) can be written as Equation (6):

φp(m) =
4π fc

c
·

[
r(m) + xpωem− ypω

2
e m2/2

]
. (6)

the cyclic shift of the complex image corresponding to the dominant scatterer p is carried out to move
the peak value of the dominant scatterer p to the center of the image (i.e., zero Doppler). Then, φp(m)

can be rewritten as Equation (7):

φp(m) =
4π fc

c
·

[
r(m) − ξp(m)

]
(7)

where ξp(m) = ypω2
e m2/2. Then, the phase difference as shown in Equation (8) can be obtained by the

conjugate multiplication of the mth and the m− 1th echoes:

∆φp(m) = φp(m) −φp(m− 1) =
4π fc

c
·

[
∆r(m) + ∆ξp(m)

]
(8)

where ∆r(m) = r(m) − r(m− 1) and ∆ξp(m) = ξp(m) − ξp(m− 1). Let ∆φp(−M/2) = 0 and m =

−M/2, · · · , M/2− 1. Next, Equation (9) is used to calculate the phase gradient ϕp(i) (ϕp(i) is the phase
error of the ith echo signal needed to be corrected for each range bin):

ϕp(i) =
i∑

m=−M/2

∆φp(m). (9)

Finally, the phase error is rectified by compensating the whole ISAR echo signal with the help
of ϕp(i) (i = −M/2, · · · , M/2 − 1). The above is the basic principle of PGA. However, according to
Equation (8), in addition to the translational motion error ∆r(m), the range spatial-variant phase error
∆ξp(m) also exists in ∆φp(m). When using ϕp(i) for phase compensation, ∆r(m) can be precisely
compensated. Nevertheless, since ∆ξp(m) is spatial-variant, its presence in the echo signal will render
the image defocused. It is assumed that the distance range of the target support area is

[
−M/2, M/2− 1

]
and the rotational center of the target is located at the origin M < M. After compensating the whole
echo signal by ϕp(i), the distance range of the target support area in the phase term becomes[
−M/2− yp, M/2− yp − 1

]
since ∆ξp(m) contains the ordinate yp of the scattering point p. At this time,

the scattering point p is equivalent to the rotational center of the target (the ordinate is 0), thus, it is
marked as ERC. The above analysis suggests that the position of the rotational center shifts after
compensation, thus, the relationship between the azimuth chirp rates (ACR) of the echo signal and the
range coordinates of the scattering points

[
−M/2, M/2− 1

]
is no longer a linear one, which severely

distorts the subsequent azimuth scaling. This explains why it is of vital importance to propose an
algorithm which can simultaneously compensate the range spatial-variant phase error and overcome
the distortion of azimuth scaling caused by the equivalent rotational center position (ERCP) deviation.
It should be noted that though the above analysis is based on PGA, other phase autofocus algorithms
have the same problem.
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2.2.3. Azimuth Scaling

Among the existing azimuth scaling algorithms, the one based on ACR has been frequently
adopted thanks to its high accuracy. It can be seen from Equation (6) that the ACR αn of the nth range
bin is Equation (10) delete extra space:

αn =
2ω2

e
λ
· yn = K · yn (10)

where λ = c/ fc denotes radar wavelength and yn is the coordinate of the nth range bin. It can be seen
from Equation (10) that there is a simple linear relationship between αn and yn. yn can be obtained by
multiplying the range resolution by the range bin number n. As long as the ACR is estimated, the linear
coefficient K can be obtained. Then, according to ωe = (λ|K|/2)1/2, the ERV can be obtained and the
azimuth scaling can be realized. The above is the basic principle of the azimuth scaling algorithm based
on ACR. However, from the analysis of the autofocus algorithm in the previous section, the ERC in the
phase term shifts after phase compensation. Therefore, the solution of multiplying range resolution by
the range bin number n to obtain yn in αn no longer works. If the position of the ERC is not corrected,
the wrongly estimated ωe will result in the distortion of azimuth scaling. Nevertheless, few existing
azimuth scaling algorithms consider this problem.

In the next subsection, we establish a more refined signal model, called joint equivalent rotational
center position and effective rotational velocity signal model (JERCP-ERV). It includes two parameters,
namely the equivalent rotational center position (ERCP) and the effective rotational velocity (ERV),
making it possible to eliminate the estimation error of ERV caused by the shift of ERCP.

2.3. JERCP-ERV Signal Model

Equation (5) is the echo signal of the scattering point p. After motion compensation described in
the previous section, the compensation result s̃p(n; m) can be expressed as Equation (11):

s̃p(n; m) = σp · sinc
{
B
{
n · ∆t̂−

2[R0+yp]
c

}}
· exp

{
− j

4π fc·[xpωe·m·∆tm−(ln,p−β)·Ω·(m·∆tm)
2]

c

} (11)

where β denotes the range coordinate of the ERC in the range scene; Ω = ω2
e /2, ln,p = np · c/2B and np

refers the range bin index of the scattering point p. Equation (11) is the novel JERCP-ERV signal model
with two unknown parameters proposed in this paper, the equivalent rotational center position (ERCP)
and the effective rotational velocity (ERV), the joint estimation of which can be realized according to
the signal model. Assuming that there are a total of P scattering points on the target, the total echo
signal of the target after motion compensation can be expressed as Equation (12):

S̃(n; m) =
P−1∑
p=0

s̃p(n; m). (12)

3. The Proposed Methodology

In this section, a novel modified joint range spatial-variant autofocus and azimuth scaling
algorithm (MJAAS) is proposed based on the analysis above. It can realize range spatial-variant
autofocus while achieving accurate azimuth scaling so as to further improve the focusing performance
of the image.
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3.1. The Establishment of Objective Function

For clarity, we define a parameter vector, Ψ = [β, Ω]. After compensation with Ψ̂ =
[
β̂, Ω̂

]
,

the complex ISAR image g
(
n; k; Ψ̂

)
as shown in Equation (13) can be obtained by processing Equation

(12) with azimuth fast Fourier transform (FFT):

g
(
n; k; Ψ̂

)
= 1

M

M/2−1∑
m=−M/2

{
exp

(
− j 2π

M mk
)
· S̃(n; m) · exp

{
− j 4π

λ ·
[(

ln − β̂
)
· Ω̂ · (m · ∆tm)

2
]}}

= 1
M

M/2−1∑
m=−M/2

{
exp

(
− j 2π

M mk
)
· Ŝ(n; m)

} (13)

where Ψ̂ =
[
β̂, Ω̂

]
is the estimated value of Ψ = [β, Ω]; The result of compensating S̃(n; m) with Ψ̂ is

Ŝ(n; m); ln = n · c/2B, n is the range bin index, and −N/2 ≤ n ≤ N/2− 1; k is the Doppler bin index;
and −M/2 ≤ k ≤M/2− 1. Equation (13) indicates that the accurate estimation of Ψ̂ =

[
β̂, Ω̂

]
can ensure

a well-focused and accurately scaled ISAR image. Generally speaking, parameter estimation can be
realized by solving an unconstrained optimization problem. It is widely acknowledged that image
entropy (IE) is an effective index of evaluating image quality. IE is therefore chosen as the objective
function to solve the unknown parameters Ψ̂ =

[
β̂, Ω̂

]
in this paper. According to the definition of IE,

it can be expressed as Equation (14):

IE = ln Eg −
1

Eg

N/2−1∑
n=−N/2

M/2−1∑
k=−M/2

(µ · lnµ) (14)

where µ =
∣∣∣∣g(n; k; Ψ̂

)∣∣∣∣2 and Eg =
N/2−1∑

n=−N/2

M/2−1∑
k=−M/2

µ is the image intensity.

From Equation (14) we can see that since the phase error compensation term
exp

{
− j 4π

λ ·
[(

ln − β̂
)
· Ω̂ · (m · ∆tm)

2
]}

is performed on the phase of S̃(n; m), the signal energy holds
constant according to the Parseval theorem [25]. Therefore, Eg is independent of Ψ̂. The estimate of
Ψ̂ =

[
β̂, Ω̂

]
is obtained by minimizing the image entropy, expressed as Equation (15):〈

β̂, Ω̂
〉
= argmin

β̂,Ω̂
{IE}. (15)

3.2. Optimal Parameters Estimation

Many algorithms are now available to solve Equation (15), such as the gradient descent
algorithm (GDA) [26] and quasi-Newton method [27]. As a highly efficient quasi-Newton algorithm,
the Davidon-Fletcher-Powell (DFP) algorithm [23] is selected to solve Equation (15) in this paper.
It requires to calculate the gradient of the objective function corresponding to the unknown parameters,
thus, the gradient of IE with regard to Ψ̂ =

[
β̂, Ω̂

]
can be derived as Equation (16):

∇IE
[
Ψ̂
]
=

[
∂IE
∂β̂

,
∂IE
∂Ω̂

]
(16)

the detailed derivation process of∇IE
[
Ψ̂
]

is given in Appendix A. In addition to gradient, an approximate
matrix H is used to replace the inverse of Hessian matrix of the objective function in DFP. The updated
formula of H is given in Appendix B. With ∇IE

[
Ψ̂
]

and H acquired, the optimal values of the

unknown parameters Ψ̂ =
[
β̂, Ω̂

]
can be obtained by iterative processing along the search direction
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{
−H · ∇IE

[
Ψ̂
]}

. In addition, ∇IE
[
Ψ̂
]

and H are updated in each iteration according to Equations (16) and

(23). After obtaining ∇IE
[
Ψ̂
[u]

]
and H[u], the updated formula of Ψ̂

[u] can be expressed as Equation (17):

Ψ̂
[u+1]

= Ψ̂
[u]
−η[u]

·H[u]
· ∇IE

[
Ψ̂
[u]

]
(17)

where η[u] =
[
η
[u]
β̂

, η[u]
Ω̂

]
stands for the search step vector which can be accurately estimated by

one-dimension (1-D) search algorithms such as the Armijo criterion [28] and golden section method [29],
so as to prevent the objective function from falling into the local optimal solution. Without prior

information, the initial value of the unknown parameter is usually set as Ψ̂
[0]

= [0, 0]. In general, IE is
able to converge when U is less than 10. It is worth noting that in order to ensure the robustness
and astringency of the proposed algorithm, we apply the idea of coordinate descent when estimating
Ψ̂ =

[
β̂, Ω̂

]
, that is, fixing one parameter and estimating another one [20]. Through the above

processing, the estimated optimal parameter Ψ̂opt =
[
β̂opt, Ω̂opt

]
can be obtained. In this way, we can

create a well-focused and accurately-scaled ISAR image according to Equation (13).
According to the analysis above, for the proposed algorithm, only the gradient of the objective

function needs to be solved, thus, the computational complexity of the proposed algorithm mainly lies

in the calculation of ∇IE
[
Ψ̂
[u]] and the search of η[u]. Equation (16) indicates that the computational

complexity of gradient calculation mainly depends on the azimuth FFT. The computational complexity
is represented by the number of complex multiplication, and that of FFT corresponding to M points is
O
(
M · log2 M

)
. It is assumed that the iterative number of searching η[u] is V, then the computational

complexity of the proposed algorithm in one iteration is O
(
2 · (V + 1) ·N ·

(
M · log2 M

))
, thus, its total

computational complexity is O
(
U ·

(
2 · (V + 1) ·N ·

(
M · log2 M

)))
.

At present, the commonly used ISAR azimuth scaling algorithms fall into three main categories:
the trajectory tracking method (TTM) in reference [8], the slope-based method (SBM) in reference [9]
and the azimuth chirp rates estimation method (ACREM) in reference [10]. TTM uses the target’s
motion information measured by the narrow band radar to fit the trajectory, and then calculates the
total rotational angle of the target relative to the radar line of sight (RLOS), so as to achieve azimuth
scaling. Due to the large tracking errors caused by the narrow band radar, this method offers relatively
low accuracy. Completely based on the target image, the SBM method only needs to estimate the
slope of the two characteristic lines of the target to complete the azimuth scaling. However, it has
a limited application since it demands the prior information about the target’s geometric features
and has high requirements for the shape of the target on the image used for scaling. The ACREM
method uses the azimuth chirp rates (ACR) information contained in the signal to estimate the effective
rotational velocity (ERV) of the target directly, thus realizing the azimuth scaling. This kind of method
has been widely applied because of its small computation and high accuracy. However, it is easily
affected by motion compensation algorithms. Once the motion compensation algorithm destroys the
linear relationship between the ACR and the range coordinates of the scattering points, the method
will fail. Next, we compare the pros/cons of the proposed algorithm and the above three algorithms
through Table 1.
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Table 1. Pros/cons of the four algorithms. TTM: trajectory tracking method; SBM: slope-based method;
ACREM: azimuth chirp rates estimation method; MJAAS: modified joint range spatial-variant autofocus
and azimuth scaling algorithm.

Accuracy Robustness Computational
Complexity

Affected by
ERCP Application Range

TTM relatively low relatively strong low no relatively wide
SBM relatively high relatively low relatively low no relatively narrow

ACREM high relatively low relatively high yes relatively wide
MJAAS high strong relatively high no wide

From Table 1, we can see that each algorithm has its own pros/cons, but all things considered,
the proposed algorithm is a better choice. A flowchart is given in Figure 2 to elucidate the
proposed algorithm.

Well-Focused and Accurately 

Scaled ISAR Image

1u U 
?

Yes

No

1u u 

Raw Echo Signal

Initialization

0u 

Calculation

and
 u

H

Determine the search steps             

according to 1-D search algorithm

 u
η

Motion Compensation

Joint Range Spatial-Variant 

Autofocus and Azimuth Scaling

 ˆ u
IE  

 
Ψ

MJAAS

         +1ˆ ˆ ˆ=
u u u u u

IE    
 

Ψ Ψ η H Ψ

Figure 2. Flowchart of the proposed algorithm.

4. Experiments and Analyses

In this section, based on the proposed MJAAS algorithm as well as combined with improved
maximum cross-correlation method (IMCM) and phase gradient autofocus algorithm (PGA), a complete
high-resolution ISAR imaging framework, IMCM + PGA + MJAAS (IMCM-PGA-MJAAS), is developed.
IMCM+PGA (IMCM-PGA)MJAAS uses IMCM for range alignment and PGA for phase autofocus
without azimuth scaling. IMCM + PGA + TAS (IMCM-PGA-TAS) adopts the same motion compensation
method as IMCM-PGA, but involves the traditional azimuth scaling algorithm (TAS) based on the ACR
to realize azimuth scaling, and the ERV estimated by TAS is used for range spatial-variant autofocus.
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IMCM-PGA-MJAAS is compared with IMCM-PGA and IMCM-PGA-TAS based on simulated and real
data. IMCM-PGA-MJAAS also utilizes the same motion compensation algorithm as the two comparison
algorithms. What makes it different is the employment of MJAAS, which can jointly realize accurate
range spatial-variant autofocus and azimuth scaling. In addition, we set two modes of motion errors,
coherent mode (CM) and non-coherent mode (NCM), and different SNRs to illustrate the superiority
of the proposed algorithm in the following experiments.

4.1. Simulated Data Experiments

In this case, the 3-D scattering point model of Yak-42 airplane as shown in Figure 3a, which is
34.68 m in length and 35.48 m in width, is used to generate simulated data, and the resulted standard
2-D RD image is shown in Figure 3b. The radar system adopts the de-chirp processing mode with the
main simulated parameters shown in Table 2. As mentioned above, echo data high-resolution range
profiles (HRRP) generated in CM and NCM are employed to verify the performance of the proposed
algorithm, with corresponding envelope waveforms and phase errors shown in Figure 4. In practice,
both CM and NCM may occur in the target echo signal received by radar, with the former mainly for the
stable motion of the target and the later mainly for the serious vibration of the target. Concerning the
actual situation of the echo signal, the real data will be analyzed in detail in the next subsection.

Table 2. Main Simulated Parameters. ERV: effective rotational velocity.

Parameters Values

Carrier frequency 5.52 GHz
Bandwidth 500 MHz
Pulse repetition frequency 100 Hz
Pulse duration 20 µs
Sampling frequency 12.8 MHz
ERV (ωe) 0.04 rad/s
Range bin number 256
Azimuth bin number 512

(a) (b)

34.70 × 35.40

IE=7.4274

Figure 3. Simulated data of Yak-42 airplane. (a) 3-D scattering point model. (b) Standard ISAR image.

Next, we conduct the ISAR imaging in CM as shown in Figure 4a,b. Complex Gaussian white noise
is added to the data in Figure 4a,b to generate three SNRs (10 dB, 5 dB and 0 dB). Then, ISAR imaging
was performed by IMCM-PGA, IMCM-PGA-TAS and IMCM-PGA-MJAAS at different SNRs with
corresponding imaging results shown in Figure 5. The imaging results of IMCM-PGA are defocused
because it fails to take into account the range spatial-variant phase error caused by the rotational
motion of the target. With regards to the imaging results of IMCM-PGA-TAS and the target’s size
marked in the figure, there are severe errors in azimuth scaling compared with the real size of the target.
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The distortion of azimuth scaling will have an adverse effect on the subsequent feature extraction and
target recognition. Since TAS does not consider the deviation of ERC caused by motion compensation,
there are serious errors in the estimated effective rotational velocity (ERV). Its inaccuracy leads to
inaccurate range spatial-variant autofocus, thus, the imaging results of IMCM-PGA-TAS are still
blurred as shown in the dashed boxes. By contrast, with consideration for the deviation of equivalent
rotational center (ERC), IMCM-PGA-MJAAS can jointly realize the accurate estimation of equivalent
rotational center position (ERCP) and effective rotational velocity (ERV), thereby simultaneously
performing precise azimuth scaling and range spatial-variant autofocus. Compared with Figure 3b,
Figure 5 reveals that the proposed algorithm can obtain ISAR images with good focusing and accurate
scaling at different SNRs. In this experiment, image entropy (IE) is used to evaluate image quality.
It can be seen from the IE marked in Figure 5 that the proposed algorithm always achieves lower
IE in different situations, which further quantitatively illustrates the superiority of the proposed
algorithm. Table 3 shows the estimated ERV of IMCM-PGA-TAS and IMCM-PGA-MJAAS at different
SNRs. Compared with real values, the proposed algorithm obtains more accurate estimation results at
different SNRs, while large errors occur in the estimation results of TAS because it neglects the deviation
of ERC. Figure 6 gives the ISAR imaging results of three algorithms in NCM as shown in Figure 4c,d
at three SNRs, and Table 4 shows the ERV estimated by IMCM-PGA-TAS and IMCM-PGA-MJAAS at
different SNRs. It can be seen from the dashed boxes and IE as well as the estimated sizes marked in
the figure that the two comparison algorithms still have the same problems as they do in CM, while the
proposed algorithm can achieve ideal imaging results at different SNRs. Table 4 also demonstrates
that MJAAS has better estimation accuracy than TAS. Therefore, IMCM-PGA-MJAAS outperforms
IMCM-PGA and IMCM-PGA-TAS, achieving better experimental results in different modes of motion
errors at different SNRs. These experimental results are testament to the effectiveness and robustness
of the proposed algorithm.

(a)

(c) (d)

(b)

Figure 4. HRRPs and phase errors. CM: (a) HRRPs. (b) Phase errors. NCM: (c) HRRPs. (d) Phase errors.
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Table 3. The estimated results of ωe corresponding to CM (rad/s).

Real Value 10 dB 5 dB 0 dB

TAS 0.04 0.0462 0.0320 0.0318
MJAAS 0.04 0.04 0.0399 0.0397

Table 4. The estimated results of ωe corresponding to NCM (rad/s).

Real Value 10 dB 5 dB 0 dB

TAS 0.04 0.0325 0.0481 0.0524
MJAAS 0.04 0.04 0.0401 0.0395

(a) (c)(b)

5dB

0dB

10dB

IE=8.9257

IE=8.7897IE=9.5694

IE=10.4129IE=10.4439

IE=8.8542

IE=9.5110

IE=7.9734

IE=9.9475

34.96 × 35.4044.11 × 35.40

34.79 × 35.4043.83 × 35.40

34.66 × 35.4030.59 × 35.40

Figure 5. The imaging results of different algorithms at different SNRs corresponding to CM.
(a) IMCM-PGA. (b) IMCM-PGA-TAS. (c) IMCM-PGA-MJAAS.

The MJAAS proposed in this paper is applicable to not only the motion compensation algorithm
(IMCM+PGA) adopted in this paper, but also other motion compensation algorithms, including the
joint translational motion compensation algorithm (JTMC) in [20] and the range alignment and phase
autofocus algorithms based on the minimum entropy (MEA) in [12,18]. Combined with TAS and
MJAAS, three kinds of ISAR imaging frameworks are set up, namely JTMC-MJAAS, MEA-TAS and
MEA-MJAAS. The three frameworks are adopted to produce ISAR images in CM and NCM when
SNR = 20 dB, with the experimental results shown in Figure 7. It can be seen that since MEA-TAS
neglects the deviation of ERC, the imaging results are defocused, and the scaling results are seriously
distorted. JTMC-MJAAS can obtain ideal imaging results in CM, but not in NCM, because JTMC is
not suitable for NCM. MEA-MJAAS can achieve satisfactory experimental results in both CM and
NCM. With the same hardware utilized in the experiment, it takes 355 s and 11 s for MEA-MJAAS
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and IMCM-PGA-MJAAS to produce an image, respectively. This is because MEA-MJAAS needs to
search and compensate the phase error of each echo, respectively; hence, there is a large amount of
computation. In conclusion, the above experiments are testimony to the fitness of MJAAS proposed in
this paper for different motion compensation algorithms. Moreover, the ISAR imaging framework
adopted in this paper, IMCM-PGA-MJAAS, proves suitable for different modes of motion errors, thus,
it has the advantages of strong practicality, high efficiency and high precision.

(a) (b) (c)

10dB

5dB

0dB

IE=10.1456

IE=9.1854

IE=8.5139

IE=10.4206

IE=9.5864

IE=9.1061

IE=10.5617

IE=9.6352

IE=9.1500

43.17 × 35.40

29.41 × 35.40

35.14 × 35.4027.07 × 35.40

34.61 × 35.40

34.70 × 35.40

Figure 6. The imaging results of different algorithms at different SNRs corresponding to NCM.
(a) IMCM-PGA. (b) IMCM-PGA-TAS. (c) IMCM-PGA-MJAAS.

 

JTMC-MJAAS MEA-TAS MEA-MJAAS

(a
)

(b
)

Figure 7. The imaging results of different algorithms corresponding to CM and NCM. (a) CM. (b) NCM.
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In order to quantitatively demonstrate the superiority of the proposed algorithm, the estimated
correct rate (ECR) of ERV is defined as in Equation (18):

ECR =
(
1−
|ωe − ω̂e|

|ωe|

)
× 100% (18)

where ωe denotes the theoretical value of ERV and ω̂e the estimated value of ERV. With other conditions
unchanged, SNRs range from −5 dB to 15 dB in step of 2 dB. The Monte-Carlo experiment is
implemented 20 times at each SNR, and the resulted average values of ECR and IE in 20 experiments
are calculated and plotted in Figure 8. Figure 8a reveals the average values of ECR obtained by
IMCM-PGA-TAS and IMCM-PGA-MJAAS in CM, and Figure 8b shows the average values of IE
obtained by IMCM-PGA, IMCM-PGA-TAS and IMCM-PGA-MJAAS. Figure 8c,d are the results
achieved in NCM. From Figure 8, the proposed algorithm can obtain higher ECRs and lower IE at
different SNRs than the comparison algorithms no matter in CM or NCM. Therefore, the superiority of
the proposed algorithm is quantitatively corroborated.

(c) (d)

(a) (b)

Figure 8. The relationship curves between ECR and SNR and the relationship curves between IE and
SNR corresponding to CM and NCM. CM: (a) ECR; (b) IE. NCM: (c) ECR; (d) IE.

4.2. Real Data Experiments

Firstly, the comparison of performance between different algorithms is conducted based on the real
data of the Yak-42 airplane. The main parameters of the radar system are as follows: carrier frequency
is 5.52 GHz, bandwidth 400 MHz and PRF 50 Hz; the sampling point number of range and azimuth
are 256 and 256, respectively. Moreover, the Yak-42 airplane is 36.38 m in length and 34.88 m in width.
Figure 9a is the optical image of the Yak-42 airplane. Figure 9b,c are the envelope waveform of the
echo signal and the 2-D image obtained by IMCM-PGA-MJAAS when SNR = 20 dB. According to
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Figure 9b, the mode of motion errors corresponding to the real data of the Yak-42 airplane is NCM.
From Figure 9c, the ERV is estimated at 0.0085 rad/s. Based on this value, after azimuth scaling,
the length and width of the target calculated by points 1, 2, 3 and 4 marked in the figure are 36.73 m and
33.74 m, respectively, which are close to the real values. Therefore, 0.0085 rad/s is considered as the
reference value of ERV in the following experiments. As is the case with Figure 6, the imaging results
of IMCM-PGA, IMCM-PGA-TAS and IMCM-PGA-MJAAS when SNR = 10 dB, 5 dB and 0 dB are
shown in Figure 10. The ERVs estimated by IMCM-PGA-TAS and IMCM-PGA-MJAAS are presented
in Table 5.

(a) (c)(b)

1
4

2

3
36.73 × 33.74

IE=6.0739

Figure 9. Real data of Yak-42 airplane. (a) Optical image. (b) HRRPs. (c) The ISAR image obtained by
the proposed framework.

(a) (b) (c)

0dB

5dB

10dB

IE=6.8303

IE=7.5512

IE=8.8924

IE=6.7180

IE=8.8697

IE=7.5478 IE=7.4836

IE=6.6328

IE=8.8977

37.33 × 33.73

36.56 × 33.59

36.94 × 33.66

27.93 × 32.00

52.55 × 36.82

29.67 × 30.74

Figure 10. The imaging results of different algorithms at different SNRs. (a) IMCM-PGA.
(b) IMCM-PGA-TAS. (c) IMCM-PGA-MJAAS.
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Table 5. The estimated results of ωe (rad/s).

Real Value 10 dB 5 dB 0 dB

TAS 0.0085 0.0058 0.0119 0.0118
MJAAS 0.0085 0.0085 0.0086 0.0084

In Figure 10, since IMCM-PGA does not compensate for the range spatial-variant phase errors
of the target, the imaging results are defocused and the corresponding IE is high. Compared with
Figure 9c, IMCM-PGA-TAS neglects the deviation of ERC, so there is a large error in the scaling
results, which fail to reflect the real size of the target. IMCM-PGA-MJAAS obtains well-focused
and accurately scaled ISAR images with lowest IE at different SNRs, laying a good foundation for
subsequent feature extraction and target recognition. Moreover, Table 5 suggests that the ERV estimated
by IMCM-PGA-MJAAS approximates to the real value, while that estimated by IMCM-PGA-TAS is far
removed from the real value. In order to quantitatively demonstrate the superiority of the proposed
algorithm, we adopt the method used in Figure 8c,d to calculate the average values of ECR and IE with
the results shown in Figure 11. With no consideration for the deviation of ERC, serious errors arise
in the ERV estimated by IMCM-PGA-TAS. By contrast, the ECR of the proposed algorithm remains
more than 90% at different SNRs. Moreover, the proposed algorithm acquires lower IE than the
two comparison algorithms at different SNRs. Therefore, these experiments quantitatively illustrate
the superiority of the proposed algorithm.

(a) (b)

Figure 11. The relationship curve between ECR and SNR and the relationship curve between IE and
SNR. (a) ECR. (b) IE.

Finally, we use a set of real data for a ship to further analyze the algorithm’s performance. The main
parameters of the radar system are as follows: carrier frequency is 5.57 GHz, bandwidth 580 MHz
and PRF 100.8 Hz; the sampling point number of range and azimuth are 448 and 256, respectively.
Figure 12a is the optical image of the ship. Figure 12b,c are the envelope waveform of the echo signal
and the 2-D image obtained by IMCM-PGA-MJAAS when SNR = 20 dB. According to Figure 12b,
the mode of motion errors corresponding to the real data of the ship is CM. In Figure 12c, the estimated
ERV of the ship is 0.0339 rad/s, which is used as the reference value. As is the case with Figure 5,
the imaging results of IMCM-PGA, IMCM-PGA-TAS and IMCM-PGA-MJAAS when SNR = 10 dB, 5 dB
and 0 dB are shown in Figure 13. The ERVs estimated by IMCM-PGA-TAS and IMCM-PGA-MJAAS are
presented in Table 6. According to the dashed boxes and IE marked in Figure 13 and Table 6, the images
obtained by IMCM-PGA are blurred, while the scaling results by IMCM-PGA-TAS contain serious
errors. Under the same conditions, the proposed algorithm produces high-quality ISAR images, and the
estimated values of ERV are basically consistent with the real value at different SNRs. These verify the
effectiveness of the proposed algorithm. As can be seen in Figure 14, the proposed algorithm achieves



Sensors 2020, 20, 5047 18 of 21

more accurate ECRs and lower IE at different SNRs. Therefore, the above experiments quantitatively
corroborate the superiority of the proposed algorithm.

(a) (b) (c)

47.90 × 33.00

IE=6.5152

Figure 12. Real data of a ship. (a) Optical image. (b) HRRPs. (c) The ISAR image obtained by the
proposed framework.

Table 6. The estimated results of ωe (rad/s).

Real Value 10 dB 5 dB 0 dB

TAS 0.0339 0.0263 0.0287 0.0364
MJAAS 0.0339 0.0339 0.0339 0.0337

(a) (b) (c)

5dB

0dB

10dB

IE=6.9674

IE=9.2203

IE=6.9335 IE=6.9175

IE=9.2514

IE=7.8404IE=7.8416

IE=9.2492

IE=7.7989

53.81 × 34.70

46.63 × 32.65

51.52 × 34.03 47.91 × 33.01

47.91 × 33.01

48.03 × 33.04

Figure 13. The imaging results of different algorithms at different SNRs. (a) IMCM-PGA.
(b) IMCM-PGA-TAS. (c) IMCM-PGA-MJAAS.
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(a) (b)

Figure 14. The relationship curve between ECR and SNR and the relationship curve between IE and
SNR. (a) ECR. (b) IE.

5. Conclusions

This paper proposes a novel modified joint range spatial-variant autofocus and azimuth scaling
algorithm (MJAAS). The motion compensation algorithm causes the deviation of ERC, which affects
the estimation accuracy of ERV. This in turn results in the distortion of ISAR image azimuth scaling.
To address this problem, the MJAAS algorithm is proposed to realize the joint estimations of ERCP and
ERV by solving a minimum image entropy optimization problem via the DFP algorithm. Based on the
estimation results, high-precision azimuth scaling and range spatial-variant autofocus can be achieved
simultaneously so that high-resolution ISAR images with good focusing and accurate scaling can be
obtained. Combined with IMCM and PGA, a complete ISAR imaging framework (IMCM-PGA-MJAAS)
is established in this paper. It is not restricted by the modes of motion errors of the target and has low
computational complexity, thereby having the advantages of strong practicality, high efficiency and
high precision. A large amount of simulated and real data experiments can verify the superiority of
the proposed algorithm. More efforts will be devoted to improving the performance of the proposed
algorithm in the case of strong maneuvering targets with complex motions. Moreover, according to
reference [30], artificial intelligence (AI) is expected to be integrated into our future work to improve
the performance of the proposed algorithm, so as to achieve the ISAR imaging and azimuth scaling of
high precision, strong robustness and low computational complexity.
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Appendix A

In Equation (16), the one-order partial derivative of β̂ is derived as (A1):

∂IE
∂β̂

= −
1

Eg

N/2−1∑
n=−N/2

M/2−1∑
k=−M/2

[
(1 + lnµ) ·

∂µ

∂β̂

]
(A1)
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where µ =
∣∣∣∣g(n; k; Ψ̂

)∣∣∣∣2 = g
(
n; k; Ψ̂

)
· g∗

(
n; k; Ψ̂

)
. Then, we have Equation (A2):

∂µ

∂β̂
= g∗

(
n; k; Ψ̂

)
·
∂g(n;k;Ψ̂)

∂β̂
+ g

(
n; k; Ψ̂

)
·
∂g∗(n;k;Ψ̂)

∂β̂

= 2Re
[
g∗

(
n; k; Ψ̂

)
·
∂g(n;k;Ψ̂)

∂β̂

] (A2)

According to Equation (13), we have Equation (A3):

∂g
(
n; k; Ψ̂

)
∂β̂

=
1
M

M/2−1∑
m=−M/2


exp

(
− j 2π

M mk
)
· S̃(n; m)

· exp
{
− j 4π

λ ·
[(

ln − β̂
)
· Ω̂ · (m · ∆tm)

2
]}
·

[
j 4π
λ · Ω̂ · (m · ∆tm)

2
]

 (A3)

as is the case with the derivation of β̂, we obtain the partial derivative of Ω̂, whose expression is
expressed as Equation (A4):

∂g(n;k;Ψ̂)
∂Ω̂

= 1
M

M/2−1∑
m=−M/2


exp

(
− j 2π

M mk
)
· S̃(n; m)

· exp
{
− j 4π

λ ·
[(

ln − β̂
)
· Ω̂ · (m · ∆tm)

2
]}
·

{
− j 4π

λ ·
[(

ln − β̂
)
· (m · ∆tm)

2
]}

 (A4)

Appendix B

The updated formula of H is shown in Equation (A5):

H[u+1] =


H[u] i f

[(
h[u]

)T
· x[u] ≤ 0

]
H[u]
−

H[u]
·x[u] ·(x[u])

T
·H[u]

(x[u])
T
·H[u]

·x[u]
+

h[u]
·

(
h[u]

)T(
h[u]

)T
·x[u]

i f
[(

h[u]
)T
· x[u] > 0

] (A5)

where u is η the iteration number, 0 ≤ u ≤ U − 1, and U is the total iteration number; x[u+1] =

Ψ̂
[u+1]

− Ψ̂
[u], h[u+1] = ∇IE

[
Ψ̂
[u+1]

]
− ∇IE

[
Ψ̂
[u]

]
. In particular, the initial value of the approximate

matrix is set as H[0] = I2×2, where I2×2 is the unit matrix.
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