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Abstract: Alternaria spp. occur as plant pathogens worldwide under field and storage conditions.
They lead to food spoilage and also produce several classes of secondary metabolites that contaminate
the food production chain. From a food safety perspective, the major challenge of assessing the
risk of Alternaria contamination is the lack of a clear consensus on their species-level taxonomy.
Furthermore, there are currently no reliable DNA sequencing methods to allow for differentiation of
the toxigenic potential of these fungi. Our objective was to determine which species of Alternaria
exist in Canada, and to describe the compounds they make. To address these issues, we performed
metabolomic profiling using liquid chromatography high-resolution mass spectrometry (LC-HRMS)
on 128 Canadian strains of Alternaria to determine their chemotaxonomy. The Alternaria strains were
analyzed using principal component analysis (PCA) and unbiased k-means clustering to identify
metabolites with significant differences (p < 0.001) between groups. Four populations or ‘chemotypes’
were identified within the strains studied, and several known secondary metabolites of Alternaria were
identified as distinguishing metabolites, including tenuazonic acid, phomapyrones, and altenuene.
Though species-level identifications could not be concluded for all groups through metabolomics
alone, A. infectoria was able to be identified as a distinct population.

Keywords: Alternaria; high-resolution mass spectrometry; metabolomics; chemotaxonomy

1. Introduction

Alternaria is a cosmopolitan phytopathogenic fungal genus responsible for the spoilage of
numerous agriculturally relevant crops of economic importance to Canada, including wheat, canola
and tomatoes [1–4]. Non-host-specific secondary metabolites from Alternaria such as alternariol (AOH),
alternariol monomethyl ether (AME), tenuazonic acid (TeA) and tentoxin (TTX) are commonly detected
in processed wheat- and fruit-based commodities, including infant foods [5]. The European Union has
evaluated these toxins for regulation because of their moderate cytotoxicity in vitro [5–15]. Owing to
their structural similarities to the sphinganine analogue mycotoxin fumonisin, there is similar concern
over the presence of AAL-toxins in tomatoes and processed tomato-based commodities [16–18].

After recent redefinitions based on whole-genome sequencing data, the genus Alternaria was
divided into 27 taxonomic sections, some of which (such as Embellisia, Nimbya and Ulocladium) had
previously been considered as distinct genera [19–22]. Species concepts, especially those for the most
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frequently cited species, A. alternata and A. tenuissima, were also critically re-evaluated; many species,
formae speciales or pathotypes previously considered distinct because of pathogenicity to specific hosts,
or morphological differences such as the length of the apical cell of the conidium, were all combined into
A. alternata based on Geneological Concordance Phylogenetic Species Recognition (GCPSR) criteria [19].
It is important to note that even when the species of an Alternaria strain can be identified, the prevalence
of ‘conditionally-dispensable chromosomes’ (CDC) that control the production of host-specific toxins
can result in distinct ‘pathotypes’ within the same species [23]. These CDCs can disappear, or be picked
up by strains through horizontal gene transfer [23–27]. Uncertainty regarding the genetic classification
of Alternaria coupled with the presence of CDCs has made phylogenetic analysis and morphological
characterization insufficiently reliable to predict their risk to crops or toxigenic potential [2,28,29].

As defined by Frisvad, chemotaxonomy refers to “the classification and identification of filamentous
fungi based on profiles of secondary metabolites” [30]. Chemotaxonomy is an especially powerful tool to
understand the fungal ecology and toxigenic potential of species with CDCs, or whose properties
are not fully predicted by genetic markers. Advances in metabolomics, driven by innovations in
high-resolution mass spectrometry (HRMS), metabolite databases and data analysis have been beneficial
for the secondary metabolite screening of filamentous fungi. Fungal culture extracts can be readily
screened for hundreds of known fungal metabolites by liquid chromatography (LC)-HRMS. In a
polyphasic approach with morphological and molecular information, chemical data have previously
been used to differentiate among Alternaria for both large-spored, and the less morphologically distinct
small-spored species, and were critical for the delineation of the species A. infectoria, which is common
in wheat, and is also an opportunistic pathogen of immunocompromised humans [2,28,29,31–36].
Untargeted LC-HRMS analysis is essential for the characterization of chemotaxonomic groups and
profiling, as targeted methods may overlook unknown but related metabolites or modified secondary
metabolites that are potentially important chemotaxonomically.

The need exists for a better understanding of which species of Alternaria occur in Canada and,
equally important, is the need to determine the secondary metabolites they produce. The last major
survey of Canadian Alternaria was published nearly 75 years ago [37]. Due to the presence of CDCs and
the uncertainty surrounding Alternaria classification, there is an enormous difficulty in estimating the
toxigenic potential of strains and the risk to Canadian consumers. We have taken a chemotaxonomic
approach to investigate 128 Canadian strains isolated from wheat, apples, blueberries, tomatoes and
various perennial shrubs.

2. Results

2.1. Principal Component Analysis (PCA) of Secondary Metabolites from Canadian Species of Alternaria

Secondary metabolite data from the 128 strains of Alternaria analyzed by LC-HRMS in both negative
and positive ionization mode were processed by PCA. Generated peak lists have been included in
Supplementary A and B, and uploaded online to Metabolomics Workbench (see Supplementary).
To avoid biased group assignment of the PCA plots, samples were statistically assigned into groups
based on a k-means clustering algorithm (Figure 1A). The metabolomic analysis determined that there
were four groups in negative ionization mode based on the clustering algorithm analysis and the sum
of squares. Dimensions 1 and 2 represented 32.64% and 9.64% of the data variability, respectively.
Clustering data were easily visualized in negative ionization mode, but it was more difficult to ascertain
differences between groups 1, 2 and 4 in positive mode due to the lack of separation along the first
(24.00% of the variability) and second (8.37%) dimensions. Although group 1 remained distinct between
both ionization modes in the k-means clustering analysis, isolates belonging to groups 2, 3 and 4,
as defined by the negative mode k-means analysis, became intermixed and indistinguishable in positive
mode k-means analysis (Figure 1A). Thus, the groups generated by the k-means clustering algorithm in
negative mode were assigned to the positive mode data to avoid unbiased visual group assignment.
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Figure 1. Principal component analysis (PCA) in both negative and positive ionization modes, where
each point represents a single strain. (A) Strains in the PCA are coloured by k-means clustering group
assignments from negative ionization mode. (B) PCA coloured by the substrate where strain was
isolated. (C) Loadings plots indicating the positions of the main metabolites detected that influence the
PCA separations.

Because of the potential of Alternaria species to produce host-specific toxins, we investigated
whether the populations observed were related to the substrate from which they were isolated.
Individual isolates are coloured by the substrate they were collected from in the PCA plots (Figure 1B)
and a host distribution is shown in Figure 2. Group 3 primarily consisted of isolates from grain (80%)
however, more host diversity was observed in Groups 1, 2 and 4 (Figure 2). The specific metabolites
from each of the assigned populations were further investigated, and are reported in Table 1. All isolates
were screened for the production of AAL-toxins, but none were detected.
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Figure 2. Substrate distribution within groups assigned by k-means clustering.

Table 1. Known Alternaria metabolites detected in 128 Canadian strains of Alternaria separated by their
population, and percentage of isolates producing them.

Metabolite Abbr. RT (min)
Populations of Canadian Strains (% of Strains)

Group 1
(n = 57)

Group 2
(n = 16)

Group 3
(n = 25)

Group 4
(n = 30)

infectopyrone IPy 3.03 - - 100 -
phomapyrone A PPyA 3.73 - - 100 -
phomapyrone B PPyB 2.83 - - 85 -
phomapyrone D PPyD 3.04 - - 100 -

phomapyrone E/G PPyE/G 2.99 - - 100 -
phomapyrone F PPyF 3.01 - - 50 -
tenuazonic acid TeA 3.05 100 - - 100

iso-tenuazonic acid derivative IsoTeA 2.81 100 - - 100
alternariol * AOH 3.1 100 94 - 91

alternariol monomethyl ether * AME 3.53 100 100 - 94
altenusin * ALU 2.97 100 71 - 55

desmethylaltenusin * DMA 2.75 23 18 - -
dehydroaltenusin * DHA 3.26 72 41 - 9
alternarienoic acid * AlA 2.71 100 71 - 30

altenuene ALT 2.87 70 53 - -
altechromone A ALCA 2.82 79 53 - 30
altechromone B ALCB 2.72 98 82 - 12

altertoxin I * ALTX-I 2.53 33 59 - 36
altertoxin II * ALTX-II 2.93 16 35 - 30
altertoxin III * ALTX-III 3.27 26 18 - 9

tentoxin TTX 3.11 30 29 - 21
dihydrotentoxin D-TTX 3.13 33 24 - 15

altersetin * ALS 4.37 68 53 - 67
pyrenochaetic acid A PyrA 2.63 93 71 - 21

* Analysis from negative ionization mode data.

2.2. Statistical and Metabolomic Analysis of Detected Canadian Alternaria Populations

The loading plots (Figure 1C) show the individual metabolites responsible for the strain coordinates
within the PCA plots, and have values ranging from −1 to +1 along both dimensions. Metabolite
features that are shared by multiple chemotype groups account for less variance and weight in the
PCA, have negligible (near 0) loadings, and appear close to the origin. Conversely, metabolites with
the strongest influence or effects on the components in the dataset have larger values, close to either +1
or −1. Larger loading values show the metabolite directionality in the PCA plot, corresponding to
the potential presence or absence of that metabolite within a particular group. Metabolites with the
strongest influence were further investigated for their statistical differences between each group using
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the Kruskal-Wallis test. Calculated p values were corrected based on post-hoc Benjamini–Hochberg
(BH) false discovery rate (FDR) correction.

The metabolites responsible for the majority of the variance in the PCA included the phomapyrones
(p < 0.001, FDR corrected, see Supplementary A and B) and infectopyrone (IPy, p = 2.03 × 10−12),
the amino acid derived tenuazonic acid (TeA, p = 4.80 × 10−17) and its valine-substituted iso-tenuazonic
acid, (IsoTeA, p = 1.61 × 10−16), and several secondary metabolites known to be produced by Alternaria.
Metabolites that are directly opposite to each other along the diagonal of the loadings plot are negatively
correlated. For instance, the infectopyrones and phomapyrones were observed to be strongly correlated
to each other, but were negatively correlated to the other dibenzopyrones, such as alternariol (AOH,
p = 1.95 × 10−16), and alternariol monomethyl ether (AME, p = 5.69 × 10−17).

Table 1 shows the known secondary metabolites produced by Alternaria, and which
chemotaxonomic groups they were detected in. Though the list is not exhaustive, it represents the
breadth of known and well characterized secondary metabolites, either through analytical standards,
or from published LC-MS/MS transitions. Both known and unknown significant (p < 0.001) metabolites
have been included in Supplementary A and B, and through Metabolomics Workbench, (included
in Supplementary). Most of the dibenzopyrones and commonly detected secondary metabolites of
Alternaria are capable of ionizing in both positive and negative ionization modes, but the majority
of phomapyrones, which are commonly associated with A. infectoria, ionized best in the positive
ionization mode (see Supplementary). Ionization in positive mode was only able to distinguish group
3 from the other groups, as it did not share metabolites (Table 1). The PCA separation across both
dimensions was best observed in the negative ionization mode. In addition to the better ionization of
dibenzopyrones, the variability across the first dimension was predominantly due to the presence or
absence of tenuazonic acid (TeA) (Figure 1C). Groups 2 and 3, which cluster in negative dimension 1,
do not produce TeA. Both of these groups are also differentiated from each other across the second
dimension due to the differentiating metabolites produced solely by the isolates in group 3, such as
infectopyrone (IPy). Though group 2 does not produce TeA, it does share other common metabolites
with groups 1 and 4, including alternariol (AOH) and alternariol monomethyl ether (AME) (Table 1).
Variation in the second dimension of the PCA plots (Figure 1A), especially between groups 1 and 4,
was largely influenced by abundances in the detected peak areas. Both groups 1 and 4 include many
of the same metabolites, but group 1 tended to have higher abundances of those shared metabolites,
(Supplementary A and B). The major difference between groups 1 and 4 was that group 4 did not
produce altenuene or desmethylaltenusin.

Of the 4170 metabolite features detected in the positive ionization mode data, there were 1593
significant metabolites (p < 0.001) after applying the Kruskal–Wallis test using the assigned groups
from the k-means clustering (Supplementary A). Similarly, there were 2198 metabolite features detected
in negative ionization mode, and 1060 were significant (p < 0.001) (Supplementary B).

3. Discussion

There was little correlation between the chemotype group and the substrate of origin; a wide
substrate diversity was observed within PCA groups 1, 2 and 4. Population 3 had the most unique
metabolite profile. It did not produce the dibenzopyrones AOH and AME, nor tenuazonic acid. It was
however, the only population that produced infectopyrone and phomapyrones. This population was
isolated predominately from cereal (Figure 2) as well as some perennial and rapeseed. Based on the
substrate of isolation and the production of infectopyrones, this population is likely comprised of
the A. infectoria species group [31]. It is unsurprising that A. infectoria was distinguished through
metabolomics methods, as it was previously reported to be a very distinct section (section Infectoriae)
within Alternaria [36,38].

The remaining population groups, 1, 2 and 4, all produced varying amounts of dibenzopyrones;
however, the major differentiating feature was the presence or absence of TeA, (Supplementary A and
B). TeA was produced by groups 1 and 4, but absent in group 2. TeA production has been previously
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linked to a non-ribosomal peptide synthetase and polyketide synthase (PKS) hybrid enzyme, of which
the ketosynthase tenuazonic acid synthetase (TAS1 KS) domain was reported to be imperative for the
production of TeA [39]. Similarly, the production of alternariol (AOH) has been correlated with the
expression levels from the polyketide synthase gene, pksJ [40].

As PCA is particularly sensitive to the relative abundances of metabolites, it was challenging
to discern many differences between groups 1, 2 and 4. Andersen (2015) previously reported that
production of metabolites was inconsistent between isolates, even for the common dibenzopyrones AOH
and AME, making differentiation by metabolomics alone much more difficult [2]. It is unclear whether
the observed separation of the 128 Alternaria isolates is a consequence of species-level differences,
PKS mutations, gene expression levels, or if dispensable chromosomes coding for host-specific toxins
were present. There are also extenuating environmental conditions, because there are apparently
marked differences between Canadian strains, and other strains of A. infectoria isolated from around
the world; Canadian strains did not produce the novae-zelandins, as reported previously for this
species [2,29,31]. The apparent lack of substrate specificity within the groups suggests that the
chemotypes identified herein could be detected on numerous commercial commodities. The substantial
population of A. infectoria present on wheat and cereal crops indicates that its secondary metabolites
may need to be monitored alongside the other food-relevant Alternaria secondary metabolites in
produce and processed commodities. While the European Food Safety Authority is considering
regulating several Alternaria secondary metabolites, including TeA and TTX, there are currently no
regulatory limits.

4. Materials and Methods

4.1. Fungal Material and Identification

The 128 strains of Alternaria spp. studied in this work were obtained from the Canadian Collection
of Fungal Cultures (CCFC) in Ottawa, Ontario, the Canadian Grain Commission (CGC) in Winnipeg,
Manitoba or isolated from local sources. The majority of the strains were isolated from food-relevant
crops, including grain, apples, tomatoes and grapes, although several strains were isolated from
various perennial shrubs, (Table S1, Supplementary C). Individual isolated strains not obtained from
CCFC or CGC were identified to the genus level based on morphology. To identify the species, partial
DNA sequences for either RNA polymerase II second largest subunit (RPB2) or complete sequences
of rDNA internal transcribed spacers (ITS) were determined for 108 of the strains using the primers,
amplification and sequencing parameters of Woudenberg et al. [19]. The data were examined by J.
Woudenberg of the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands in comparison
with her reference data (Supplementary C).

4.2. Agar Plug Extraction

Potato dextrose agar (PDA) was selected for metabolomic analysis due to the large diversity of
metabolites produced in comparison to the other culture media tested (data not shown). Strains were
transferred as 3-point inoculations onto PDA plates (Sigma Aldrich, St. Louis, MO, USA). Cultures
were incubated at 25 ◦C in darkness for seven days, during which the majority of the strains reached
approximately 4 cm in diameter. Following incubation, six agar plugs were removed from each 3-point
inoculum using a 6 mm cork borer, followed by extraction by ethyl acetate containing 1% formic acid
(Sigma Aldrich, St. Louis, MO, USA). Prior to LC-MS screening, extracts were dried under nitrogen
before reconstitution in acetonitrile, and filtration with 0.45 µm PTFE syringe filters (ChromeSpec) into
vials [35,41].

4.3. LC-HRMS Analysis

High-resolution mass spectrometry (HRMS) data were obtained using a Thermo Q-Exactive
Quadrupole Orbitrap Mass Spectrometer coupled to an Agilent 1290 HPLC. Chromatography and mass
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spectrometry conditions for both polar and nonpolar compounds were previously optimized [16,42].
For chromatographic separation, a Zorbax Eclipse Plus RRHD C18 column (2.1 × 50 mm, 1.8 µm;
Agilent) was maintained at 35 ◦C using mobile phases comprised of water with 0.1% formic acid (A),
and acetonitrile with 0.1% formic acid (B) (Optima grade, Fisher Scientific, Lawn, NJ, USA). Mobile
phase B was held at 0% for 30 s, and increased to 100% over three and a half minutes. B was held at
100% for 1 and a half minutes, before returning to 0% B in 30 s. Injections were made at a volume of
2 µL and a flow rate of 0.3 mL/min was used. The following conditions were used for negative HESI
for full MS: capillary voltage, 3.7 kV; capillary temperature, 400 ◦C; sheath gas, 17.00 units; auxiliary
gas, 8.00 units; probe heater temperature, 450 ◦C; S-Lens RF level, 45.00; AGC target, 1e6; maximum
injection time (IT), 512 ms; scan range m/z 100–1200. Similar conditions were used for positive HESI,
but with a capillary voltage of 3.9 kV. HRMS data for both positive and negative full MS data were
acquired at a resolution of 140,000 and maximum IT of 500 ms. Lock masses of Di-n-butyl phthalate
(DBP) and sodiated formic acid (FA) dimer were monitored in positive and negative ionization modes
respectively to account for instrumental drift.

4.4. Principal Component Analysis (PCA) and k-Means Clustering Analysis

Raw HRMS data generated in both positive and negative mode were converted to mzml
files and centroided prior to XCMS processing in R (r-project.org) to generate peak lists (see
Supplementary) [43–45]. The applied XCMS conditions for the production of the peak lists are
listed in Supplementary C. Sample carry-over was corrected according to the maximum peak areas
detected in the blanks. Due to the minfrac XCMS settings, lower intensity metabolites not present
in at least 25% of the sample dataset were not counted as peaks. Thus, the presence or absence of
metabolites was confirmed through analysis of the raw data files. Any metabolites from the peak list
with peak areas equal to zero were replaced with 2/3 of the minimum peak area value of all metabolites
detected [46]. Following zero replacements, a log transformation of the peak areas was performed.
Pareto scaling was used to adjust for fold differences between metabolites during PCA generation
using MetabolAnalyze and FactoMineR packages. Unsupervised groups from the PCA were assigned
by k-means clustering analysis using scripts adapted for R [47]. From the logged peak lists of the
metabolite datasets, the appropriate k-means cluster was investigated for up to six groups using the
elbow method of the within sum of squares (WSS) plot. Variations identified by PCA and k-means
clustering analysis between samples were investigated through statistical analysis of metabolomic data.

4.5. Metabolomic Analysis

Each metabolite in the peak list was investigated for its significance using the Kruskal–Wallis
test with post-hoc Benjamini–Hochberg (BH) False Discovery Rate (FDR) correction with a threshold
value of p < 0.01 to account for multiple hypothesis testing. Metabolites with FDR corrected threshold
p values < 0.001 and log2 of the average peak area values > 1 were further investigated within each
group assignment. Significant metabolites were confirmed through comparison to authentic standards,
or to the published literature MS/MS data. All unknown metabolites were searched using SciFinder
and Antibase 2013. 44 of the 128 strains were subsequently re-cultured, re-extracted and re-analyzed,
as described above, to ensure that the metabolomic analyses were consistent.

5. Conclusions

Four main chemotaxonomic populations of Canadian Alternaria were identified, including
A. infectoria, which was largely present on cereals and rapeseed. Substrate had no apparent effect
on chemotaxonomy, though there were marked metabolite differences between Canadian Alternaria
strains and other reported strains from around the world. Distinguishing secondary metabolites
including IPy, the phomapyrones, ALT, DMA and TeA may assist in future organizations of the genus.
Identification of Alternaria species and linking them to secondary metabolite production remains a
great challenge. More work is needed from a mycology perspective with respect to their taxonomy.
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Metabolomic profiling provides another key component to help aid in identification of Alternaria, and
more importantly provides critical insight into the toxigenic potential of these strains, and the risk
to consumers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/238/s1.
Raw data and peak list files are available at the NIH Common Fund’s National Metabolomics Data Repository
(NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org where they have been
assigned Study ID ST001370. They can be accessed directly using Project DOI 10.21228/M8Q114. Supplementary
A: List of 1593 significant metabolites by their m/z (p < 0.001) as calculated by the Kruskal-Wallis test from the
positive ionization mode dataset; Supplementary B: List of 1060 significant metabolites by their m/z (p < 0.001) as
calculated by the Kruskal-Wallis test from the negative ionization mode dataset; Supplementary C: List of 128
Alternaria strains used in the metabolomic analysis, including RPB2 primer analysis & xcms conditions used in R.
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