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Abstract: With the wide use of carbapenems, carbapenem-resistant Enterobacterales have been increas-
ingly reported worldwide. In this study, one blaOXA-181-positive Pseudocitrobacter faecalis strain was
isolated from the blood culture of a patient with a bloodstream infection in China, which was its
first clinical report outside Pakistan. Species identification of P. faecalis was initially performed using
MALDI-TOF/MS and further confirmed by 16S rRNA gene and housekeeping gene sequencing. The
antimicrobial susceptibility testing was determined through the broth microdilution method, and
their clonal relationship was analyzed by pulsed-field gel electrophoresis. To study the transmission
and genetic structure of the blaOXA-181 gene, a transformation test and whole-genome sequencing
(WGS) were performed. The results of the antimicrobial susceptibility testing indicated this P. faecalis
was resistant to carbapenems, quinolones, and commonly used β-lactam/β-lactamase inhibitor
combinations. Through WGS and transformation experiments, blaOXA-181 and qnrS1 genes causing
antibiotic resistance were located on a 55,148-bp length IncX3 type plasmid with a truncated ColKp3
replicon gene. As a rare species of Enterobacterales, P. faecalis was clinically reported in China for the
first time, and the blaOXA-181 gene it carried was located on a globally disseminated IncX3 plasmid.
The spread of such bacteria and antibiotic resistance requires more clinical attention.
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1. Introduction

The emergence of multidrug-resistant Enterobacterales severely threatens public health,
and carbapenems have been regarded as its therapeutic choice due to their broad spectrum
of activity, stability of extended-spectrum β-lactamase, and proven safety [1–3]. However,
with rising clinical use, carbapenem-resistant Enterobacterales (CRE) have been increasingly
reported worldwide. With limited therapeutic regimens, the infections associated with
CRE could even lead to a high mortality rate of above 30% [4]. The detection rate of CRE
is undergoing rapid growth worldwide, and that in China has increased over 2.5 times
during the past fifteen years, and even reached 10.5% in 2021, based on data from the China
Antimicrobial Surveillance Network (CHINET) [5–7].

The primary resistance mechanism of CRE is carbapenemase production, mainly
including Ambler class A (KPC), Ambler class B (NDM, IMP, VIM), and Ambler class D
(OXA-48-like) [8]. Worldwide, KPC-type carbapenemase represented the majority, followed
by the NDM- and OXA-type [5]. In China, the proportion of OXA-48-like carbapenemase
is rising, especially in children, with OXA-232-type as the primary type (97.1%), while in
countries such as Angola, OXA-181-type was dominant [9,10]. Worryingly, such resistance
was no longer confined to common bacteria, such as Escherichia coli and Klebsiella pneumoniae,
but extensively occurred in other Enterobacterales clinical isolates [11].
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Pseudocitrobacter faecalis was a kind of Gram-negative facultatively anaerobic bacteria
discovered in 2010 [12]. It is a rare kind of Enterobacterales and has only been clinically
reported in Pakistan. Such clinical isolates showed carbapenem resistance due to the
production of NDM-1 carbapenemase. Herein, we report the first blaOXA-181-positive
Pseudocitrobacter faecalis from a patient with bloodstream infection (BSI) in China.

2. Results
2.1. Case Presentation

A 19-year-old man was diagnosed with acute myeloid leukemia (AML) type M2 and
was first admitted in August 2019. HAA regimen (homoharringtonine, cytarabine, and
aclarubicin) was employed as his chemotherapy, while post-chemotherapeutic bone marrow
suppression and severe pneumonia caused by bacterial and fungal infection appeared
subsequently. On 6 February 2020 (defined as day 1), the patient went through his fifth
chemotherapy and soon developed septic shock with positive blood cultures. Meanwhile,
lung computed tomography (CT) revealed new ground-glass patchy shadows in the multi-
lobar of bilateral lungs. Meropenem (1g q8h) and tigecycline (100g q12h) were used as the
empirical therapy based on his previous medical history. Further workup showed that
the strains isolated from blood on day 16 were carbapenem-resistant P. faecalis strain SC48
and Klebsiella pneumoniae strain KPN. Strain KPN was sensitive to major commonly used
antibiotics, including cephalosporins, carbapenem, quinolones, etc. Thus meropenem was
replaced by ceftazidime (3g q12h) and amikacin (1g QD) 3 days later.

However, the patient had a recurring fever, and progressing pneumonia was shown by
CT reexamination. On day 22, blood culture was positive again with an isolate (strain SC62)
similar to strain SC48, so the therapeutic regime was switched to aztreonam, ceftazidime-
avibactam, and fosfomycin combined with tigecycline. Mercifully, infection was thereafter
brought under control gradually evincing decreased inflammatory index, pulmonary foci
absorption, and negative blood culture. For economic concerns, tigecycline and ceftazidime
were given again on day 33, based on the clinical situation and the dosage was then
reduced by degrees. Antifungal drugs, voriconazole and amphotericin B, covered the
whole treatment process. The patient was finally discharged 41 days after admission. The
other clinical and microbiologic details are summarized in Figure 1.

Antibiotics 2022, 11, x FOR PEER REVIEW 2 of 8 
 

and Klebsiella pneumoniae, but extensively occurred in other Enterobacterales clinical isolates 
[11]. 

Pseudocitrobacter faecalis was a kind of Gram-negative facultatively anaerobic bacteria 

discovered in 2010 [12]. It is a rare kind of Enterobacterales and has only been clinically 
reported in Pakistan. Such clinical isolates showed carbapenem resistance due to the pro-

duction of NDM-1 carbapenemase. Herein, we report the first blaOXA-181-positive Pseudo-
citrobacter faecalis from a patient with bloodstream infection (BSI) in China. 

2. Results 

2.1. Case Presentation 

A 19-year-old man was diagnosed with acute myeloid leukemia (AML) type M2 and 

was first admitted in August 2019. HAA regimen (homoharringtonine, cytarabine, and 
aclarubicin) was employed as his chemotherapy, while post-chemotherapeutic bone mar-
row suppression and severe pneumonia caused by bacterial and fungal infection ap-

peared subsequently. On 6 February 2020 (defined as day 1), the patient went through his 
fifth chemotherapy and soon developed septic shock with positive blood cultures. Mean-

while, lung computed tomography (CT) revealed new ground-glass patchy shadows in 
the multi-lobar of bilateral lungs. Meropenem (1g q8h) and tigecycline (100g q12h) were 
used as the empirical therapy based on his previous medical history. Further workup 

showed that the strains isolated from blood on day 16 were carbapenem-resistant P. fae-
calis strain SC48 and Klebsiella pneumoniae strain KPN. Strain KPN was sensitive to major 

commonly used antibiotics, including cephalosporins, carbapenem, quinolones, etc. Thus 
meropenem was replaced by ceftazidime (3g q12h) and amikacin (1g QD) 3 days later. 

However, the patient had a recurring fever, and progressing pneumonia was shown 

by CT reexamination. On day 22, blood culture was positive again with an isolate (strain 
SC62) similar to strain SC48, so the therapeutic regime was switched to aztreonam, 

ceftazidime-avibactam, and fosfomycin combined with tigecycline. Mercifully, infection 
was thereafter brought under control gradually evincing decreased inflammatory index, 
pulmonary foci absorption, and negative blood culture. For economic concerns, tigecy-

cline and ceftazidime were given again on day 33, based on the clinical situation and the 
dosage was then reduced by degrees. Antifungal drugs, voriconazole and amphotericin 

B, covered the whole treatment process. The patient was finally discharged 41 days after 
admission. The other clinical and microbiologic details are summarized in Figure 1. 

 

Figure 1. Patient treatment course and microbiological characteristics of patients with bloodstream 
infection. * Pathogen SC48 and SC62 were Pseudocitrobacter faecalis clinical isolates. Pathogen KPN 
indicated a highly sensitive Klebsiella pneumoniae clinical isolate. The blocks from dark to light indi-
cated high, moderate, low-grade fever, and normal temperature. 

2.2. Characteristics of P. faecalis Strains 

Based on the PFGE fingerprint shown in Figure 2, P. faecalis SC48 and SC62 isolated 
from blood culture were identical in genomic pulsotype. Both isolates were high-level re-

sistant to carbapenems and quinolones (Table 1). 

Figure 1. Patient treatment course and microbiological characteristics of patients with bloodstream
infection. * Pathogen SC48 and SC62 were Pseudocitrobacter faecalis clinical isolates. Pathogen KPN
indicated a highly sensitive Klebsiella pneumoniae clinical isolate. The blocks from dark to light
indicated high, moderate, low-grade fever, and normal temperature.

2.2. Characteristics of P. faecalis Strains

Based on the PFGE fingerprint shown in Figure 2, P. faecalis SC48 and SC62 isolated
from blood culture were identical in genomic pulsotype. Both isolates were high-level
resistant to carbapenems and quinolones (Table 1).
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Table 1. Minimal inhibitory concentrations (MICs) of Pseudocitrobacter faecalis clinical isolate, transfor-
mant, and recipient.

Strains β-Lactamase
Genes

Fluoroquinolone-
Resistant Genes

MIC (mg/L) a

IMP MEM CAZ FEP ATM CZA SCF TZP SXT CIP LEV AMK TGC POL

P. faecalis SC48
blaDHA-1,
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P. faecalis SC62
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E. coli DH5α-
SC48-T blaOXA-181 qnrS1 1 0.25 0.5 0.125 ≤1 0.25 8 64 ≤0.25 0.25 0.5 ≤1 0.25 0.25

E. coli DH5α - - 0.125 ≤0.03 0.5 ≤0.06 ≤1 0.125 ≤1 4 ≤0.25 ≤0.06 ≤0.125 ≤1 0.125 0.25

a IPM, imipenem; MEM, meropenem; CAZ, ceftazidime; FEP, cefepime; ATM, aztreonam; CZA, ceftazidime-
avibactam; SCF, cefoperazone-sulbactam; TZP, piperacillin-tazobactam; SXT, trimethoprim-sulfamethoxazole;
CIP, ciprofloxacin; LEV, levofloxacin; AMK, amikacin; TGC, tigecycline; POL, polymyxin B.

The MICs of the carbapenems ranged from 32 mg/L to 64 mg/L, and that of
quinolones ≥ 8 mg/L. Both strains were also resistant to commonly used β-lactam com-
bination agents (cefoperazone-sulbactam and piperacillin-tazobactam) and were inter-
mediate to cefepime. Ceftazidime, aztreonam, ceftazidime-avibactam, trimethoprim-
sulfamethoxazole, amikacin, tigecycline, and polymyxin B maintained well in vitro ac-
tivity for them. The acquisition of blaOXA-181 carrying by plasmid altered the resistance of
transformant E. coli DH5α-SC48-T towards β-lactams, increasing the MICs of imipenem,
meropenem, cefoperazone-sulbactam, and piperacillin-tazobactam for no less than eight
times. Meanwhile, E. coli DH5α-SC48-T also acquired resistance to quinolones with an over
4-fold rise in the MICs of ciprofloxacin and levofloxacin (Table 1).

2.3. Genetic Analysis of Strains and blaOXA-181-Positive Plasmid

Through the WGS analysis, it was found that both P. faecalis isolates belonged to
the same clinical strain, which contained numerous resistance genes, mainly involving
blaDHA-1, blaOXA-1, blaOXA-181, aac(6’)-IIc, aac(6’)-Ib-cr, qnrS1, qnrB4, sul1, sul2, tet(A), ere(A),
mph(A), catB3, floR, and arr. Each strain bore two plasmids, one of them was a transmissible
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plasmid harboring blaOXA-181 and qnrS1 that led to carbapenem and quinolone resistance
(Figure 2). According to the transformation experiment, the blaOXA-181 gene was located
at a 55,148-bp length IncX3 type plasmid with truncated ColKp3 replicon gene and was
named pSC48-OXA-181 (Figure 3).
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circle 5, ring diagram of comparative plasmid pCP66-6-IncX3; circle 6, functional classified genes.

This plasmid was well-matched with another plasmid previously reported in the same
province (pCP66-6-IncX3, GenBank accession no. CP053726.1), showing 91% coverage with
perfect identity only with the difference of mobile elements. These mobile elements were
distributed nearby resistance gene blaOXA-181 and qnrS1 consisting of ISKox3, IS26, and
ISKpn19, leading to possible transposon-mediated spread. This plasmid also encoded type
IV secretion (T4S) systems mediating transportation, including VirB and VirD proteins.

3. Discussion

Pseudocitrobacter gen. nov. is a novel genus of the Enterobacterales first observed
in 2010 with Pseudocitrobacter faecalis sp. nov., Pseudocitrobacter anthropi sp. nov., and
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Pseudocitrobacter vendiensis sp. nov., among which P. anthropi was a later heterotypic
synonym of P. faecalis [12,13]. Unlike P. vendiensis, found only in Denmark and Brazil,
P. faecalis was sporadically reported in Asia, America, and Africa, mainly from Pak-
istan, India, China, and America, based on previous reports and data from the Gen-
Bank database (https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Pseudocitrobacter+
faecalis%22%5Bporgn%3A__txid1398493%5D, (accessed on 15 February 2022)) [12–17].
Though P. faecalis was only clinically reported in Pakistan, it could be found in the environ-
ment, animals, and plants, including foods such as egg, cucumber, and mango.

Herein, P. faecalis was first found in China and presumptively associated with blood-
stream infection. The prevalence of bloodstream infection increased from 2010 to 2019 in
China, among which bacteremia occupied a dominant position (93.1%) [18]. Clinicians at-
tached importance to patients suffering from bloodstream infection, given its high mortality,
especially those with high disease severity and inadequate immunologic defenses [19,20]. In
this case, neutropenia occurred after high-dose chemotherapy was performed for hematologic
malignancy, which significantly impacts the incidence of bloodstream infection in cancer
patients [21]. Furthermore, the patient was suggested to have a hospital-acquired bloodstream
infection combined with the course of the disease, which was consistent with previous studies
showing that the composition ratio of hospital-acquired bloodstream infections was increasing
annually and those related to Enterobacterales also dynamically increasing [18,22].

The appearance of a P. faecalis-related hospital-acquired bloodstream infection sug-
gested the possible emergence and prevalence of such rare bacteria, which gave cause
for increased vigilance. It has been proved that international travel can transfer resistant
bacteria and antimicrobial resistance genes worldwide [23]. These bacteria and resistance
genes are likely to invade travelers and further disseminate in the home country before they
are lost in the host [24]. Otherwise, P. faecalis has been reported in food and the environment,
indicating the possibility that such bacteria and resistance genes have entered the hospital
settings via environmental contamination and the food chain [25–27].

It is worth noting that all Pseudocitrobacter gen. strains mediating clinical infection are
associated with resistance genes encoding carbapenemases, including blaNDM-1, blaKPC-2,
and blaIMP-1 [12,13,17]. P. faecalis strains producing OXA-181 carbapenemase were isolated
in our study. OXA-48-like carbapenemases such as this are generally found in Enter-
obacterales worldwide, which even make up the most prevalent carbapenemase type in
countries such as the Netherlands (44%) [28]. In China, OXA-48-like carbapenemase-
producers accounted for 7.3% of CRE strains ranking behind KPC-2 and NDM [9]. Though
OXA-232-type carbapenemase holds an overall majority, OXA-181 type has successively
emerged in Enterobacterales since 2014 [29,30].

Globally, blaOXA-181 was mainly carried by highly conserved plasmids instead of
chromosomally localizing. Such plasmids featured the qnrS1 allele and ColKP3 and IncX3
replicons, which was consistent with our study [31–33]. Early research revealed that the
blaOXA-181 was inserted into the IncX3 plasmid through the IS3000-mediated co-integration
of the ColKP3-type plasmid [34]. This kind of plasmid was also characterized by Tn3 family
transposases and T4S systems mediating DNA transportation, different from those with
other blaOXA-48-like genes [32,35]. These resistance genes located on plasmids were often
colocalized with mobile genetic elements leading to the spread of resistance to carbapenem
antibiotics between distinct plasmids and bacteria, which increases the need for vigilance
in the clinic [24].

4. Materials and Methods
4.1. Clinical Isolates and Patient Data

A total of three clinical strains were isolated from blood samples of a patient in a
tertiary hospital. Among them, P. faecalis SC48 and P. faecalis SC62 were carbapenem-
resistant, while one K. pneumoniae was carbapenem-susceptible. Strain identification was
performed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS, bioMérieux, Marcy-l’Étoile, France), and further confirmed by PCR of

https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Pseudocitrobacter+faecalis%22%5Bporgn%3A__txid1398493%5D
https://www.ncbi.nlm.nih.gov/nuccore/?term=%22Pseudocitrobacter+faecalis%22%5Bporgn%3A__txid1398493%5D
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16S rRNA gene and housekeeping gene sequences [12]. Clinical features of the patient were
then systematically obtained through electronic medical records, mainly including age,
gender, disease diagnosis and prognosis, specimen origin and date, antibiotics usage, etc.

4.2. Antimicrobial Susceptibility Testing

According to the Clinical and Laboratory Standards Institute (CLSI), the minimal inhi-
bition concentration (MIC) was determined through the broth microdilution method [36].
Antimicrobial agents, including imipenem, meropenem, ceftazidime, cefepime, aztreonam,
ceftazidime-avibactam, cefoperazone-sulbactam, piperacillin-tazobactam, trimethoprim-
sulfamethoxazole, ciprofloxacin, levofloxacin, amikacin, tigecycline, and polymyxin B,
were tested and results were interpreted by breakpoints of 2021 CLSI, FDA (for tigecycline
only) and EUCAST (for polymyxin B only) [36]. E. coli ATCC 25,922 was used as quality
control for the antimicrobial susceptibility testing.

4.3. Plasmid Transformation Experiments

Plasmid DNAs were extracted from donor P. faecalis SC48 by phenol-chloroform
method and then electroporated into recipient E. coli DH5α. These transformants were
selected on Luria–Bertani agar plates containing ampicillin (50 mg/L) and subjected to PCR
for detection of the blaOXA-181 gene using primers OXA-F (5′-GCGTGGTTAAGGATGAA
CAC-3′) and OXA-R (5′-CATCAAGTTCAACCCAACCG-3′) [37]. All PCR positive prod-
ucts were sequenced and comparatively analyzed for homology using BLASTn algorithms
(http://blast.ncbi.nlm.nih.gov/Blast.cgi, (accessed on 15 February 2022)).

4.4. Pulsed-Field Gel Electrophoresis (PFGE)

With Salmonella braenderup H9812 as the reference marker, the clonality and plasmids
of strains were confirmed by PFGE and S1-PFGE [38]. Briefly, bacterial DNA of P. faecalis
was digested with the restriction endonuclease XbaI and that of the donor strain and
transformant with S1-nuclease (TaKaRa, Beijing, China). PFGE was carried out at 14 ◦C for
20 h using a CHEF Mapper system (Bio-Rad Laboratories, Hercules, CA, USA).

4.5. Whole-Genome Sequencing and Analysis

Total DNA of P. faecalis strain SC48, SC62, and transformant E. coli DH5α-SC48-T
was extracted and subjected to whole genome sequencing (WGS) via Illumina paired-end
sequencing (Illumina, San Diego, CA, USA), and then de novo assembled by SPAdes
3.12.0 [39]. Antimicrobial resistance genes were analyzed by ResFinder 4.1 (https://cge.
food.dtu.dk/services/ResFinder/, (accessed on 15 February 2022)) with a 90% threshold
for gene identification and a 60% minimum length coverage.

5. Conclusions

As a rare species of Enterobacterales, a P. faecalis-mediating fatal bloodstream infection
was found in China, the first to be clinically reported outside Pakistan since its discovery.
The blaOXA-181 gene carried by P. f aecalis was located on a globally disseminated IncX3 plas-
mid. The P. faecalis-related nosocomial infection indicated the potential worldwide spread
of such bacteria, which was considered to be rare. Population mobility and environmental
pollution might be the reason, so more clinical attention is required.
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