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Identification of osteoporosis 
using ensemble deep learning 
model with panoramic radiographs 
and clinical covariates
Shintaro Sukegawa1,2*, Ai Fujimura1, Akira Taguchi3, Norio Yamamoto4, Akira Kitamura5, 
Ryosuke Goto5, Keisuke Nakano2, Kiyofumi Takabatake2, Hotaka Kawai2, 
Hitoshi Nagatsuka2 & Yoshihiko Furuki1

Osteoporosis is becoming a global health issue due to increased life expectancy. However, it is difficult 
to detect in its early stages owing to a lack of discernible symptoms. Hence, screening for osteoporosis 
with widely used dental panoramic radiographs would be very cost-effective and useful. In this study, 
we investigate the use of deep learning to classify osteoporosis from dental panoramic radiographs. In 
addition, the effect of adding clinical covariate data to the radiographic images on the identification 
performance was assessed. For objective labeling, a dataset containing 778 images was collected from 
patients who underwent both skeletal-bone-mineral density measurement and dental panoramic 
radiography at a single general hospital between 2014 and 2020. Osteoporosis was assessed from 
the dental panoramic radiographs using convolutional neural network (CNN) models, including 
EfficientNet-b0, -b3, and -b7 and ResNet-18, -50, and -152. An ensemble model was also constructed 
with clinical covariates added to each CNN. The ensemble model exhibited improved performance on 
all metrics for all CNNs, especially accuracy and AUC. The results show that deep learning using CNN 
can accurately classify osteoporosis from dental panoramic radiographs. Furthermore, it was shown 
that the accuracy can be improved using an ensemble model with patient covariates.

Osteoporosis is defined by the loss of bone mass and the deterioration of the microarchitecture of bone tissue1. It 
is a common and potentially metabolic bone disease characterized by susceptibility to fracture. Fractures of the 
spine, hips, and wrists caused by osteoporosis significantly impair the quality of life of patients. In addition, in 
severe cases, it can lead to disorders that increase the risk of mortality2. With the rapid aging of the population 
caused by the increase in life expectancy in recent years, millions of people are affected annually worldwide, and 
osteoporosis is becoming a global public health problem. However, osteoporosis initially develops without any 
symptoms and can go undetected in its early stages3.

Dual-energy X-ray absorptiometry (DXA) is an effective means of identifying bone mineral density (BMD) 
and is the standard test for diagnosing osteoporosis4. Despite being standard inspection methods, DXA scans 
are relatively expensive5, which makes them unsuitable for general screening. Dental panoramic radiographs are 
frequently taken during regular dental examinations or before certain dental procedures. Therefore, it would be 
of great medical and economic value if dentists could use dental panoramic radiographs to screen patients for 
osteoporosis. This approach is also clinically useful in that dentists can refer patients with suspected osteoporosis 
to specialists. Several researchers have analyzed dental panoramic radiographs to provide initial diagnoses of 
osteoporosis6–16.

The detection of osteoporosis using panoramic radiographs has been investigated in relation to several con-
centrations and linear measurements, such as the mandibular cortical width (MCW), mandibular cortex index 
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(MCI), mental index, and panoramic mandibular index6–16 In addition, the diagnosis of osteoporosis using a sup-
port vector machine has been reported15. However, these diagnostic imaging methods have not been commonly 
used because they require complicated preprocessing, image normalization, and complicated and specialized 
measurements for diagnosis. In contrast, the diagnosis of osteoporosis by deep learning using a convolutional 
neural network (CNN) that does not require complicated pretreatment has also been reported. One study that 
used deep learning focusing on the mandibular cortical bone produced a high diagnostic accuracy of 84.0%, 
and an area under the curve (AUC) of the receiver operating characteristic (ROC) curve of 0.85817. It has been 
suggested that deep learning using X-ray images can be useful for diagnosing osteoporosis.

The conventional methods of classifying osteoporosis by extracting each feature from panoramic images are 
extremely useful. However, osteoporosis is associated with systemic patient factors18. We hypothesized that the 
diagnostic accuracy using deep learning and X-ray images would be improved by constructing a CNN in which 
patient factors are added.

The purpose of this study was to construct an osteoporosis classifier from dental panoramic radiographs. In 
addition, we developed an osteoporosis classifier based on an ensemble model in which the clinical covariates of 
patients were added to dental panoramic radiographs to statistically clarify the effect of classification accuracy 
on the addition of clinical covariates.

Results
Prediction performance.  Comparison between image‑only model and ensemble model.  Table 1 shows the 
performance metrics, P-values, and effect sizes for ResNet-18, -50, and -152. All performance metrics were 
elevated using the ensemble model. Both the image-only model and the ensemble model showed higher perfor-
mance in the order of ResNet-18, -50, and -152. There is a strongly statistically significant difference between 
the two groups, especially in terms of accuracy and AUC. In the effect size evaluation, the AUC had the highest 
effect in all ResNet models, categorized as very large.

Table 2 shows the performance metrics, P-values, and effect sizes for EfficientNet-b0, -b3, and -b7. As with 
ResNet, all performance metrics are increased by the ensemble model. Both the image-only model and ensemble 
model show higher performance in the order of EfficientNet-b0, -b3, and -b7. The two-group comparison also 

Table 1.   Comparison of performance metrics in ResNet. Bold showed the highest effect size in each 
performance metric and bold italics showed the highest score in each performance metric.

Accuracy AUC score Precision Recall Specificity F1 score

SD SD SD SD SD SD

95%CI 95%CI 95%CI 95%CI 95%CI 95%CI

ResNet-18

Image-only model

0.809 0.874 0.745 0.605 0.898 0.646

0.012 0.010 0.033 0.065 0.021 0.045

0.804–0.813 0.870–0.878 0.733–0.757 0.581–0.630 0.890–0.906 0.629–0.662

Ensemble model

0.824 0.893 0.768 0.630 0.909 0.676

0.012 0.011 0.024 0.050 0.016 0.033

0.819–0.828 0.889–0.898 0.759–0.777 0.611–0.649 0.903–0.915 0.664–0.688

P value  < 0.0001  < 0.0001 0.003 0.103 0.029 0.004

Effect size 1.227 1.849 0.803 0.422 0.570 0.761

ResNet-50

Image-only model

0.826 0.890 0.752 0.661 0.899 0.691

0.010 0.011 0.029 0.049 0.017 0.029

0.822–0.829 0.886–0.894 0.741–0.763 0.643–0.679 0.892–0.905 0.680–0.702

Ensemble model

0.837 0.905 0.773 0.684 0.906 0.714

0.011 0.009 0.028 0.041 0.018 0.023

0.833–0.841 0.901–0.908 0.762–0.783 0.668–0.699 0.899–0.912 0.706–0.723

P value  < 0.0001  < 0.0001 0.006 0.056 0.130 0.001

Effect size 1.118 1.393 0.725 0.498 0.392 0.887

ResNet-152

Image-only model

0.830 0.895 0.764 0.665 0.903 0.699

0.011 0.011 0.028 0.046 0.018 0.030

0.825–0.834 0.891–0.899 0.754–0.774 0.648–0.682 0.896–0.909 0.687–0.710

Ensemble model

0.840 0.911 0.774 0.695 0.906 0.720

0.009 0.008 0.028 0.045 0.020 0.025

0.837–0.844 0.908–0.914 0.764–0.785 0.678–0.712 0.898–0.913 0.711–0.729

P value  < 0.0001  < 0.0001 0.169 0.013 0.552 0.004

Effect size 1.056 1.625 0.355 0.652 0.153 0.764



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6088  | https://doi.org/10.1038/s41598-022-10150-x

www.nature.com/scientificreports/

showed strong statistically significant differences in accuracy and AUC, and the effect sizes were all very large. 
Among all CNN models, EfficientNet-b7 produced the highest accuracy, AUC, and F1 score. The effect sizes 
tended to be higher for models with fewer parameters in both ResNet and EfficientNet. It has been shown that 
the ensemble model is more effective in case of small number of parameters. (Bold in Tables 1 and 2 shows the 
highest effect size in each performance metric. Bold italics shows the highest score in each performance metric.) 
Interestingly, an ensemble model with additional clinical variables in multiple CNN models, regardless of the 
number of parameters, contributed to improved performance. Figure S1 shows the ROC curves corresponding 
to ResNet and EfficientNet.

Visualization of model identification.  Figure 1 shows the focused visualization area obtained by guided 
Grad-CAM. We selected the ensemble analysis using EfficientNet-b0, -b3, and -b7 and ResNet-18, -50, and -152. 
Both EfficientNet and ResNet commonly focused on the cortical bone region of the mandibular lower border as 
a feature region. EfficientNet determined that this area was a characteristic region in non-osteoporosis images. 
In contrast, in the osteoporosis images, the area above the cortical bone was judged to be a characteristic region 
in addition to the cortical bone region of the mandibular lower border. ResNet characterized the cortical bone 
at the lower edge of the mandible more strongly. In osteoporosis images, ResNet-50 and -152 paid particular 
attention to the mandibular lower border cortical bone. ResNet did not consider the area above the mandibular 
cortical bone as a characteristic region, whereas EfficientNet did. In the non-osteoporosis images, the cortical 
bone in the entire mandibular lower border was judged to constitute a characteristic region. In both EfficientNet 
and ResNet, the larger the number of parameters, the smaller the variation in the area that captured the image 
features.

Discussion
This study demonstrates that CNNs can diagnose osteoporosis from dental panoramic radiographs with high 
levels of accuracy. Moreover, including patient variables involved in routine clinical settings improved the per-
formance metrics of all predictions compared to using the image-only model. In particular, the ensemble model 
was more effective for the CNN model with fewer parameters.

Table 2.   Comparison of performance metrics in EfficientNet. Bold showed the highest effect size in each 
performance metric and bold italics showed the highest score in each performance metric.

Accuracy AUC score Precision Recall Specificity F1 score

SD SD SD SD SD SD

95%CI 95%CI 95%CI 95%CI 95%CI 95%CI

EfficientNet-b0

Image-only model

0.792 0.844 0.695 0.590 0.882 0.627

0.015 0.027 0.043 0.067 0.022 0.069

0.786–0.797 0.834–0.854 0.679–0.711 0.564–0.615 0.874–0.890 0.602–0.653

Ensemble model

0.811 0.882 0.726 0.634 0.890 0.661

0.015 0.015 0.034 0.038 0.018 0.032

0.805–0.816 0.877–0.888 0.714–0.739 0.620–0.648 0.884–0.897 0.649–0.673

P value  < 0.0001  < 0.0001 0.003 0.003 0.114 0.020

Effect size 1.263 1.738 0.804 0.803 0.409 0.612

EfficientNet-b3

Image-only model

0.807 0.867 0.711 0.635 0.883 0.655

0.016 0.018 0.035 0.058 0.020 0.045

0.801–0.813 0.860–0.874 0.698–0.724 0.613–0.657 0.875–0.891 0.638–0.672

Ensemble model

0.824 0.899 0.733 0.680 0.887 0.692

0.013 0.014 0.026 0.051 0.016 0.036

0.819–0.829 0.894–0.904 0.723–0.742 0.661–0.699 0.881–0.893 0.679–0.705

P value  < 0.0001  < 0.0001 0.008 0.002 0.395 0.001

Effect size 1.110 1.962 0.698 0.815 0.218 0.907

EfficientNet-b7

Image-only model

0.832 0.900 0.743 0.716 0.884 0.716

0.011 0.011 0.025 0.049 0.018 0.029

0.828–0.836 0.896–0.904 0.734–0.752 0.698–0.734 0.877–0.890 0.705–0.726

Ensemble model

0.845 0.921 0.752 0.749 0.888 0.740

0.013 0.012 0.027 0.055 0.021 0.032

0.841–0.850 0.917–0.925 0.742–0.763 0.729–0.770 0.880–0.895 0.728–0.752

P value  < 0.0001  < 0.0001 0.172 0.015 0.449 0.003

Effect size 1.101 1.780 0.352 0.636 0.194 0.790
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There was no significant difference in diagnostic accuracy for our images compared to previous reports of 
osteoporosis classification by deep learning using dental panoramic radiographs17. The advantage of the method 
applied in this work is that we created a model with clinical patient covariates added to improve the accuracy of 
deep learning using images. This article is the first to report on the identification of osteoporosis using an ensem-
ble model from dental panoramic radiographs. The addition of patient covariates provided additional informa-
tion regarding important osteoporosis classifications and improved all performance metrics over the image-only 
model. In particular, the accuracy and AUC were statistically significantly improved by the sample model.

It is presumed that the diagnostic accuracy was improved because advanced inference was enabled by deep 
learning that simultaneously considers important information related to clinical covariates that cannot be 
extracted from dental panoramic X-ray images alone.

In this study, we used ResNet and EfficientNet CNNs. In general, CNNs have a deep hierarchical structure 
to improve accuracy. ResNet-152 and EfficientNet-B7 showed the highest accuracy among the ResNet and Effi-
cientNet approaches, respectively. This finding is consistent with the results of previous studies19,20. In addition, 
performance improvements were obtained in all cases from the CNNs with few parameters compared to the 
CNNs with numerous parameters. Although the increase in the effect size of the ensemble became smaller as 
the number of parameters increased, it was suggested that the ensemble model is effective for achieving higher 
performance.

In our study, using patient clinical covariate data structured with images was more efficient in classifying 
osteoporosis by deep learning than using images alone. Only a few scholars have employed images using deep 
learning and ensemble models with clinical covariates21,22 Clinical data that reflect the general condition of the 
patient are important factors in the diagnosis of osteoporosis23. However, unfortunately, it is difficult to collect 
highly specialized clinical information such as accurate histories of fractures and time of menopause from first-
time patients at dental clinics. Our study envisaged a more accurate screening method for dentists involving 
panoramic radiographs. We created an ensemble model with relatively high osteoporosis classification accuracy 
using age, gender, and BMI, which are easily collectable and clinically important data, as clinical covariates.

In this study, we used guided Grad-CAM technology to visualize feature regions in deep learning. The visuali-
zation of the feature area was different between ResNet and EfficientNet, and this result was extremely interesting. 
ResNet focused on the cortical bone in the mandibular lower border. In contrast, EfficientNet focused on the area 
above the cortical bone in addition to the cortical bone in the mandibular lower border. In previous studies, the 
MCW and MCI were used as indicators in osteoporosis screening8,9,11,14. MCI is a screening method that focuses 
on structural changes in the cortical bone due to bone resorption24. It is presumed that ResNet mainly focused 
on the MCW, whereas EfficientNet regarded both the MCW and MCI as characteristic areas. The MCW may not 
have shown the ability to detect osteoporosis25, and the MCI was not reproducible, which were drawbacks of these 
measurement methods14. The MCW is characterized by higher specificity than sensitivity26. It was speculated 
that ResNet showed higher specificity mainly due to the MCI and derived from its characteristic region. The 
high classification performance of EfficientNet may be due to its focus on each of the two measurement methods.

The advantage of this study over previous works is the statistical assessment of the additional effects of patient 
factors on the identification of osteoporosis from panoramic radiographs using deep learning. To the best of our 
knowledge, this study is the first to adopt this approach. In addition, the effect sizes calculated in this study will 
facilitate sample size estimation in future works.

This study has three notable limitations. Although we utilized more cases than previous research17, it was dif-
ficult to collect sufficient image data from a single general hospital. CNNs with a small amount of data can lead 
to overfitting and reduced generalization. We organized the data to avoid overfitting and used cross-validation 
and early-stopping learning methods. In general, models trained by deep learning from large image datasets are 

Figure 1.   Visualization of characteristic regions of radiographs of osteoporosis and non-osteoporosis patient 
images using ResNet and EfficientNet.
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effective for image classification. By increasing the amount of data through multi-center collaborative research, 
the accuracy and generalization of CNN classification diagnosis can be improved. The second limitation is the 
type of CNN adopted for validation. In this study, EfficientNet and ResNet were examined at various depths. If a 
CNN with fewer parameters could achieve higher performance, it would be more widely applicable as the calcula-
tion cost would thus decrease. The identification of various CNNs suitable for image quality and patient covariate 
ensembles remains as an important task for future research. In this study, the images were manually cropped 
to include the mandibular inferior margin in the center of the mandibular body as a preoperative preparation 
to classify osteoporosis. In future, the construction of a network that can screen for osteoporosis from dental 
panoramic radiographs by automatically detecting the ROI from untrimmed dental panoramic radiographs is 
required. Specifically, it is expected to be used in combination with object detection methods such as region-based 
CNN, single-shot multi-box detector27. Muramatsu et al. reported on the automatic detection of MCI28, which 
could be applied to the setting of ROIs. Furthermore, it is ideal to ensemble patient covariates automatically by 
linking them with electronic medical record information. It is desired to verify the effectiveness of the ensemble 
model using a new deep learning model that is lighter and more accurate. Another limitation is the comparison 
of the results of deep learning. In this study, we examined the effectiveness of the ensemble model using CNN. 
Although the ensemble model has been shown to contribute to improved accuracy, it remains unclear if it is 
superior to clinicians. In future, it will be necessary to compare this model with clinicians and verify whether the 
accuracy of clinicians’ identification changes by allowing them to refer to the areas indicated by deep learning 
techniques. These verifications will contribute to the development of deep learning.

Conclusions
Using deep learning with the CNN model demonstrated that osteoporosis can be classified with relatively higher 
accuracy from dental panoramic radiographs. In addition, an ensemble model that included patient covariates 
demonstrated more accurate classification of osteoporosis. The ensemble model contributed to the performance 
improvement in all the CNN models and was more effective for the CNN model with fewer parameters. The 
EfficientNet-B7 and ResNet-152 ensemble models were also classified with highest accuracy. These results are 
expected to play an important role in the screening of osteoporosis in the clinical dental environment.

Materials and methods
Study design.  The aim of this study was to classify osteoporosis and non-osteoporosis using a dataset seg-
mented from panoramic radiographs and several different CNNs. Supervised learning was employed as a deep 
learning method. We statistically investigated the effect of adding covariates extracted from clinical records on 
the accuracy of the osteoporosis identification.

Data acquisition.  We retrospectively used clinical and radiographic data from March 2014 to September 
2020. This study protocol was approved by the institutional review boards of the respective institutions host-
ing this work (i.e., the review boards of Kagawa Prefectural Central Hospital, approval number 994), following 
Ethical guidelines for clinical research and in accordance with the ethical principles that have their origins in 
the Declaration of Helsinki and its subsequent amendments. Informed consent from individual patients for 
this retrospective study was waived at the discretion of the institutional review committee (Kagawa Prefectural 
Central Hospital Ethics Committee) because protected health information was not used. The study included 
902 consecutive images from enrolled patients who underwent panoramic radiography within the first year of 
receiving DXA at our hospital.

Osteoporosis was diagnosed by the DXA method using the hip or spine. The parameters investigated included 
the automatically generated BMD (g/cm3) and T-score. Osteoporosis was diagnosed when the T-score of the 
BMD was less than − 2.5 and non-osteoporosis when the T-score was − 2.5 or more, according to the diagnostic 
criteria of the World Health Organization29. When DXA was performed at both the hip and spine sites, the result 
with the lower T-score was used for diagnosis.

The following panoramic radiographs were excluded from this study: 119 images of patients taking antiresorp-
tive agents such as bisphosphonates or anti-RANKL antibodies, 3 images of foreign substances such as plates and 
gastric tubes, 1 image of a mandibular fracture, and 1 image with poor panoramic radiography. Further analysis 
was conducted on the remaining 778 images.

Data preprocessing.  Dental panoramic radiographs of each patient were utilized to acquire images using 
an AZ3000CMR (ASAHI ROENTGEN IND. Co., Ltd., Kyoto, Japan). All data images were output in .tiff format 
(2964 × 1464 pixels) from the Kagawa Prefectural Central Hospital PACS system (HOPE DrABLE-GX, FUJITSU 
Co., Tokyo, Japan). We isolated the cortical bone at the lower edge of the mandible in the images. Two maxil-
lofacial surgeons manually placed and cropped regions of interest (ROIs) on the dental panoramic radiograph 
images using Photoshop Elements (Adobe Systems, Inc., San Jose, CA, USA). The ROI was set according to 
previous studies of deep learning that identified the ROI in osteoporosis by panoramic radiography. A previous 
study identified the middle area of the mandibular lower border as the ROI17. To ensure reproducibility, the 
mental foramen was used as the reference point at the mid-point of the mandible. The ROI was created to be 
250 × 400 pixels in size just below the reference point to include the lower edge of the mandible. All analyses in 
this study were performed on the left side, as shown in Fig. 2. The cropped image was saved in PNG format. The 
oral and maxillofacial surgeons who cropped the image data were completely unaware of the osteoporotic status 
of each patient as this information was concealed from them according to the experimental design.
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CNN model architecture.  In this study, the evaluation was performed using the standard CNN models, 
including a residual neural network (ResNet)19 and EfficientNet20. ResNet, invented by He et al.19, won the clas-
sification task of the ILSVRC2015 Challenge. Generally, deepening the network layer improves the accuracy of 
image identification, but conversely, a network layer that is too deep reduces the accuracy. To deal with this issue, 
we introduced a learning method called residual learning that involves a network that can be deepened to 152 
layers. This representative of the ResNet architecture has 18, 50, and 152 layers.

EfficientNet is a CNN that was proposed as a state-of-the-art image classification method on ImageNet data 
in 2019. Although the number of parameters is smaller than that of the conventional CNN model, EfficientNet 
is a high-speed and relatively accurate CNN model that uses EfficientNet-b0, -b3, and 0b7 models. For efficient 
model building30, it is possible to fine-tune the weights of existing models as initial values for additional learn-
ing; therefore, all CNNs were used to transfer learning with fine-tuned pre-trained weights using the ImageNet 
database31. The process of deep learning analysis was implemented using the PyTorch deep learning framework 
and the Python programming language.

Clinical covariates.  Patients in the high risk group for osteoporosis are generally female, older, and with 
lower body mass indices (BMIs)32. There are many other patient factors, but age, gender, and BMI were selected 
as factors that can be easily identified by dentists. BMI is given by weight in kilograms divided by the square of 
height in meters. Patients’ weight and height were recorded at the time of BMD measurement. Table 3 shows the 
clinical and demographic characteristics of the patients in this study.

Architecture of the ensemble model.  We also constructed an ensemble model that adds patient clinical 
factors to the deep learning analysis of X-ray images. In preparation, we preprocessed the structural data. Age 
and BMI were translated into mean normalization, and sex was translated into a one-hot vector representation. 
As a result, a 1 × 4 dimensional vector was created. Extracted from the convolutional layers in the CNN of the 
image, the one-dimensional reshaped result and the 1 × 4 dimensional data created from the structural data were 
combined. The image data processed by CNN and the combined data with clinical covariates were then passed 
as fully connected layers. The predictions of the final osteoporosis identification model were output using the 
rectified linear unit (ReLU) activation function (Fig. 3).

Data augmentation.  Various data augmentation techniques have been used to prevent overfitting owing 
to the small dataset size. During learning, data augmentation was applied only to the training image data when 
the images removed in batches. The training images were randomly rotated from − 25 to + 25, with a 50% chance 
to flip vertically and 50% chance to flip horizontally. The darkness was randomly changed from − 5 to + 5%, 
and the contrast was changed from − 5 to + 5%. Each training image was processed with a 50% chance of data 
augmentation.

Figure 2.   Dental panoramic radiographs before deep learning analysis, showing cropped ROI.

Table 3.   Clinical and demographic characteristics of the patients.

Osteoporosis Non-osteoporosis

P value(T-score ≦ − 2.5) (T-score > − 2.5)

Number of patients 237 541

Sex

Female 223 (28.7%) 346 (44.5%)  < 0.0001

Male 14 (1.8%) 195 (25.1%)

Mean age, years (SD) 76.9 (7.2) 68.5 (13.7)  < 0.0001

BMI, kg/m2 (SD) 21.2 (3.4) 22.5 (3.7)  < 0.0001
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Model training.  The model training was generalized using k-fold cross-validation. The images selected as 
the dataset were split using the stratified k-fold approach, which splits the training data, validation data, and 
testing data while maintaining the correct label percentages. The training algorithm used k = 5 for k-fold cross-
validation to avoid overfitting and bias and to minimize generalization errors. The data were divided into five 
sets, and the testing data consisted of 156 images. In each fold, the data set was split into a separate training and 
validation sets at a ratio of 8:1. The selected validation data set was independent from the training set and was 
used to evaluate the training status. After completing one model training step, we performed similar validations 
five times with different testing data.

Figure 3.   Neural network architecture that ensembles image data and clinical covariates. As representative 
models, ResNet18 and EfficientNet-B0 models are shown.
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Deep learning procedure.  All deep learning models were trained and analyzed by using the 64-bit Ubuntu 
16.04.5 LTS operating system on a workstation with 8 GB memory and an NVIDIA GeForce GTX 1080 8 GB 
graphics processing unit. The optimizer, weight decay, and momentum were common among all the CNNs. In 
this study, the optimizer used stochastic gradient descent, with a weight decay of 0 and momentum of 0.9. Learn-
ing rates of 0.001 and 0.01 were used for both ResNet and EfficientNet. All the models analyzed a maximum 
of 100 epochs. We used the early stopping method to terminate the data training to prevent overfitting if the 
validation error did not update 20 times in a row. This process was performed 30 times on all CNN models for 
statistical evaluation.

Performance metrics and statistical analysis.  Our key performance indicators, namely, the osteoporosis dis-
crimination accuracy, precision, recall, specificity and F1 score, are defined by Eqs. (1), (2), (3), (4), and (5), 
respectively, which account for the relations between the positive labels of the data and those given by the clas-
sifier. We also calculated the ROC curve and measured the AUC.

here TP and TN represent the numbers of true positive and true negative results, respectively, and FP and FN 
represent the numbers of false positives and false negatives, respectively.

M1 and M2 are the means for the ensemble and image-only models; s1 and s2, respectively, are the standard 
deviations for the ensemble and image-only models; and n1 and n2, respectively, are the numbers for the ensemble 
and image-only models.

Statistical analyses were performed for each performance metric with the use of JMP Statistics Software 
Package Version 14.2.0 for Macintosh (SAS Institute Inc., Cary, NC, USA). P < 0.05 was considered statistically 
significant, and 95% confidence intervals were calculated. Parametric tests were performed based on the results 
of the Shapiro–Wilk test. The effect sizes were calculated as Hedges’ g (unbiased Cohen’s d). The effect size was 
determined as follows based on the criteria proposed by Cohen and expanded by Sawilowsky33: a very small 
effect was 0.01, small effect was 0.2, medium effect was 0.5, large effect was 0.8, very large effect was 1.0, and 
huge effect was 2.0.

Visualization of the computer‑assisted diagnostic system.  Gradient-weighted class activation mapping (Grad-
CAM) is a technology that visualizes important pixels by weighting the gradient with respect to the predicted 
value34. It shows information that is significant for identification: the high gradient of the input to the last convo-
lutional layer. Guided Grad-CAM is a combination of Grad-CAM and backpropagation visualization techniques 
that are useful for identifying detailed feature locations. The feature area visualization was reconstructed from 
the last convolution layer of each CNN in this study.
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