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Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy,
enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation
in many settings. Invigorating host immune cells against tumor neo-antigens, however,
can induce severe autoimmune toxicity which in many cases requires ongoing
management. Many immune-related adverse events (irAEs) are clinically and
pathologically indistinguishable from inborn errors of immunity arising from genetic
polymorphisms of immune checkpoint genes, suggesting a possible shared driver for
both conditions. Many endocrine irAEs, for example, have analogous primary genetic
conditions with varied penetrance and severity despite consistent genetic change. This is
akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in
timing, severity and nature despite a consistent drug target. Host contribution to ICI
response and irAEs, particularly those of endocrine origin, such as thyroiditis,
hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved
understanding of host factors contributing to ICI outcomes is essential for tailoring care
to an individual’s unique genetic predisposition to response and toxicity, and are
discussed in detail in this review.

Keywords: cancer, immune checkpoint inhibitor (ICI), immune related adverse events (irAE), immunotherapy,
autoimmunity, genetic biomarkers
INTRODUCTION

Monoclonal antibodies that block specific immune checkpoints enable durable anti-cancer response
in a subset of patients with previously futile prognoses. Drugs targeting Programmed Cell Death
Protein-1 (PD-1), its ligand (PD-L1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4) are now
considered part of standard of care for treatment of multiple cancers. Both targets represent
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immune checkpoints that contribute to physiological immune
tolerance (as summarized here (1)). Despite remarkable response
to PD-1/PD-L1 and/or CTLA-4 blockade in some patients,
however, a substantial proportion do not gain benefit and
mechanisms underlying individual variation in response are
incompletely understood.

Immune-related adverse events (irAEs) are autoimmune
sequelae of ICI therapy that can affect any organ in the body.
Multiple endocrine irAEs including thyroiditis, hypophysitis,
diabetes mellitus and adrenalitis, have been recognized with
the use of ICI. Endocrinopathies are amongst the most
common irAEs. Partly due to the large reserve capacity of
many endocrine organs, they are distinct in their tendency to
be diagnosed at the point of organ failure. In contrast, most non-
endocrine irAEs are detected based on early clinical indications
of inflammation, such as dyspnea or diarrhea. As such, the
management of endocrine irAEs typically includes life-long
hormone replacement (2). While non-endocrine irAEs are
often treated with glucocorticoids, there is no clear evidence
that immunosuppression is beneficial in preventing progression
of endocrinopathy (2).

Successful checkpoint inhibition in cancer treatment requires a
fundamental shift in immune homeostasis to a state of reduced
immune tolerance. ICI therapy is thus inherently linked to irAEs,
because lowering immune tolerance to cancer inextricably lowers
tolerance to self. Through this lens, manifestation of irAEs may be a
marker of successful immune activation. Accordingly, the
occurrence and severity of irAEs, particularly those of endocrine
origin, have been linked to improved cancer outcomes in studies
that have corrected for immortal time bias in several tumors (3–6).

Significantly, many irAEs are clinically and pathologically
indistinguishable from autoimmune disease associated with
inherited variation in relevant checkpoint genes. Penetrance of
irAEs following pharmacologic blockade of a checkpoint,
however, is not equivalent to that of primary genetic blockade
of the same gene (7, 8). Intriguingly, pharmacologic blockade in
some cases causes more frequent endocrinopathy than genetic
blockade, and in some cases less (Table 1). Clinical
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autoimmunity may manifest when acquired mutations layer on
inherited mutations, stochastically bypassing tolerance to
precipitate disease (19–22). Pharmacologic blockade of a
checkpoint (such as PD-1) may be equivalent to an acquired
functional genetic mutation, serving as an additional ‘switch’
weighing in favor of autoimmunity. Improved understanding of
the mechanism for drug-induced irAEs and their similarities and
differences to genetic autoimmune disease, therefore, has
potential to improve patient selection and cancer outcomes.

In this review, we explore physiological mechanisms of immune
tolerance that are leveraged in cancer immunotherapy and examine
ICI-induced toxicity and analogous genetic disease, with a focus on
endocrinopathies and host contribution to irAE response.
PHYSIOLOGICAL IMMUNE TOLERANCE:
ESSENTIAL TO IMMUNE HOMEOSTASIS

Understanding tolerance in different cell types and physiological
settings is an important foundation to understanding ICI
response and toxicity. The immune system balances a
challenging equilibrium of mounting appropriate response to
pathogens whilst tolerating self and non-self commensals.
Differing mechanisms of tolerance induction and maintenance
for T and B cells, in central (bone marrow, thymus) and
peripheral (spleen, lymph nodes) lymphoid organs, are
summarized below. The majority of cancer immunotherapy
research to date has focused on the role of T-cells, however
B-cells play an important role in analogous primary
autoimmune disease. Furthermore, auto-antibodies are a
feature of many endocrine-related irAEs and may be key to
understanding pathogenesis.

T-Cell Tolerance
Central T cell tolerance is established during T cell development
in the thymus. Thymocytes express a repertoire of T cell
receptors (TCRs), and undergo a process of positive and
negative selection (23). During positive selection, thymocytes
TABLE 1 | Comparison of autoimmune manifestations in genetic deficiency versus pharmacological inhibition of CTLA-4 and PD-1/PD-L1.

Autoimmune
manifestation

Genetic CTLA4 deficiency (9, 10) CTLA-4 inhibitor (11–14) Genetic PDCD1 deficiency (15) PD-1 or PD-L1 inhibitor (11, 16–18)

Endocrine involvement 33% 7-37% present 9.4-23%
Thyroiditis 5-15% 1.5-9% present 10.8-20.4%
Hypophysitis <1% 2.3-18% not detected 1.8-2.2%
Diabetes mellitus 0-5% not detected present 0.4-2%
Adrenalitis not detected 1.3-1.4% not detected 1-2%
Skin involvement 21-56% 43-63% present 5.3-44.5%
Gastrointestinal
involvement

59-78% 29-45% not detected 3.9-25.2%

Liver involvement 12% 3.8-25% present 1.8-9.1%
Respiratory involvement 57-68% 1.1-14% present 1.3-4.7%
Neurological involvement 29% 3-5% not detected not detected
Autoimmune cytopenia 62-63% not detected present not detected
Hypogammaglobulinemia 76-84% not detected not detected not detected
Lymphoproliferation 73% not detected present not detected
Ju
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with TCRs that have sufficient affinity for peptide-Major
Histocompatibility Complex (MHC) are selected for survival,
while during negative selection thymocytes that bind to self-
peptide are signaled to apoptose (24). T cells with a TCR that has
sufficient affinity to self-peptide MHC molecules receive a
survival signal and are released as naïve cells into the
periphery, while T cells with insufficient MHC molecules
undergo apoptosis (24). T cells with potentially hazardous self-
reactive TCRs that have strong reactivity to self-peptides
undergo clonal deletion or receptor editing in the thymus to
reduce their reactivity (25). However, central tolerance is only
partially effective in eliminating self-reactive T cell clones,
allowing release of self-reactive T cell clones into the
periphery (26).

Self-reactive naïve T cells that escape central tolerance are
maintained by a number of peripheral T cell tolerance
mechanisms including quiescence, ignorance, anergy,
exhaustion, senescence and death (27). Quiescence is an active
process that maintains naïve T cells at a lower metabolic state, in
the G0 stage of the cell cycle, agnostic to TCR stimulation (28).
Clonal ignorance is a mechanism maintaining self-reactive T cells
in an inactive state despite the presence of self-antigen (29–31). T
cell ‘anergy’ can result from unbalanced or deficient TCR
stimulation without engagement of costimulatory receptors (32–
34).When T cells are successfully stimulated and reach the effector
stage, T cell exhaustion may arise, characterized by reduced
effector function and sustained inhibitory receptor expression. In
the context of chronic infections, T cell exhaustion avoids
pathogenic inflammation and autoreactivity (35). T cells may
eventually senesce and die, arresting growth when they reach
their replicative potential or are exposed to various stressors (36).
Additionally, peripheral deletional tolerance checkpoints serve a
critical role in pruning the repertoire of peripheral T cells and
terminating deleterious immune responses, preventing T cell
mediated immunopathology (37).

B-Cell Tolerance
Highly reactive B Cell Receptors (BCRs) also experience negative
selection and are actively eliminated in the bone marrow by
central tolerance mechanisms including clonal deletion (38) and
receptor editing (39, 40). Unlike T cells however, the extent to
which B cells undergo positive selection to self-antigen in the
bone marrow is still not well defined. Some mildly and
moderately self-reactive B cells have been shown to undergo
positive selection into the mature repertoire (41). Regardless of
the mechanism, central B cell tolerance results in a significant
proportion of auto reactive BCRs surviving and exiting the bone
marrow into the periphery (42, 43). Assessment of mature
peripheral B cells in healthy human controls show that 5-20%
of cells encode for antibodies with poly- or self-reactivity (44).
Self-reactive B cells tend to exist in a functionally silenced state of
anergy (45). The benefit of preserving these potentially harmful
auto-reactive cells was only recently shown to be the ability for
“auto-antibody redemption”, wherein BCRs mutate away from
self-reactivity to enable production of antibodies with high
foreign antigen specificity (46–50).
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PATHOLOGICAL IMMUNE TOLERANCE:
IMMUNE EVASION BY CANCER CELLS

“Successful” cancer cells achieve unchecked proliferation by
exploiting physiological mechanisms of immune tolerance to
evade detection and/or destruction by the host immune system.
These include downregulation of antigen-presenting
machinery including MHC-1 (51), overexpression of immune-
inhibitory molecules such as PD-L1 (52), induction of an
immunosuppressive tumor microenvironment enriched for
regulatory T cells (Tregs) and myeloid-derived suppressor cells
(53–55) and secretion of directly immunosuppressive factors
such as IL-10, Transforming Growth Factor-b (TGF-b),
gangliosides, prostaglandin E2, and vascular endothelial growth
factor (VEGF) (56–60).

Tregs play a critical role in tolerance to cancer cells through
suppression of cytotoxic CD8+ T-cell proliferation, contributing to
immune escape. Tregs express high levels of multiple checkpoint
receptor molecules including CTLA-4, PD-1, T cell immunoreceptor
with Ig and ITIM domains (TIGIT), Lymphocyte-Activation Gene 3
(LAG-3) and T-cell immunoglobulin domain and mucin domain 3
(TIM3) (61, 62).
IMMUNE CHECKPOINT INHIBITORS

Monoclonal antibodies targeting CTLA-4 and PD-1/PD-L1 are
now considered part of standard of care in multiple cancer types,
including melanoma, Non-Small Cell lung cancer (NSCLC), renal
cell carcinoma, head and neck cancer, urothelial cancer, Merkel
cell carcinoma, mesothelioma, and Hodgkin lymphoma.

CTLA-4 is a negative co-inhibitory receptor of T-cell
activation and proliferation, playing a critical role in the
maintenance of self-tolerance (63). It is constitutively
upregulated in Tregs and transiently upregulated on the cell
surface of conventional T cells following the engagement of co-
stimulatory molecule CD28 with its ligands, CD80 and CD86, in
order to curtail T cell responses (64). CTLA-4 has several
mechanisms of action including competitively binding CD80
and CD86 and reducing CD28-dependent co-stimulation (65–
67). Additionally, CTLA-4 is thought to strip the CD80 and
CD86 ligands from APCs through a process of trans-endocytosis,
further reducing potential for CD28 co-stimulation (65). It has
been postulated that CTLA-4 may also directly restrain T-
lymphocytes through down-regulating IL2 expression, as well
as repression of T-cell proliferation (68).

PD-1 is a co-inhibitory receptor expressed on the surface of
activated T-cells (including tumor infiltrating lymphocytes), B
cells, NK cells, monocytes and dendritic cells (64, 69, 70).
Ligation of PD-1 with its ligands, PD-L1 and PD-L2, activates
inhibitory signaling cascades associated with exhaustion,
resulting in the downregulation of T-cell response (69). PD-1
suppression of T cell activity occurs primarily within the
peripheral tissues and tumor microenvironment (71).

The incidence and pattern of endocrine irAEs differs
significantly between the major classes of checkpoint
July 2022 | Volume 12 | Article 894015
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inhibitors, reflective of differing mechanisms of action (Table 1).
ICI-induced thyroiditis is more frequent after PD-1 compared
with CTLA-4 blockade (10-20.4% versus 1.5-9%). Whereas ICI-
induced hypophysitis and colitis are more common following
CTLA-4 compared with PD-1 inhibition (2.3-18% versus 1.2-
2.2% and 29-45% versus 3.9-25% respectively). Combination
checkpoint blockade, targeting both CTLA-4 and PD-1,
increases rate and severity of irAEs, with tendency to earlier
events and multi-organ autoimmunity (72, 73).
ENDOCRINE irAEs: Prevalence and
Significance

Accurate predictive models for type and severity of irAEs are
lacking, although several potential biomarkers are being studied
involving immune cells (74, 75), cytokines (76), autoantibodies
(77), immunogenetics (78, 79) and microbiome (80, 81). Time of
onset is also unpredictable; most irAEs develop within the first
few weeks following commencement of an ICI, however they can
manifest years after treatment initiation (82). IrAEs occur in up
to 80% of patients receiving combination treatment (83), and are
predominantly mild (CTCAE grade 1-2) (84), with less than 1%
resulting in death (85).

Endocrinopathies are a subset of irAEs that affect endocrine
organs, including thyroiditis, hypophysitis, diabetes mellitus and
adrenalitis (86). Distinct to non-endocrine irAEs, endocrine-
related irAEs are frequently irreversible, do not usually prompt
treatment discontinuation and often require lifelong hormone
replacement therapy (87). While numerous studies have
examined the relationship between irAEs and treatment
outcomes, most do not account for immortal time bias; an
adjustment for shorter time on drug and less time available to
develop irAEs for non-responders. Landmark analyses avert this
bias and also support a correlation of irAEs with outcomes,
particularly those involving endocrine organs and skin for
patients with NSCLC and melanoma (3–6). The correlation of
irAEs with survival in many settings suggests a possible shared
driver of systemic and anti-cancer immune activation.

ICI-Induced Thyroiditis
ICI-induced thyroiditis is common in patients treated with ICI,
with an incidence of up to 20% for single agent anti-PD-1
therapy (16). The clinical phenotype is painless thyroiditis,
most often characterized by transient thyrotoxicosis followed
by euthyroidism or progression to hypothyroidism without
preceding thyrotoxicosis (88, 89). The true incidence of
thyroiditis is likely underreported, in part because clinical trials
define ICI-mediated hypothyroidism and hyperthyroidism as
separate entities rather than a single pathology.

ICI-induced thyroiditis has much clinical and biochemical
overlap with spontaneous autoimmune thyroid diseases (AITD),
including Hashimoto’s thyroiditis and its variant form, subacute
painless thyroiditis (also known as silent thyroiditis or subacute
lymphocytic thyroiditis) (90). In AITD, antigen presenting cells
and helper CD4+ T cells activate CD8+ T cells specific for
Frontiers in Oncology | www.frontiersin.org 4
thyroid parenchyma, causing direct tissue injury and thyroid
antigen exposure. B cell activation from thyroid tissue leads to
expression of anti-thyroid autoantibodies to thyroglobulin (Tg)
and thyroid peroxidase (TPO) (91). It is unclear whether ICI-
induced thyroiditis reflects exacerbation of an evolving AITD, or
has a distinct mechanism with the shared endpoint of auto-
reactive B cells. Anti-PD-1-induced destructive thyroiditis in
preclinical modelling, however, was completely prevented by
depletion of CD4+ T cells, partially prevented by depletion of
CD8+ T cells but not affected by depletion of CD20+ B cells (92).
This supports a more T-cell dominant process at play.

In patients with AITD, PD-1 positive T cells are significantly
expanded in both the periphery and intrathyroidal lymphocytes
compared to patients with (non-autoimmune) multi-nodular
goiter (MNG) (93). PD-L1 positive parenchymal thyroid
follicular cells are present in most AITD glands, but rarely in
MNG glands, and have been hypothesized to serve as a
peripheral tolerance mechanism induced to avoid recognition
by self-reactive T lymphocytes (93).

Thyroid auto-antibodies develop in up to 70% of patients
with ICI-induced thyroiditis (77). It is unclear, however, if these
are generated in response to thyroid antigen released during
destructive thyroiditis, or if ICI reactivates dormant thyroid
auto-antibodies, therein initiating thyroiditis. Patients with pre-
existing anti-thyroglobulin and anti-thyroid peroxidase
antibodies have an increased propensity to ICI-induced
thyroiditis compared with patients who do not harbor these
autoantibodies (90, 94, 95). Moreover, there is shared genetic
predisposition to AITD and ICI-induced thyroiditis, highlighting
the direct contribution of host predisposition (96). Many
patients who develop thyroid irAEs, however, do not have
detectable thyroid auto-antibodies at baseline or following
diagnosis of ICI-induced thyroiditis, suggesting an alternative
pathogenesis distinct from AITD (97).

ICI-Induced Hypophysitis
ICI-induced hypophysitis is inflammation of the pituitary gland
resulting in the decreased production of one or more pituitary
hormones. It is more common following CTLA-4 blockade
compared with PD-1 blockade (3.2% and 0.4% respectively),
with incidence up to 6.4% in combination CTLA-4/PD-1
treatment (86). Symptoms may include headache, fatigue,
anorexia or myalgias, but it is often diagnosed during
investigation of low cortisol on routine bloods or on
presentation in adrenal crisis. The diagnosis may be supported
by radiographic pituitary enlargement. A uniform diagnostic
criterion does not exist, therefore existing literature may
inaccurately report case frequency (98).

There are key distinctions in the clinical phenotype between
hypophysitis caused by CTLA-4 compared with PD-1 inhibitors.
Firstly, in time of onset. CTLA-4 induced hypophysitis usually
presents within weeks of ICI commencement (mean 9 weeks),
whereas anti-PD-1-induced disease is more variable, but tends to
occur later (mean 26 weeks) (99). Time to onset of disease in
combination therapy falls between these two timeframes.
Secondly, in symptomatology. Headache is more frequent in
patients treated with CTLA-4-inhibitor or combination therapy,
July 2022 | Volume 12 | Article 894015
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while the predominant symptoms of PD-1/PD-L1-inhibitor
induced hypophysitis are fatigue, anorexia and myalgias (99,
100). Thirdly, axes involvement. Patients with anti-PD-1 related
hypophysitis often have isolated ACTH-adrenal axis
insufficiency, while CTLA-4-inhibitor related hypophysitis
tends to involve multiple pituitary axes. Finally, in
radiographic changes. Pituitary gland enlargement on MRI was
almost universal in one multi-center review for patients with
hypophysitis following CTLA-4 therapy, while this was only seen
in a minority of cases (28%) resulting from anti-PD-1
therapy (99).

The underlying mechanism of ICI-mediated hypophysitis is
largely unknown. One theory is that immune-related
hypophysitis occurs more frequently in patients treated with
CTLA-4 inhibitors because it directly targets pituitary gland cells,
which express CTLA-4 and may activate antibody-dependent
cell-mediated cytotoxicity and complement-mediated direct
injury (101–103). In a murine model, CTLA-4 blockade
resulted in complement deposition on endocrine cells
including the pituitary (101). A human autopsy series showed
disproportionately high CTLA-4 antigen expression within the
pituitary of patients who had developed ICI-induced
hypophysitis (104). The precise molecular basis for anti-PD-1
hypophysitis is unknown.

ICI-Induced Diabetes Mellitus
ICI-induced diabetes mellitus (ICI-DM) is defined by severe and
persistent insulin deficiency caused by pancreatic b-islet cell
failure following treatment with ICI (105). ICI-DM is rare, and
occurs almost exclusively with anti-PD-1/PD-L1 therapy. A
meta-analysis of 101 studies demonstrated the incidence of
ICI-DM to be 0.4% for pembrolizumab, 2.0% for nivolumab,
with no cases for patients treated with ipilimumab (11). A
systematic review of the existing literature identified only 90
patients with ICI-induced DM, and observed that most patients
were treated with anti-PD-1/PD-L1 monotherapy (71%) or anti-
PD1/PD-L1 in combination with CTLA-4 blockade (15%), while
anti-CTLA-4 alone accounted for only 3% of the patients (106).

The clinical presentation of ICI-DM is similar to that of
classic type 1 diabetes mellitus (T1DM), ranging from
asymptomatic hyperglycemia, polyuria, polydipsia, and fatigue,
to life-threatening diabetic ketoacidosis. ICI-DM onset is also
highly variable, with reported median time to diagnosis of
between 7 to 17 weeks post treatment commencement, with
potential to present years later (107, 108). As with other
endocrine irAEs, ICI-DM is generally diagnosed at point of
organ failure, and almost always requires life-long insulin
replacement therapy (87).

ICI-DM is presumed to be caused by immune-mediated
destruction of pancreatic b-cel ls , however may be
pathologically distinct from T1DM (109). Analysis of pancreas
tissue from a patient who developed ICI-DM following
combination therapy showed marked peri-islet infiltration of
CD8+ T cells, with very few residual pancreatic b cells.
Destruction of b-cells was noted to be more severe than most
cases of classic T1DM, and may reflect mechanistic differences
(109). ICI-DM and classic T1DM also differ in prevalence of
Frontiers in Oncology | www.frontiersin.org 5
auto-antibodies. More than 90% of patients with T1DM have at
least one of four common b-cells autoantibodies; to insulin, GAD
(glutamic acid decarboxylase), ZnT8 (zinc transporter 8) or IA-2
(insulinoma-associated-2) (110). In contrast, only 50% of
patients with ICI-DM are found to have a relevant
autoantibody, with anti-GAD65 comprising the majority of
these (105, 107). This may suggest that either autoantibodies
play less of a role in the pathogenesis of ICI-DM compared to
primary T1DM, or potentially that the autoantibodies still exist,
but are sequestered in tissue.

ICI-Induced Adrenalitis
ICI-induced adrenalitis is a rare endocrine irAE and is defined by
adrenal gland inflammation leading to adrenal cortex failure to
generate hormones, including glucocorticoids, mineralocorticoids
and sex steroids. A meta-analysis revealed an incidence of 0.7%
across studies of monotherapy with anti-PD-1/PD-L1 or anti-
CTLA-4, but up to 4.2% in studies of combination therapy (86).
This shows some discordance with a WHO pharmacovigilance
database review, which demonstrated that the majority of patients
diagnosed with adrenalitis had been treated with PD-1
monotherapy (56%), and less commonly with CTLA-4
monotherapy (23.6%) or combination therapy (17.9%) (111).
Primary adrenal insufficiency may be diagnosed on routine
bloods showing reduced cortisol with appropriate elevation of
pituitary-derived ACTH, but may present clinically with fatigue,
orthostatic hypotension, or adrenal crisis (112). After acute
management, long-term corticosteroid (with or without
mineralocorticoid) replacement is usually required (113).

ICI-adrenalitis is presumed to be caused by immune-
mediated destruction of the adrenal cortex (111). In published
case reports, antibodies to 21-hydroxylase were detected in a
handful of cases (114, 115), which may suggest a B-cell mediated
process. The analogous autoimmune condition of primary
adrenal insufficiency (Addison’s disease), is also characterized
by antibodies against the steroidogenic enzymes; most
commonly 21-hydroxylase, and less frequently a side-chain
cleavage enzyme or 17-alpha-hydroxylase (116).
PHARMACOLOGICAL INHIBITION
COMPARED WITH GENETIC INHIBITION
OF IMMUNE CHECKPOINTS

Pharmacological inhibition of CTLA-4 and/or PD-1/PD-L1 has
significant overlap, but also important differences, to autoimmune
manifestations seen in humans with inborn errors of the
corresponding genes, CTLA4 and PDCD1 (Table 1).

Mice homozygous for ctla-4 loss of function develop
lymphoproliferative symptoms in multiple organs and die within
weeks, but mice with ctla4 haploinsufficiency (one functional allele
retained) remain healthy (117–119). In humans, inherited genetic
heterozygosity for CTLA4 inactivating mutations results in
immunodeficiency and autoimmunity (9, 10, 117, 120). In the
largest study of CTLA4 haploinsufficiency in humans, 133 patients
were characterized (10). The median age of onset of disease was 11
July 2022 | Volume 12 | Article 894015
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years and there was clinical penetrance (manifestation of disease)
in 67% (10). The predominant clinical phenotypes included
hypogammaglobulinemia (84%), lymphoproliferation (73%) and
organ-specific autoimmunity such as hematological autoimmune
cytopenia (62%), respiratory (68%), and gastrointestinal (59%) or
neurological manifestations (29%) (10) (Table 1). Some auto-
immune sequelae of germline CTLA-4 deficiency are almost
indistinguishable from toxicity following its pharmacologic
blockade, such as gastrointestinal inflammation (10, 12, 13).
One factor contributing to observed differences may be distinct
temporal dynamics between in-born genetic loss of CTLA-4
compared with acquired pharmacologic blockade, usually later
in life. Mouse models of conditional CTLA-4 inhibition later in
life, however, do not more closely resemble anti-CLTA-4 induced
irAEs, suggesting other differences at play (121).

Key discrepancies between genetically and pharmacologically
driven disease highlight the need to further understand both
pathways. Firstly, clinical apparent autoimmunity, in general,
appears to be more prevalent in humans with CTLA-4
haploinsufficiency compared with patients receiving CTLA-4
pharmacological blockade (10, 12, 13). This supports the notion
that irAEs associated with CTLA-4 blockade are dose-dependent,
and the monoclonal antibodies may only partially inhibit CTLA4
function leading to incomplete constellation of symptoms. Indeed,
severe, life-threatening autoimmune toxicities are more frequent
with higher doses of ipilimumab supporting this dose-dependent
effect (122). Secondly, and somewhat counter to this, certain organ
Frontiers in Oncology | www.frontiersin.org 6
toxicities are significantly more common with CTLA-4 drug
blockade compared with CTLA-4 germline haploinsufficiency.
For example, severe hypophysitis is reported in up to 5% of
patients treated with ipilimumab but is extremely rare (<1%) in
genetic CTLA4 haploinsufficiency (10, 13) (Table 1). Finally,
certain manifestations of primary CTLA4 deficiency are not seen
in the drug-induced setting, significantly immunodeficiency,
which is contributed to by autoantibody mediated cytopenia,
lymphadenopathy and splenomegaly (9, 120, 123). The reason
for this discord is not well understood.

In contrast to CTLA4, germline deficiencies in PD-1 more
frequently lead to single organ effects, most commonly
involving endocrine organs. Here, exogenous blockade
appears to more closely match germline inactivation (124–
126). Mice deficient in PD-1 initially develop normally but go
on to manifest strain-dependent autoimmunity and heightened
inflammation during infections (127–129). PD-1 deficiency
also accelerates the onset and frequency of organ-specific
endocrine autoimmunity such as T1DM in predisposed
mouse models (130).

In humans, homozygous loss of function mutations in the
gene encoding PD-1, PDCD1, is exceedingly rare (15). In one
case study, homozygous frameshift (loss of function) mutation
resulted in lymphoproliferative autoimmunity, autoimmune
thyroiditis, T1DM, juvenile idiopathic arthritis, and abdominal
tuberculosis. The patient died of pneumonitis at age 10 years
(15). Though complete loss of PDCD1 is rare in humans and
TABLE 2 | Germline CTLA4 and PDCD1 gene polymorphisms are associated with autoimmune diseases.

Autoimmune disease Gene polymorphism Ethnic Group References

Autoimmune thyroid disease including Grave’s disease and Hashimoto’s thyroiditis CTLA4 United Kingdom
Chinese
Japanese
Brazilian
Indian

(117, 133)
(134–137)

(138)
(139)
(140)

Type 1 Diabetes Mellitus CTLA4
PDCD1

Dutch European
United Kingdom
Chinese
Tunisian
Italian
Danish European
Chinese

(141)
(117)
(142)
(143)
(144)
(124)
(145)

Autoimmune adrenal insufficiency CTLA4 European (146)
Vitiligo, in combination with other autoimmune disease CTLA4 United Kingdom (147)
Pemphigus vulgaris and foliaceus CTLA4 Spanish European

Serbian European
Brazilian

(148)
(148, 149)

(150)
Coeliac disease CTLA4 Dutch European

European
French Caucasian

(141)
(151)
(152)

Rheumatoid arthritis CTLA4
PDCD1

United Kingdom
North America
European/Mexican
Chinese

(133)
(153)
(154)

(155, 156)
Myasthenia Gravis CTLA4 Chinese

Swedish
European

(157–162)
(163)
(149)

Systemic lupus erythematosus CTLA4
PDCD1

Korean
Cretan/Greek European

(143)
(164)

Sjogren’s syndrome CTLA4 Australian Caucasian (165)
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difficult to study, partial deficiency shows significant overlap
with drug-induced irAEs (Table 1).

Further investigation is needed to explore similarities and
discrepancies between genetic and drug-induced autoimmunity.
As discussed above, timing and duration of exposure to pathway
blockade is likely to play a role. Inherited genetic abnormalities
may only manifest as autoimmunity when accumulation of
acquired mutations leads to a break in tolerance (20).
Treatment with anti-CTLA-4 and/or anti-PD-1 can be
considered akin to an acquired mutation in terms of onset
later in life, however is distinct from an acquired mutation in
that blockade is maintained for a fixed period only. Comparison
with analogous genetic disease is valuable because it can help
elucidate mechanism, however genetic predisposition is likely to
be just one of many factors contributing to outcome.
Environmental factors including the microbiome are likely to
play a major role (80, 81), but are beyond the scope of this review.
SHARED GENETIC PREDISPOSITION TO
AUTOIMMUNITY, IRAE AND ICI
RESPONSE

Recent genetic association studies have revealed that
polymorphisms in CTLA4 may modulate both autoimmunity
and response and toxicity to ICIs (131, 132). Specific gene
associations with autoimmune disease are outlined in Table 2.
Many of these Genome-wide association studies (GWAS) single
nucleotide polymorphisms (SNPs) highlight the dialectic nature
of T-cell immune regulation in cancer and autoimmunity - the
allele for cancer risk is often the opposite to that for autoimmune
disease (132, 134, 157, 158, 166–170). Systemic testing for
common autoimmune risk loci could provide a pathway for
personalized biomarkers for ICI response and toxicity (171).

Germline polymorphisms in CTLA4 have also been shown to
influence susceptibility to irAEs. Refae et al. investigated a cohort
of 94 patients with advanced cancer treated with anti-PD-1/PD-
L1 and demonstrated that SNPs within a range of genes
including UNG, IFNW1, CD274 and IFNL4 were predictive of
irAEs corresponding to that gene function (78). Whole genome
sequencing of 479 patients with bladder cancer treated with anti-
PD-L1 therapy showed that high polygenic risk scores for vitiligo
and psoriasis were associated with increased risk of skin-related
irAEs (7).

A key question is whether the genetic risk for classical T1DM
overlaps with ICI-DM. Polymorphisms of multiple genes are
known to influence risk of T1DM, with the HLA-DQ, HLA-DR
alleles having the largest effect, but also non-HLA genes such as
PTPN22 and CTLA-4 (172). HLA polymorphisms linked to classic
T1DM class II haplotypes – HLA-DR3-DQ2 and DR4-DQ8 in
European populations, and DR4-DQ4 and DR9-DQ9 in Asian
populations, have been demonstrated to be overrepresented
patients with ICI-DM (106). Only one ICI-DM case has been
Frontiers in Oncology | www.frontiersin.org 7
evaluated for multiple HLA and non-HLA risk genes as part of a
T1DM genetic risk score (GRS); this case had a GRS below the 5th

percentile for T1DM (173), suggesting that ICI-DM genetic risk
factors may be distinct from T1DM. Overall, HLA susceptibility
haplotypes for T1DM may predispose to the development ICI-
DM, but further studies are needed to understand the genetic
contribution of HLA and non-HLA genes.

There is also known genetic susceptibility to spontaneous
AITD, within which certain at-risk genes may also be certain at-
risk genes may also be shared with ICI-induced thyroiditis. Data
suggests there is an association of AITD with certain HLA alleles,
particularly HLA-DR3, and with polymorphisms within CTLA4
and CD40 (174). GWAS have demonstrated key susceptibility
genes implicated in both immune regulation and increased risk
of ICI-induced thyroiditis, including CD69, CTLA4, PTPN22 and
LPP (96). These loci and others were combined to calculate a
polygenic risk score that could identify a cohort of patients with
more than 6-fold increased risk of ICI-induced thyroiditis.
Furthermore, germline susceptibility to AITD disease was
found to be associated with improved survival, in a cohort of
patients with triple-negative breast cancer treated with
combination anti-PD-L1 inhibitor and chemotherapy (96).
CONCLUSION

Immune checkpoint inhibitors are now established as a pillar of
cancer treatment, alongside chemotherapy, radiotherapy and
surgery. Understanding mechanism of response and non-
response to the drugs is paramount to broadening their
potential for clinical benefit. Investigating drivers of ‘off-target’
effects, specifically irAEs, is key to this analysis, because anti-self
responses are inextricably linked with anti-cancer responses in
many settings due to lowering of immune tolerance thresholds.
Furthermore, many irAEs are clinically and biologically
analogous to genetic disease, for which we have significant
insight into drivers and mitigating factors.

Autoimmunity of endocrine organs are common both as
primary disease and as ICI-induced toxicity in patients treated
for cancer. Endocrine autoimmunity driven by genetic variation
in checkpoint genes can mimic drug-induced irAEs, however key
differences exist in the pathophysiology for each. Both primary
and drug-induced endocrine disease may involve underlying
genetic susceptibility as part of a multifactorial pathogenesis.
Further investigation into shared drivers of irAEs with analogous
primary disease may lead to predictive models for genetic
predisposition to ICI-induced toxicity. Furthermore, the
correlation between irAEs and anti-cancer response highlights
the potential for these genetic drivers to serve as novel
therapeutic targets, with the caveat that ensuing toxicity may
need aggressive management.

Current predictive markers (such as tumor and immune cell
PD-L1 expression) can enrich for responders to immunotherapy
but provide little insight into variation in cancer response or toxicity
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for the individual patient. There is increasing recognition that host
factors, including genetic predisposition to both autoimmunity (for
example to thyroid disease) and irAEs (for example to psoriasis and
vitiligo), can be predictive of checkpoint inhibitor treatment
outcomes. Genetic testing for common autoimmune risk loci
could form part of a comprehensive personalized biomarker for
ICI response and toxicity, leading to improved treatment selection
and toxicity management for individual patients.

There is much to learn from host factors that contribute to
maintenance and breakdown of physiological immune tolerance.
Shared drivers of clinical autoimmunity and ICI-induced irAEs
are pivotal to this analysis and have the potential to progress
patient outcomes in cancer treatment significantly.
Frontiers in Oncology | www.frontiersin.org 8
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