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Abstract
Fitness landscape mapping and the prediction of evolutionary trajectories on these landscapes are major tasks in 
evolutionary biology research. Evolutionary dynamics is tightly linked to the landscape topography, but this relation 
is not straightforward. Here, we analyze a fitness landscape of a yeast tRNA gene, previously measured under four 
different conditions. We find that the wild type allele is sub-optimal, and 8–10% of its variants are fitter. We rule 
out the possibilities that the wild type is fittest on average on these four conditions or located on a local fitness max
imum. Notwithstanding, we cannot exclude the possibility that the wild type might be fittest in some of the many 
conditions in the complex ecology that yeast lives at. Instead, we find that the wild type is mutationally robust 
(“flat”), while more fit variants are typically mutationally fragile. Similar observations of mutational robustness 
or flatness have been so far made in very few cases, predominantly in viral genomes.
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Introduction
Fitness landscape mapping and prediction of evolutionary 
trajectories on these landscapes are major tasks in evolu
tionary biology (Wright 1932). While evolutionary theory 
predicts that population mean fitness should increase 
over time, it offers only few quantitative predictions for 
the dynamics of evolution and the possible evolutionary 
trajectories. The main hurdle for generally computing 
evolutionary trajectories is their dependence on the 
underlying fitness landscape. Currently available fitness 
landscapes include between 16 and 100,000 different gen
otypes (for review, see Szendro et al. 2013; de Visser and 
Krug 2014; Obolski et al. 2018). Yet, even the largest data
sets (Jacquier et al. 2013; Roscoe et al. 2013; Puchta et al. 
2016; Sarkisyan et al. 2016) encompass only small fractions 
of the entire fitness landscape of even a single gene. As de
tailed fitness measurements have been unavailable until 
recently, most of the associated theory was developed in 
isolation from data (Kingman 1978; Kauffman and Levin 
1987; Kauffman and Weinberger 1989; Weinreich 2005; 
Park and Krug 2008; Kryazhimskiy et al. 2009; Weissman 
et al. 2009; McCandlish 2013, 2018).

The advent of sequencing technologies now enables 
measurement of increasingly larger fitness landscape data
sets (Puchta et al. 2016; Sarkisyan et al. 2016; Somermeyer 
et al. 2022). It is then desirable to predict evolutionary tra
jectories on these empirical fitness landscapes, using the 
previously developed theory in this field.

A recent set of experiments characterized the fitness 
landscape of the tRNAArg

CCU gene of Saccharomyces cerevi
siae. As this gene is relatively short (72 nucleotides), its 
landscape is significantly smaller than that of a typical pro
tein. It is a single-copy, non-essential gene, such that many 
of its mutants are viable. Li et al. measured the growth 
rates of 23,284 different variants of this gene (fig. 1A) under 
four different growth conditions (23 ◦C, 30 ◦C, 37 ◦C and 
oxidative stress) (Li et al. 2016; Li and Zhang 2018). The 
richness of this dataset renders it a highly valuable case 
study for analyzing topographic properties and evolution
ary trajectories of an empirical fitness landscape and for 
comparing them with theoretical predictions. In analyzing 
this fitness landscape, we noticed that many variants ap
pear fitter than the wild type in each of the examined con
ditions. The wild type’s advantage appears instead to be in 
its mutational robustness, since its neighbors in sequence 
space are relatively fit, too.

Results
In analysis of the tRNA fitness landscape across four differ
ent growth conditions (Li et al. 2016; Li and Zhang 2018), 
we made a remarkable observation that the wild type is 
not the genotype with highest fitness under any of the 
four conditions. Under each of the conditions, between 
8% and 10% of the variants exhibited higher fitness than 
the wild type (fig. 1B). We then analyzed possible sources 
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for measurement errors, including statistical sampling fluc
tuations in read-counts, as a source of inaccuracy in fitness 
assessment and the possibility that the fitness effect 
was due to independent mutations that fortuitously oc
curred elsewhere in the genome (supplementary text, 
Supplementary Material online). We conclude that al
though such errors do exist, they could not fully account 
for the wild type’s fitness sub-optimality.

A possible explanation for the apparent sub-optimality 
of the wild type could be that while some variants are fitter 
than the wild type under a specific condition, they are 
much less fit under other conditions, such that, on average 
across conditions the wild type is fittest. To test this 

explanation, we checked for all high-fitness genotypes 
( f > 1.05 at 30 ◦C) the correlation between their fitness 
values under the various growth conditions—figure 1C. 
We found, that most genotypes which are fit under one 
condition are also fit under others.

To formally compare between fitness values averaged 
over multiple conditions, we also calculated the geometric 
mean fitness (Gillespie 2004), 〈 fi〉 = (

􏽑
m f m

i )1/M, where f m
i 

is the fitness value of the ith genotype in the mth condi
tion out of M (see supplementary text, Supplementary 
Material online).

Figure 1B also shows a histogram of the geometric mean 
fitness values 〈fi〉 of all the genotypes in our dataset. Here 

FIG. 1. The wild type is not the fittest under any of the conditions or on average on all four. (A) A schematic visualization of the experimentally 
measured tRNA fitness landscape. Each circle represents a genotype. Filled circles represent genotypes whose fitness values (here encoded by 
different colors) were measured. Empty circles represent genotypes whose fitness values were not measured. We use here a concentric represen
tation of the fitness landscape, centered around the wild type, where the minimal number of steps on the graph between any two genotypes is 
the number of point mutations separating them. The wild type is then surrounded by expanding circles of its single mutants (denoted by N1), 
double mutants (N2), etc. The experiment probed all the wild type’s single-point mutants, but only decreasingly smaller proportions of the fol
lowing mutational neighborhoods, Ni . (B) The distributions of all fitness values measured under four different conditions (23 ◦C, 30 ◦C, 37 ◦C and 
DMSO), and the distribution of 〈fi〉, their geometric mean. The wild type fitness value is shown by the dotted vertical line. Fitness was defined 
relative to the wild type’s fitness, such that the wild type fitness was set to 1 for each condition. Under each of the conditions tested, 8–10% of 
the genotypes in this dataset were fitter than the wild type. (C ) Fitness values of variants with fitness in the range [1.05, 1.6] at 30 ◦C plotted 
against their fitness values at 23 ◦C, DMSO and 37 ◦C. The correlation coefficients between fitness values under different conditions were 
r = 0.89, 0.91, 0.75 respectively. The x = y line is shown for reference (black dashed line). We conclude that variants that have high fitness in 
one condition usually have high fitness in all four of them. (D) Geometric mean fitness value histograms of genotypes in the wild type’s four 
mutational neighborhoods N1 − N4. The wild type fitness (dotted vertical line) is shown for reference. Notably, all four mutational neighbor
hoods contain fitter than wild type genotypes, but the largest proportion of fitter variants is in N2.

2

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac178#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac178#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac178#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac178#supplementary-data
https://doi.org/10.1093/molbev/msac178


Fitness Landscape Analysis of a tRNA Gene · https://doi.org/10.1093/molbev/msac178 MBE

too, we observe that the wild type is not the fittest across 
conditions, but 2098 variants (9%) have higher geometric 
mean fitness than the wild type’s.

Both results argue against the possibility that the wild 
type is the fittest on average across conditions. A possible 
caveat is that only four conditions were included in this 
calculation which might not fully represent yeast natural 
habitat. For instance, some of the high-fitness variants 
could be inferior in another condition not included in 
this experiment.

Alternatively, the wild type sub-optimality could hypo
thetically be rooted in the fitness landscape topography. If, 
for example, the wild type were an isolated local max
imum, separated from the global fitness maximum by fit
ness valleys, the population could be “trapped” in the 
current wild type genotype, hindered from reaching the 
global maximum (at least temporarily) (Kauffman and 
Levin 1987; Weissman et al. 2009). To test this hypothesis, 
we started by locating the high-fitness genotypes in the da
taset. We define “Mutational neighborhoods” Ni(WT) sur
rounding the wild type as the set of genotypes reachable 
by i point mutations (shortest path) from the wild type 
(see fig. 1A). Figure 1D shows the fitness distributions of 
the four mutational neighborhoods N1 − N4 (single to 
quadruple mutants). We found that all four mutational 
neighborhoods contained fitter-than wild type genotypes, 
but the largest proportion of such fitter genotypes was in 
N2, only two point mutations away from the wild type.

Dissection of each mutational neighborhood into one of 
three fitness categories shows that 51% (106 out of 207) of 
the wild type’s single mutants have similar geometric mean 
fitness values to the wild type’s (|〈 fi〉 − 〈 f(WT)〉| < Δ(1)), 
with Δ(1) = 0.023, 37% (77 genotypes) of them were 
much less fit (〈 fi〉 ≤ 〈 f(WT)〉 − Δ(1)), and 12% (24 geno
types) were fitter than the wild type by more than 
Δ(1) = 0.023, (〈 fi〉 > 〈 f(WT)〉 + Δ(1)). Amongst the 
N2(WT) genotypes (wild type’s double mutants) the pro
portion of such fitter-than wild type genotypes 
(〈 fi〉 > 〈 f(WT)〉 + Δ(1)) was even larger (1,395 out of 
8,101; 17%) and even amongst N3(WT) (triple-mutants) 
we found 1% (71 out of 6,891) having fitness values higher 
than the wild type’s by at least Δ(1). The value of Δ(1) = 
0.023 is equivalent to 0.95 confidence that the geometric 
mean fitness of one genotype is larger than that of the 
other (see supplementary text, Supplementary Material
online).

We then checked for the existence of evolutionary tra
jectories of non-decreasing fitness, leading from the wild 
type to the fitter genotypes in N2 and N3. We mapped 
all 2- and 3-step trajectories of strictly increasing geometric 
mean fitness, originating from the wild type. The number 
of fitness increasing trajectories depends on the minimal 
required fitness difference between consecutive genotypes 
in the trajectory. By requiring a minimal fitness increase Δ, 
we ensure with certain confidence level, that such trajec
tories are strictly increasing, and are not mistakenly classi
fied as such due to inaccuracies in any of the fitness 
estimations along the trajectory. To obtain statistical 

significance of 0.95 for the whole trajectory, Δ(2) = 0.028 
is required for each step in a 2-step trajectory and Δ(3) = 
0.0306 for each step in a 3-step trajectory (see 
supplementary text, Supplementary Material online). We 
find 142 different 2-step trajectories and 17 different 
3-step trajectories meeting the 0.95 confidence criterion. 
This requirement of Δ is very conservative, and its relax
ation (smaller Δ) significantly augments the trajectory 
count. Our trajectory count is certainly an under- 
estimation of the number of fitness-increasing trajectories 
for two reasons. Firstly, here we only accounted for trajec
tories that are fully included in our incomplete dataset, 
whereas expansion of the landscape, by measuring the fit
ness of additional variants, is expected to have increased 
the count of such fitness increasing paths. Secondly, neu
tral evolutionary transitions to genotypes with equal or 
nearly-equal fitness are also possible and were not in
cluded in this enumeration.

Hence, we conclude that the wild type is not a local max
imum which is mutationally isolated from higher-fitness 
genotypes. It is worth mentioning in this context that 
the higher the landscape dimension is, the larger the num
ber of possible single mutants for each genotype is. A geno
type is only a local maximum if all its single mutants are less 
fit. Hence, with the increase of landscape dimensionality, it 
is less likely to find local maxima (Obolski et al. 2018).

Up to this point, we found that the wild type is neither 
the fittest on average, nor is it a local maximum. What is 
then unique about this genotype and why was this sequence 
selected in evolution to be the wild type? In figure 1D, 
we saw already that the fitness distribution of the wild 
type single mutants N1 is narrower compared with the fit
ness value distributions of further mutants (N2 − N4).

Hence, we next sought to characterize whether such 
mutational robustness is common in this fitness landscape 
or whether the wild type is unique in residing in a relatively 
flat region of the landscape. We defined genotype muta
tional fragility as the average fitness difference between 
the genotype and its deleterious single-mutants (beneficial 
single-mutants receive zero weight):

ϕi =
1
|N1(i)|

􏽘

j∈N1(i)

|fi − f j|+,

|x|+ =
x if x ≥ 0

0 if x < 0

􏼚 (1) 

where |N1(i)| is the total number of single mutants of 
genotype i. What is the significance of this new measure? 
To demonstrate its behavior and relation to fitness, we be
gan by applying it on a simulated NK model (Kauffman 
and Weinberger 1989) landscape (fig. 2A and B). We ob
serve a general trend where fragility increases with fitness. 
For low-fitness genotypes fragility is nearly zero, because 
their single mutants are mostly fitter and hence disre
garded in this measure. Conversely, fragility is highest for 
high-fitness genotypes, because their single-mutants are 
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mostly less fit. The parameter K is used to tune the correl
ation between fitness values of adjacent genotypes (namely, 
genotypes that differ in a small number of positions). A K = 
5 (fig. 2A) landscape exhibits partial correlation, and can 
hence be regarded as “smooth,” while the K = 13 landscape 
is “rugged” in the sense that fitness values of neighboring se
quences are uncorrelated (fig. 2B) (see Methods for defin
ition). As expected, the differences in fragility between the 
intermediate and the extreme fitness genotypes were larger 
in the uncorrelated landscape (fig. 2B) than in the partially- 
correlated one (fig. 2A), while their fitness value distribu
tions were similar (supplementary fig. S5, Supplementary 
Material online). For most fitness values, we find a range 
of fragility values. In both landscapes we observe, that the 
highest fitness value for which genotypes with zero fragility 
still exist are the intermediate ones (f ≈ 0.5 here).

Returning to the tRNA landscape, the fragility definition 
(1) is based on fitness information of all the single mutants 
of genotype i. In practice, with the exception of the wild 

type, we only had measurements of a subset of the single 
mutants and estimated ϕi using partial data. To minimize 
biases because of small numbers of single mutants, fragility 
was only calculated for genotypes having at least five 
single-mutants, three of which are further away from the 
wild type (Methods). This limitation enabled calculation 
only for 1,854 variants out of 23,284.

Figure 2C shows a scatter plot of genotype mutational 
fragility plotted against genotype fitness. Interestingly, we 
observe that the wild type is at the “tip” of the fragility- 
fitness cloud, such that it is nearly the least fragile amongst 
genotypes with similar fitness value and nearly the fittest 
amongst genotypes with similarly low fragility. Hence, it ex
hibits a balance between fitness and mutational robustness.

Discussion
Recent advances in high-throughput experimental meth
ods have allowed for large-scale characterization of 

FIG. 2. Mutational fragility. Fragility vs. fitness scatter plots (A,B) in a simulated NK landscape with parameter values N = 14, K = 5 (A) and K = 13 
(B). Low-fitness genotypes have mostly beneficial single-mutants and hence low mutational fragility (zero if all mutants are beneficial). The high
er the fitness of a genotype, the more deleterious its single-mutants are, and hence it is more fragile. This effect is more pronounced in the 
uncorrelated landscape (K = N − 1 = 13, (B)) but is still observed in the partially correlated landscape with K = 5 (A). (C ) Genotype mutational 
fragility against fitness in the tRNA dataset – scatter plot. The wild type (black) is nearly the least fragile to deleterious mutations amongst all 
genotypes with similar fitness values. We show here all genotypes with at least 5 single-mutants whose fitness is included in the dataset, such that 
at least 3 of them are further away from the wild type (see Methods). We illustrate genotypes that are wild type single, double, or higher mutants 
using different colors.
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empirical fitness landscapes (Jacquier et al. 2013; Roscoe 
et al. 2013; Puchta et al. 2016; Sarkisyan et al. 2016), which 
can be applied to test hypotheses about the driving forces 
of evolutionary dynamics. Here we found a wild type which 
is sub-optimal and ruled out the possibilities that it is the 
fittest on average on multiple conditions or located on a 
local fitness maximum. Instead, we found that the wild 
type is amongst the least mutationally fragile genotypes 
in the dataset, balancing between fitness and mutational 
robustness, but the evolutionary mechanism at play here 
remains elusive. Robust (flat) genotypes were predicted 
theoretically (Swetina and Schuster 1982; Sardanyés et al. 
2008; Beardmore et al. 2011), but were previously reported 
only in organisms having high mutation rates such as 
viruses (Codoñer et al. 2006; Sanjuán et al. 2007) or in digit
al organisms (Wilke et al. 2001). To the best of our knowl
edge, this is the first report of a flat gene in a low-mutation 
rate organism. It is increasingly appreciated that mutation 
rates are non-uniform across the genome and specifically, 
tRNA genes were shown to have 7–10-fold higher muta
tion rates compared with the background genome (Saini 
et al. 2017; Thornlow et al. 2018). Yet, it is unclear whether 
such a mutation rate is sufficient to select for flatness 
(Swetina and Schuster 1982). One possibility that we can
not exclude, is that the wild type could be fittest in some of 
the many conditions in the complex ecology that yeast 
lives at (Liti 2015), that might not be captured by the ex
perimental choice of conditions. An additional explan
ation, which does not rely on high-mutation rate, is that 
RNA genes are selected not only for their fitness, but 
also for the molecule thermodynamic stability. Evidence 
exists that thermodynamic stability of RNAs, may correlate 
also with their evolutionary stability, namely their robust
ness to mutations (Ancel et al. 2000; Meyers et al. 2004). 
Although the source of this correlation is not entirely 
understood, we mention the possibility that since RNAs, 
and tRNA included, need to maintain thermodynamic sta
bility, this constraint may have also shaped them as evolu
tionarily stable and mutationally non-fragile.

As the number of large-scale fitness measurements of 
particular landscapes is still limited, additional examples 
for wild type alleles being sub-optimal are scarce, but see 
Bank et al. (2016) and Bershtein et al. (2015).

Inherent to the astronomical dimensionality of fitness 
landscapes is our inability to fully measure them (de 
Visser and Krug 2014). Full landscape mappings are pos
sible only for computationally fabricated landscapes 
(Kauffman and Levin 1987; Friedlander et al. 2017; 
Collins-Hed and Ardell 2019). Thus, usage of fragments 
of a fitness landscape to draw general conclusions is a com
mon practice in the field. It does raise the fundamental 
question whether indeed it represents the entirety of the 
landscape and hence, should be used with caution. 
Recent works handled the sparse sampling of fitness data
sets by sampling around multiple focal genotypes 
(Somermeyer et al. 2022) or by interpolating between 
the measured genotypes to estimate fitness values of miss
ing ones (Hopf et al. 2017; Zhou and McCandlish 2020) 

with some success. While the latter techniques are compu
tationally very demanding, it would be interesting to test 
in the future whether they are applicable for computing 
evolutionary dynamics on incomplete landscapes.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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