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A B S T R A C T   

Most accidents in a chemical process are caused by abnormal or deviations of the process pa-
rameters, and the existing research is focused on short-term prediction. When the early warning 
time is advanced, many false and missing alarms will occur in the system, which will cause certain 
problems for on-site personnel; how to ensure the accuracy of early warning as much as possible 
while the early warning time is a technical problem requiring an urgent solution. In the present 
work, a bidirectional long short-term memory network (BiLSTM) model was established ac-
cording to the temporal variation characteristics of process parameters, and the Whale optimi-
zation algorithm (WOA) was used to optimize the model’s hyperparameters automatically. The 
predicted value was further constructed as a Modified Inverted Normal Loss Function (MINLF), 
and the probability of abnormal fluctuations of process parameters was calculated using the re-
sidual time theory. Finally, the WOA-BiLSTM-MINLF process parameter prediction model with 
inherent risk and trend risk was established, and the fluctuation process of the process parameters 
was transformed into dynamic risk values. The results show that the prediction model alarms 16 
min ahead of distributed control systems (DCS), which can reserve enough time for operators to 
take safety protection measures in advance and prevent accidents.   

1. Introduction 

The coal chemical industry involves the conversion of coal into various forms, such as gas, liquid, solid products, and semifinished 
goods, through chemical processes. These products are subsequently refined into chemical and energy-related products [1]. The 
production process of the coal chemical industry is characterized high toxicity, high temperature, high pressure, strong production 
continuity, high risk, difficult safety control, etc. It has strict requirements on production process parameters, and mastering the 
changing trend of key process parameters can greatly eliminate potential fluctuations and maintain the stability of working conditions 
[2,3]. According to an investigative report by the Center for Chemical Process Safety of the American Institute of Chemical Engineers, 
nearly all accidents related to chemical processes are caused by abnormal or deviating process parameters. Abnormalities or deviations 
of key process parameters such as temperature, pressure, flow rate, velocity, level, vibration, displacement, and concentration can 
increase the risk of accidents, particularly when they exceed design safety limits [4]. Although many automated instruments and 
control equipment have been introduced into coal chemical plants, the production process has yet to be fully automated, and many 
operations still require manual completion. Due to the hazards present in materials, equipment, and process flow during production, if 
operators fail to detect and handle abnormal working conditions on time, it is easy for risks to spread and accidents to occur [5]. 
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Prediction of the process parameters is crucial in implementing dynamic risk warnings for coal chemical production processes [6]. 
Specifically, the prediction of process parameters enables the early detection of potential deviations or anomalies in the production 
process; this can provide operators with sufficient time to implement preventive measures in advance, thereby reducing the probability 
of abnormal situations [7–10]. The higher the prediction accuracy of key parameters and the longer the prediction cycle, the more time 
can be provided for on-site operators to eliminate accident hazards and reduce the possibility of hazard conversion accidents [11]. 

Various monitoring and prediction technologies for coal chemical process parameters have gradually developed in recent years. 
The known methods for predicting coal chemical process parameters include mechanism model-based, knowledge-based, and data- 
driven methods [12]. Zhong et al. comprehensively studied the characteristics of various forecasting methods and expounded suit-
able methods according to different data characteristics [13]. The mechanism model-based method requires prior physical and 
chemical knowledge to construct an accurate mathematical model that can fully reflect the changing mechanism of the process. There 
are mainly Bayesian analysis algorithms and grey prediction models such as GM (1,1) [14,15]. However, this method is challenging to 
model and is suitable for the early stages of coal chemical production, where only a single product is involved, and the production line 
is relatively simple. For modern coal chemical production processes that are far more complex and large-scale than in the past, it is 
unrealistic to use mechanisms to establish precise mathematical models of the production process due to the high coupling between 
variables and the strong temporal variability among the variables [16,17]. In addition, knowledge-based methods require a deep 
understanding of complex coal chemical production processes, necessitating substantial expertise and years of accumulated experience 
to study and interpret anomalies [18]. Data-driven methods involve analyzing historical data reflecting actual working conditions and 
using a machine learning model to establish the mapping relationships between target parameters and associated variables. Using a 
machine learning model in such methods obviates the need to consider the complex mechanism of coal chemical systems; instead, the 
methods should focus on only the information contained within the data, thus allowing for flexible prediction [19]. Accordingly, 
data-driven approaches have been extensively applied for early fault detection in crucial components (e.g. rolling bearings and 
gear-boxes) [20,21], equipment (e.g. fans, pumps, and wind turbines) [22,23], and entire industrial systems (e.g. power plant and 
chemical process) [24]. 

With the popularization of intelligent instruments, sensor networks, and distributed control systems (DCS), massive amounts of 
data are generated and stored in coal chemical processes [25]. These stored large quantities of historical data represent the entire 
production process or production process, providing rich and useable digital resources for analyzing and organizing industrial pro-
cesses [26]. Therefore, using data-driven methods for predicting coal chemical process parameters is practical [27]. In recent years, 
scholars have mainly conducted related research into process parameter prediction using data-driven research methods. Among them, 
machine learning models have been extensively used to predict anomalies in industrial production processes due to their ease of 
implementation, comprehensibility, and well-established theoretical foundations. Common machine learning models include support 
vector machine (SVM) [28], support vector regression (SVR) [29], random forest (RF) [30], multi-layer perceptron (MLP) [31–33], 
extreme gradient boosting (XGBoost) [34], and extreme learning machine models (ELM) [35]. However, most machine learning 
models rely on superficial learning mechanisms and are limited by single-layer hidden-layer network structures, making it difficult to 
predict complex sequence data with significant non-linear and dynamic characteristics, which limits their ability to capture underlying 
information in long-term sequence data [36]. Consequently, such machine learning models may not detect patterns in long-time series 
data, rendering them unsuitable for process parameter prediction [37]. Researchers have increasingly focused on data-driven deep 
learning models to address these limitations, demonstrating strong learning ability and adaptability and excellent performance in time 
series prediction inter alia [38,39]. 

Deep learning models are revolutionary technologies in artificial intelligence, which endow them with infinite feature mining and 
function fitting capabilities by cascading multiple non-linear processing layers. Firstly, deep learning models can directly process 
diverse types of raw monitoring signals and transform and extract essential features layer-by-layer without relying on manual 
experience [40]. Secondly, the mechanism of the coal chemical process is complex, and the modes are diverse. In addition, external 
disturbances such as equipment failures and raw material changes result in high correlation, coupling, and uncertainty of parameters. 
Deep learning models’ strong non-linear mapping ability can better characterize this complex function distribution [41]. Finally, coal 
chemical production has dynamic time-varying characteristics, and there is a potential correlation between data at different time 
points. Deep learning models can better capture, interpret, and store the temporal attributes of variables [42]. Common deep learning 
models include convolutional neural networks [43], recurrent neural networks [44], long and short-term memory networks (LSTM) 
[45], bidirectional long short-term memory networks (BiLSTM) [46,47], gated recurrent units [48], and temporal convolutional 
networks [49]. Among these models, LSTM networks have been extensively adopted, particularly for tasks involving time series data, 
because they can learn long-term historical information from time series data while mitigating gradient explosion and the vanishing 
problem. For example, Ma et al. [50] proposed a novel deep neural network based on a convolutional LSTM network to predict the 
remaining useful life of bearings. This network uses time-frequency signals as input data; it thus preserves the advantages of LSTM 
while leveraging the characteristics of time-frequency data. Wang et al. [51] proposed a data-driven multivariate regression method 
based on an LSTM network with residual filtering (LSTM-RF). This method employs a filter to smooth the residuals between actual 
flight data and predicted values and then compares them with statistical thresholds to detect faults in unmanned aerial vehicles. 
Kumari et al. [52] integrated uniform manifold approximation and projection methods with an LSTM model for predicting fire con-
ditions in enclosed areas of coal mines. This approach provides early warnings of potential mine accidents, thereby enhancing the 
safety of miners. 

In addition, time series prediction models contain numerous parameters. Researchers generally select these parameters according 
to their experience, which may only sometimes obtain the optimal parameters. However, advancements in intelligent algorithms have 
resulted in new approaches to address this challenge. Researchers increasingly integrate neural network models with intelligent 
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algorithms to determine optimal parameters [53]. This integration has led to substantial improvements in the accuracy of integrated 
predictive models compared with single predictive models [54]. 

Numerous time series forecasting models and methods have been developed, however, most studies have focused on short-term 
forecasting. In coal chemical production processes, on-site personnel often need help to address some complex operations within a 
limited time. Therefore, extending the warning time beyond only a few minutes is essential to ensure that operators have sufficient 
time to take appropriate actions. However, extending the warning time may result in numerous false alarms and missed alarms, which 
may cause inconvenience for on-site personnel. Therefore, striking a balance between the extension of early warning times and the 
provision of accurate warnings is a key technical problem that must be addressed [55]. In addition, existing early warning research 
mainly focuses on prediction of production process parameters and has yet to achieve further risk quantification. The present study 
proposes an ultra-early prediction model for coal chemical production process parameters. This model predicts trends of variation in 
risks associated with abnormal key parameters over a period exceeding 5 min [56]. The contributions of this study are outlined as 
follows:  

(1) A BiLSTM model was established using time series data of process parameters in coal chemical production. This model considers 
historical and future data to identify variation patterns of process parameters and to predict their variation trend;  

(2) The study used the whale optimization algorithm (WOA) to optimize hyperparameters in the BiLSTM network model, including 
the learning rate, dropout rate, number of iterations, and number of hidden layer neuron nodes. This optimization eliminated 
subjectivity associated with empirical parameter selection and addressed the problem of traditional BiLSTM algorithms falling 
into local optima, thus improving prediction accuracy and convergence speed;  

(3) The WOA-BiLSTM model was used to predict process parameters, which were adopted to construct a modified inverted normal 
loss function (MINLF). On the basis of residual time theory, this function was used to calculate the risk, including inherent risk 
and trend risk, of abnormal fluctuations of process parameters. Thus, the study derived an ultra-early prediction model, namely, 
WOA-BiLSTM-MINLF, which can transform parameter fluctuations into dynamic risk values, thereby enabling the long-term 
prediction of parameters of coal chemical production processes. By incorporating both inherent risk and trend risk, this 
model addresses the problem of false alarms and missed alarms associated with long-term forecasts;  

(4) To assess the predictive performance of the WOA-BiLSTM model, RNN, LSTM, BiLSTM, and WOA-LSTM models were trained 
using the same sample data, and the predictive performance of these models was comprehensively analyzed and compared. 

Fig. 1. Flowchart through the proposed model.  
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2. Models and methods 

A BiLSTM predictive model based on the temporal variation of process parameters in coal chemical production was established. The 
Whale Optimization Algorithm (WOA) was used to optimize hyperparameters such as learning rate, dropout rate, training batch, and 
number of neurons in the BiLSTM network, forming a WOA-BiLSTM process parameter prediction model. Furthermore, the predicted 
values of process parameters were constructed in the form of a MINLF, and residual time theory was used to calculate the probability of 
abnormal fluctuations in process parameters, and ultimately construct a WOA-BiLSTM-MINLF process parameter ultra early prediction 
model that includes inherent and trend risks, converting the process parameter fluctuation process into dynamic risk values. Moni-
toring real-time changes in process parameters can predict dynamic risks during production. In practical applications, historical data of 
a key parameter is extracted from DCS as a dataset, which has time attributes. The first 80 % of the dataset is used as the training set, 
and the last 20 % is used as the testing set. By training and testing, the established WOA-BiLSTM model can obtain the optimal 
hyperparameter prediction. Real-time monitoring values in DCS are then used as inputs to the WOA-BiLSTM-MINLF model to obtain 
the real-time predicted values of the WOA-BiLSTM model. The constructed MINLF is further used to convert the above-predicted values 
into dynamic risk values, which are the outputs of the WOA-BiLSTM-MINLF model, thereby quantifying the risk caused by parameter 
fluctuations. The overall flow of this model is presented in Fig. 1. 

2.1. Long short-term memory (LSTM) 

Neural networks are primarily divided into feedforward and feedback neural networks [57]. In a feedforward neural network, each 
network level operates relatively independently. Although this architecture has its merits, its shortcomings can be magnified when 
assessing the logical relationships within data, often resulting in poor fitting [58]. Conversely, feedback neural networks, after en-
hancements, are more effective in analyzing the logical relationships within complex data samples [59]. RNNs constitute a type of 
feedback neural network. Unlike feedforward networks, the levels of RNNs are not independent, and information flows bidirectionally, 
enabling the output of one layer to serve as the input for subsequent hidden layer nodes [60]. The network structure is presented in 
Fig. 2. 

The introduction of RNNs marked a breakthrough in neural network technology, particularly for tasks involving time series data. 
However, with the progress of research on RNNs, some notable limitations of such networks have been identified, such as gradient 
disappearance and gradient explosion. Hochreiter [61] proposed a novel recursive network architecture called LSTM, which replaces 
hidden layer neurons in the RNN with memory functions to address these limitations. In this architecture, introducing “gates” to 
control the loss or increase of information mitigates the problem of vanishing and exploding gradients in RNNs [62]. The LSTM ar-
chitecture is presented in Fig. 3. Numerous studies have demonstrated that LSTM networks offer substantial improvements in time 
series prediction compared with conventional methods such as BPNN, SVR, and RNN models [63–65]. 

The LSTM unit comprises three gates: forget, input, and output. These gates play a central role in controlling the transmission of 
internal information within the unit, allowing it to forget or retain historical details in a selective manner. 

2.2. Bi-directional long short-term memory (BiLSTM) 

Although LSTM networks have proven more effective in processing long time series data when compared with conventional RNNs, 
both types of networks can process data in only a unidirectional manner; that is, they rely solely on past data to predict future data, 
ignoring the information contained in the upcoming data points. A BiLSTM network is an extension of the one-way LSTM network, 
composed of a forward LSTM model and backward LSTM models. This model architecture not only retains the advantages of LSTM in 
addressing sequences with long-term dependencies but also overcomes the LSTM network’s shortcomings concerning its inability to 
consider future data [66]. The BiLSTM network structure is presented in Fig. 4. In the context of predicting process parameters in the 
coal chemical industry, the output of a BiLSTM model contains information on both the past and future changes in process parameters, 
thereby enhancing the accuracy of the model [67]. 

Fig. 2. The structure of recurrent neural network.  
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The BiLSTM model analyses forward and backward sequences by employing two hidden layers. The final predicted output value Yt 
is jointly determined by the forward and reverse hidden layers [68]. 

2.3. WOA 

In BiLSTM neural networks, network parameters are usually continuously adjusted using control variable methods or based on the 
experience of previous researchers. However, these approaches may lack a sound theoretical foundation. The swarm intelligence 
optimization algorithm is a rapidly developing heuristic algorithm whose basic theory is to simulate the collective behavior of various 
biological populations in nature, utilize information exchange and cooperation between groups, and achieve the goal of optimizing 
model parameters through interaction between limited individuals. The swarm intelligence optimization algorithms mainly include 
particle swarm optimization algorithm, whale optimization algorithm, ant colony algorithm, grey wolf optimization algorithm, 
sparrow search algorithm, etc. [69]. The unique position update mechanism of the Whale Optimization Algorithm enables the entire 
optimization process to smoothly transition from the global search stage to the local search stage, balancing the exploration and 
development capabilities of the algorithm, resulting in faster convergence [70]. In the present study, the WOA was adopted to address 
the problems above and optimize BiLSTM network parameters, including the learning rate, dropout rate, number of iterations, and 
number of hidden layer neuron nodes, thereby improving the speed and accuracy of parameter selection. 

The WOA is characterized by a rapid optimization speed, robust global convergence, straightforward principles, ease of imple-
mentation, and the requirement of a minimal number of parameters [71]. During their hunt, humpback whales randomly collaborate 
to encircle a shoal of fish or disperse their prey by blowing bubbles. Additionally, these whales might randomly choose to approach 
other whales in more advantageous geographical locations. In the WOA, the position of each whale represents a viable solution to an 
optimization problem. 

In the WOA search space, the search particle is first initialized. When |A| < 1, the WOA initiates a local search, however, when |A| >
1, the WOA enters a global search. 

a(t)= 2 −
2t
T

(1)  

A(t) = 2a(t)r − a(t) (2)  

C(t)= 2r (3)  

where t represents the number of iterations that have been completed and T represents the maximum number of iterations allowed, r ∈
[0,1], A ∈ [ − a,a]. From the second iteration, a continues to decrease until it finally reaches 0. 

Fig. 3. LSTM cell structure.  

Fig. 4. The structure of BiLSTM.  
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(1) Local search phase 

In this stage, other particles move closer to the optimal particle and update their position information concurrently. This phase can 
be modelled using contraction enveloping and spiral updating. X∗ represents the optimal solution so far.  

① Contraction enveloping phase 

In this phase, a gradually decreases, which leads to a decrease in the range of A. The search particle X randomly selects the direction 
to move, and its updated position is determined using the following formula: 

X→(t+ 1)= X→∗(t) − A(t) · D→(t) (4)  

D→(t)=
⃒
⃒
⃒C(t) · X→∗(t) − X→(t)

⃒
⃒
⃒ (5)  

where D→ is the random distance (i.e. the distance between the target and the search particle).  

② Spiral renewal phase 

After the search particle is updated, the position can be determined using the spiral equation as follows: 

X→(t+ 1)= D→′(t) · ebl · cos(2πl) + X→∗(t) (6)  

D→′(t) =
⃒
⃒
⃒X
→∗(t) − X→(t)

⃒
⃒
⃒ (7)  

where D→′ is the distance between the optimal solution and the searched particle, b is a constant, and l is any random number within 
[− 1, 1]. 

The probability p ∈ [0,1] is introduced to indicate how whales hunt. The value and position update of p are expressed in Formula (8) 
and Table 1. 

X→(t+ 1)=
{ X→∗(t) − A(t) · D→(t),

D→′(t) · ebl · cos(2πl) + X→∗(t),

p < 0.5

p ≥ 0.5
(8)    

(2) Global search phase 

The population randomly selects a search particle to update in the global search phase. Other particles within the population then 
move away from this selected particle, enabling a global search. The formulae governing this process are as follows: 

X→(t+ 1)=Xrand
̅̅ →

− A(t) · D→(t) (9)  

D→(t)=
⃒
⃒
⃒C(t) ·Xrand

̅̅ →
− X→(t)

⃒
⃒
⃒ (10)  

where Xrand
̅̅→ denotes the randomly selected search particle in the population. X∗ is updated by comparing the randomly selected with 

the current optimal particle until the termination condition is met. Additionally, A is influenced by a. The global and local search 
processes occur alternately, which ensures that the WOA can avoid local optimal solutions and accurately identify global optimal 
solutions. 

The operating flow of the WOA is presented in Fig. 5. 

2.4. WOA-BiLSTM model 

The WOA addresses the problem of the traditional BiLSTM network’s susceptibility to local optima and enhances the accuracy of 
parameter optimization. The operating flow of the WOA-BiLSTM model for analyzing the time series characteristics of coal chemical 
production processes is illustrated in Fig. 6. 

The BiLSTM network hyperparameters in this model, such as the learning rate, dropout rate, number of iterations, and number of 

Table 1 
Correspondence between p and the position update mode.  

p value p < 0.5 p ≥ 0.5 

Location update mode Contraction enveloping Spiral renewal  

Z. Li et al.                                                                                                                                                                                                               



Heliyon 10 (2024) e30821

7

hidden layer neuron nodes, are treated as an optimization problem for the WOA. The objective function used for optimization is the 
RNN training error function. The global optimal solution is the whale parameter corresponding to the minimum value of the objective 
function. The optimal BiLSTM network structure can be determined by automatically optimizing the BiLSTM network hyper-
parameters using the WOA, after which the model is trained and predicted. Finally, the trained model is employed to perform pre-
dictions of the variation trend of the parameters of coal chemical production processes. These steps are detailed as follows: 

Step 1. Preprocessing of the data. Specifically, to obtain the time series data from the DCS, abnormal data are processed and 
normalized first. Subsequently, the normalized data are divided into training and test sets. 

Step 2. The learning rate, number of iterations, number of hidden layer neuron nodes, and other relevant BiLSTM network pa-
rameters are initialized in addition to the BiLSTM architecture. 

Fig. 5. The WOA optimization algorithm flow.  

Fig. 6. The prediction model flow of WOA-BiLSTM process parameters.  
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Step 3. Initialization of WOA parameters. Specifically, WOA parameters such as population size and the number of iterations can be 
defined. The dimensions of individuals in the optimization search space are determined based on the hyperparameters to be optimized. 
The error function of the BiLSTM network model is used as the fitness function for the WOA; 

Step 4. The position of each whale is encoded based on the initial parameters of the BiLSTM network. The fitness of each whale is 
calculated. The best search location is identified by comparing the fitness of individuals; 

Step 5. The position of each whale individual is updated using an update formula. The fitness of the individuals is recalculated after 
the update. Whether an individual’s fitness is lower than the historical optimal fitness is determined. If lower, the position and fitness 
of the individual should be updated to the current value. Otherwise, leave them unchanged; 

Step 6. Whether the iteration termination condition is met is determined. If the condition is met, the iteration is terminated, yielding 
the optimal solution. If not, we return to the previous step and continue the iteration until the termination condition is met; 

Step 7. The optimized hyperparameters are assigned to the BiLSTM model again, and then the test data set is used to test and analyze 
the accuracy of the prediction results. 

2.5. WOA-BiLSTM-MINLF model 

2.5.1. Loss function 
Process deviations combined with failure of protection layers and control systems induce failures that increase the likelihood of an 

accident and subsequently increase the operational risk associated with process systems. Traditional risk assessment techniques cannot 
account for risk variations due to process deviations because the conventional methods are static [71]. The loss function is commonly 
used to quantify losses related to deviation from the target value and has been applied by scholars in many cases, but more research 
into process safety risk assessment is required [72]. 

Taguchi proposed a quadratic loss function (QLF) to illustrate losses to society associated with deviations of quality characteristics 
from their operational targets in industrial applications [73]. However, it is unrealistic to use this function in many manufacturing 
processes due to the unbounded and symmetric characteristic of Taguchi’s loss function [74]. Scholars have improved QLF by trun-
cating it at the point where the function intersects with the maximum loss to provide a quantifiable maximum loss. Spiring proposed 
the inverted normal loss function (INLF), which has a bounded value from above, and its supremum can be specified by the user. It is 
more flexible and provides a more reasonable assessment of the loss associated with deviations from the target [75]. Sun et al. refined 
the INLF further and developed the modified INLF (MINLF), which has a shape parameter specified by the user, and its value de-
termines the slope of the function in the neighborhood of the target value [76]. MINLF provides greater flexibility in handling sym-
metric loss cases by specifying its shape parameters [77]. Spiring and Leung further extended the concept of INLF to other inverse 
probability density functions, including the inverted beta loss function (IBLF) and the inverted gamma loss function (IGLF) [78]. IBLF 
provides both the traditional features of loss functions and asymmetrical loss situations; IGLF can be adopted to represent processes 
with continuous asymmetric loss. 

Although loss functions have been applied in many cases, the key to using them is to choose a suitable loss function that fits the 
characteristics of the evaluation object. Using inappropriate loss functions may lead to inaccurate evaluation results [79]. Hashemi 
et al. extensively investigated the applicability of various loss functions in process operation safety assessment and derived that MINLF 
and IBLF are more adaptable in representing losses related to process deviations [80]. However, construction of the MINLF is easier 
when compared to IBLF due to the simplicity of the formulation, and also, there is no need for transformation of the scales. The most 
widely used univariate loss functions are listed in Table 2. 

In Table 2, y denotes the status parameter value, L(y) is the actual loss at y, T is the target value, EML denotes the estimated 
maximum loss, Δ is the distance from the target to the point where the maximum loss EML first occurs, and α and γ are shape pa-
rameters and need to be determined from additional information for MINLF, IBLF, and IGLF. 

Considering the characteristic of random deviation between process parameters and actual values in coal chemical production 
processes, the MINLF was adopted to represent dynamic risks under abnormal working conditions. This function enables adjusting the 
shape of the loss function through the adjustment of a shape factor, thus providing a better representation of the actual loss. The 
formula for this function can also be simplified as follows: 

Table 2 
Listing of univariate loss function formulations.  

Type of loss function Formulation of loss function Formula 

QLF L(y) = B(y − T) where B = ELM/Δ2 (11) 
INLF L(y) = ELM{1 − exp (− (y − T)2

/2γ2)} where γ = Δ/4 (12) 
MINLF L(y) =

EMLΔ

1 − exp{ − 0.5(Δ/γ)2
}
{1 − exp (− (y − T)2

/2γ2)}
(13) 

IBLF L(y) = ELM{1 − C[y(1 − y)(1− T)/T
]
(α− 1)

} where C = {T(1 − T)(1− T)/T
}

1− α (14) 
IGLF 

L(y) = ELM
{

1 −
[y exp(1 − (y/T))

T

]α− 1} (15)  
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L=
1 − e− (y− T)2/2γ2

1 − e− Δ2/2γ2 (16) 

To derive a loss function that is tailored to the characteristics of measured parameters, various shape factors should be determined 
based on random fluctuations of these parameters. This approach enables the precise description of the expected loss resulting from 
parameter deviations. As indicated by the aforementioned formula, when the parameter is equal to the target value, the loss value is 0; 
the further the parameter deviates from the target value, the larger the expected loss value. 

2.5.2. Probability of abnormal fluctuation of process parameters 
Residual time theory was employed to calculate the probability of abnormal fluctuations of process parameters [81]. This theory 

can quantify the risk associated with deviations from normal operating conditions by calculating the time required for process pa-
rameters to reach the alarm threshold. If more time remains, then more adequate measures can be taken against abnormal working 
conditions; thus, the safety of the production process is enhanced. Conversely, if less time is available, the probability of abnormal 
conditions and subsequent hazards is higher. The remaining time t can be calculated as follows: 

t=
yalarm − y

ΔV
(17)  

where yalarm is the alarm threshold of the process parameters and ΔV is the instantaneous change rate of the process parameters, which 
is obtained by fitting the data curve by using the least square method and calculating the first-order differential of the fitting poly-
nomial. 

The probability density function f(t) for abnormal conditions is expressed as follows: 

f (t)= λe− λt, t ≥ 0 (18)  

where t is the remaining time and λ is the reciprocal of the remaining time allowed when process parameters fluctuate. This reciprocal 
is calculated as follows: 

λ=
ΔVmax

yalarm − y
(19)  

where ΔVmax denotes the maximum rate of change of process parameters under normal working conditions. For a specific process 
parameter, ΔVmax is a constant. 

Combining Formulae (17) to (19) can yield the probability P of the occurrence of abnormal conditions: 

P=

∫ ∞

t
λe− λtdt = e−

ΔVmax
ΔV (20)  

2.5.3. Risk associated with abnormal fluctuations of process parameters 
The risk of abnormal fluctuations of process parameters can be categorized into inherent risk and trend risk. Inherent risk refers to 

the risk that is already present because of process parameter deviations. The severity of consequences, denoted by L, is measured using 
the loss function. The probability of the occurrence of abnormal working conditions is P = 1. Therefore, according to the risk 
calculation formula, the inherent risk R1 can be expressed as follows: 

R1 = L × P, (P = 1) (21) 

The maximum value of the loss function is 1; accordingly, the severity of the maximum consequence of process parameter deviation 
is calculated as L′ = 1 − L. The probability P of occurrence of abnormal conditions can be computed using Formula (20). Therefore, on 
the basis of the risk calculation formula, the trend risk R2 of the process parameters can be expressed as follows: 

R2 = (1 − L) × P,
(

P = e−
ΔVmax

ΔV

)
(22)  

In summary, the risk of abnormal fluctuations of process parameters can be expressed as follows: 

R=R1 + R2 (23) 

On the basis of the aforementioned methodology, the process parameter values predicted by the WOA-BiLSTM model, as detailed in 
Section 2.4, can be transformed into risk values. These values can thus be used to execute dynamic risk prediction. 

2.5.4. WOA-BiLSTM-MINLF ultra-early prediction model 
The WOA-BiLSTM model can predict the state values of the parameters of coal chemical production processes. The alarm threshold 

for the process parameters is denoted as yalarm, the interlock alarm threshold is denoted as I, and the average value is denoted as Y. On 
the basis of Formula (16), let I be the value of the process parameters causing maximum loss and Y be the target value of the process 
parameters. Hence, T = Y, Δ = I − Y. The expected loss caused by abnormal fluctuations of process parameters in coal chemical 
production is expressed as follows: 
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L=
1 − e− (y− Y)2/2γ2

1 − e− (I− Y)2/2γ2
(24) 

According to the ALARP principle and a grading strategy based on the Pareto distribution, the region between the unacceptable risk 
value and the maximum risk value is designated as the unacceptable high-risk region, accounting for 20 % of the total risk range [56]; 
because L ∈ [0,1], the unacceptable risk value is set as the risk alarm threshold; the risk alarm threshold can be set to Lalarm = 0.8. 

When the predicted process parameters y reach the interlock alarm threshold I, the loss function reaches its maximum value (i.e. 1). 
When y = Y, it indicates that the equipment and hazardous materials are in the most stable state; therefore, the loss function is 0. As 
mentioned, the risk of abnormal fluctuations of process parameters includes inherent risk R1 and trend risk R2. When y ≥ yalarm and 
R2 = 0, the risk value should be greater than or equal to the risk threshold (i.e. R1 ≥ 0.8) to prevent false negatives. When y ≤ yalarm and 
R2 = 0, the risk value should be less than or equal to the risk threshold (i.e. R1 ≤ 0.8) to prevent false positives. On the basis of these 
conditions, when y = yalarm and R1 = 0.8, then the loss function L = 0.8, according to Formula (21). 

The ideal loss value Li can be calculated according to the specific state of the process parameters, represented as yi. The expected 
loss Lf can be calculated using Formula (24). To establish the minimum loss equations, as indicated in Formula (25), the form factor γ 
that minimizes the sum of squared deviations δ can be used, and the loss function closest to the ideal state can be determined: 

min
γ>0

=
∑n

i=1

(
Li − Lfi

)2 (25)  

In summary, the risk of abnormal fluctuations of process parameters in coal chemical production can be derived as follows: 

R=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − e− (y− Y)2/2γ2

1 − e− (I− Y)2/2γ2
+

(

1 −
1 − e− (y− Y)2/2γ2

1 − e− (I− Y)2/2γ2

)

× e−
ΔVmax

ΔV ,

1 − e− (y− Y)2/2γ2

1 − e− (I− Y)2/2γ2
,

ΔVi × (y − Y) ≥ 0

Others
(26)  

The trend in the variation of process parameters is bidirectional, so the trend risk R2 is included in the calculation of the overall risk 
only when the direction of the variation of the process parameters is the same as the direction of the deviation of the parameters from 
the target value (i.e. ΔVi has the same sign as y − Y). Accordingly, the variation trend of coal chemical production process parameters 
can be predicted by assessing the risk of the predicted parameters of coal chemical production processes and comparing it with the 
established risk threshold. 

2.6. Model performance indicators 

To assess the performance of the proposed model, the following metrics were used: mean absolute error (MAE), root mean square 
error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination R2. 

The MAE is used to estimate accuracy by deriving the absolute values of errors and then calculating their average to determine the 
difference between predicted and actual values. The MAE is in the range of [0, + ∞). When the predicted value is exactly equal to the 
actual value, the MAE is 0; conversely, when the predicted value is significantly different from the actual value, the MAE is larger. The 
MAE is expressed as follows: 

MAE=

∑n

i=1
|yi − ŷi |

n
(27) 

The RMSE is calculated by taking the square root of the mean square error to prevent excessively large errors from affecting as-
sessments of model performance. A larger RMSE value means a larger error, signifying poorer model performance. The RMSE can be 
derived as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(28) 

The MAPE is a metric used to calculate relative errors to prevent the magnitude of the data from influencing performance 
assessment processes. The MAPE value is in the range of [0, + ∞). A lower MAPE refers to a more accurate model. The MAPE can be 
derived as follows: 

MAPE=

∑n

i=1
|yi − ŷi |

yi
×

100%
n

(29)  

R2 is the proportion of the variance explained by a model and is a relative measure, R2 ∈ [0,1]. A lower R2 value indicates a poorer 
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model fit. When R2 approaches 1, the model is at risk of overfitting. R2 can be derived as follows: 

R2 =

∑n

i=1
(yi − ŷi )

2

∑n

i=1
(yi − yi)

2
(30)  

3. Empirical analysis 

3.1. Data sources 

A DCS is a digitized and intelligent system that is connected to other production systems; it has been widely applied in the industrial 
sector, particularly in complex process control systems such as those in the coal chemical industry. The reliability of a DCS is pivotal in 
ensuring the safe, stable, and efficient operation of coal chemical production processes. This study developed a model for ultra-early 
prediction of process parameters in coal chemical production processes. The model achieves early detection of abnormal conditions in 
coal chemical production processes by real-time monitoring of the process parameters through a DCS, identifying abnormal phe-
nomena in the production process, and sending alarm signals only when the parameter values exceed the designated thresholds; the 
model does not send warnings before the occurrence of abnormal phenomena [27]. To demonstrate the performance of the proposed 
model, the study used data obtained from a DCS on crude methanol feed flow monitored at flow point FI101 within the methanol 
pre-rectification tower of a coal chemical enterprise. The DCS interface for the methanol pre-rectification tower is depicted in Fig. 7. 

The crude methanol raw material from outside the storage tank undergoes heat exchange with the top gas of the pre-distillation 
tower before entering the pre-distillation tower to cut light and heavy components, separating the non-condensable gas and light 
components in the crude methanol raw material. The pre-distillation tower is operated by the total reflux, and the gas phase at the top 
of the tower is condensed through the feed preheater and two-stage condenser of the pre-distillation tower. The non-condensable gas in 
the raw materials is sent to the exhaust gas washing tower for washing and discharge. The condensed liquid phase is pressurized by a 
reflux pump and sent to the top of the tower. The bottom pump pressurizes the materials at the bottom of the tower and then sent to the 
atmospheric tower. A partition is installed on the reflux tank at the top of the tower to separate methanol oil from the raw materials and 
expel them from the device. Simultaneously, addition of alkaline solution is required to neutralize acidic substances in the material to 
reduce corrosion of the equipment. 

The FI101 point in the methanol rectification tower records flow data at 1-s intervals. This study used a total of 41,760 flow data 
sets recorded over a specific period. In the DCS, the alarm threshold for the flow rate of crude methanol was set to 130 m3/h, meaning 
that a flow rate above or below this threshold would trigger an alarm. To facilitate the visual examination of the variation trend of this 
parameter, this study selected a subset of 1400 data points, including the initial alarm occurrence, for visualization, as depicted in 
Fig. 8. 

The collected time series data need to be pre-processed. The preprocessing procedures involved the processing of abnormal data 
and normalization of the data. A general overview of these procedures is provided as follows: 

(1) Abnormal data processing. In general, collected data can be abnormal due to sensor failure or communication network prob-
lems, leading to data values far outside the supercritical interval range. These values do not accurately represent the actual state 
of key parameters at the detection point and fail to reflect the dynamic risk level in the production process. So, it is necessary to 
replace these abnormal data. The replacement method depends on the specific scenario. If a single data point exhibits ab-
normality in the historical time series, the average value of the two data points before and after the anomaly is calculated, and 

Fig. 7. DCS interface of methanol pre-rectification tower.  
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then the abnormal data point is replaced with this mean average value. In the case of a single data point exhibiting abnormality 
in real-time data, anomalous data are replaced with values from the previous time;  

(2) Normalization. Normalization is generally performed to adapt the value range of different dimensions within multi-dimensional 
data by means of translation and scaling. This adjustment helps prevent small numerical signals from being overshadowed by 
larger ones. Although normalization is not mandatory for artificial neural networks to learn, it is beneficial for transforming 
input variables into a range of data where the activation function resides. The BiLSTM model selected in this study employs a 
sigmoid activation function with an S-shaped curve; whose range is determined to be (0,1). Therefore, the collected data require 
normalization to ensure their effective use in the RNN model. 

3.2. Results and analysis 

3.2.1. Prediction results of WOA-BiLSTM model 
Optimizing BiLSTM hyperparameters, including initial learning rate, number of neural units in the hidden layers, number of it-

erations, and training batch size, during model training can enhance the capability of the model to learn complex data features. This 
optimization can ensure that the output distribution of the hidden layer closely matches the actual input features, ultimately improving 
prediction accuracy. This study used data on crude methanol feed flow rates collected in a pre-rectification tower. Unlike classification 
prediction, time series prediction requires sample data to have continuity during model training. In this paper, the first 80 % of the 
dataset is used as the training set, the last 20 % as the testing set, and MAPE is chosen as the loss function. The Adam optimizer was 
selected to update model parameters. The number of whale populations was initialized to 10. Five BiLSTM hyperparameters were 
selected as optimization parameters: learning rate, dropout rate, training batch size, number of first-layer neurons, and number of 
second-layer neurons. Each whale in the population had an individual dimension of five, and the search range for the BiLSTM 
hyperparameters is as listed in Table 3. 

Using the WOA optimization algorithm to optimize the hyperparameters in the BiLSTM network, MAPE is selected as the loss 
function to determine the prediction accuracy of the training model. As the number of iterations increases, the model parameters are 
continuously optimized, and the loss value of the model on the training set decreases. The loss curve of the model training is shown in 
Fig. 9(e). When the model iterates to the 20th iteration, the loss curve tends to stabilize and approaches 0, indicating that the trained 
model has reached its optimal state. The optimal hyperparameters obtained are 0.00899, 0.5, 328, 64, and 128, respectively. 

After training to obtain the optimal prediction model, input the test dataset to verify the model. To comprehensively estimate the 
predictive performance of the WOA-BiLSTM model, compare the predictive performance with RNN, LSTM, BiLSTM, and WOA-LSTM 
models (Fig. 10). 

Due to the large sample size of the test dataset, only 1000 predicted values were plotted. To clearly observe the differences in the 
predicted results of each model, some areas in the graph were enlarged (Figs. 11 and 12). As illustrated in Fig. 11, when WOA is not 

Fig. 8. Variations of the crude methanol feed flow in a methanol pre-rectification column.  

Table 3 
BiLSTM hyperparameter search range.  

Hyperparameter Optimization range 

Learning rate 0.001–0.01 
Discard rate 0.1–0.5 
Training batch 32–512 
Number of neurons in the first layer 16–64 
Number of neurons in the second layer 32–128  
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Fig. 9. Loss function curves of each model.  

Fig. 10. Predictions from each model.  
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used to optimize model parameters, the trends of the prediction curves of each model were broadly consistent with the actual values. 
However, in the local-amplification region, the prediction curve of the RNN model deviated the most from the actual values. In 
contrast, the curve of the BiLSTM model was closest to the actual values. These observations prove that the BiLSTM model outperforms 
the other two models in terms of time series prediction. As illustrated in Fig. 12, the predicted values of the WOA-LSTM and WOA- 
BiLSTM models are highly consistent with the actual values. The prediction performance of the model using WOA is significantly 
improved, and the prediction performance of the WOA-BiLSTM model is better than that of the WOA-LSTM model. 

It is not easy to quantify the actual predictive performance of the model solely based on the curve shape. MSE, MAE, RMSE, and R2 

are selected as evaluation indicators to evaluate the predictive performance of each model, and the metrics derived for each model are 
presented in Table 4. 

According to the MSE, MAE, RMSE, and R2 values, the RNN model shows the poorest predictive performance and fit among the 
models. By contrast, the WOA-BiLSTM model demonstrates the best predictive performance among the models. The MAE value of the 
BiLSTM model is 3.1880, slightly higher than that of the LSTM model (2.9856). Moreover, the BiLSTM model outperformed the LSTM 
model regarding the MSE, RMSE, and R2. The WOA-LSTM model exhibits considerable improvements over the LSTM model, with a 
67.5 % decrease in MSE, a 50.3 % reduction in MAE, and a 42.3 % reduction in RMSE. Additionally, the R2 value of the WOA-LSTM 
model is increased by 21.4 % compared with that of the LSTM model. The WOA-BiLSTM model exhibits even more substantial im-
provements than the BiLSTM model, with a 77.0 % reduction in MSE, 64.2 % in MAE, and 52.0 % in RMSE. Furthermore, the R2 value 
of the WOA-BiLSTM model is increased by 21.5 % compared with that of the BiLSTM model. These results demonstrate that integrating 
the WOA can significantly improve the predictive performance of the model. In summary, the WOA-BiLSTM model developed in this 
study shows remarkable advantages in analyzing time series data for predicting the parameters of coal chemical production processes; 
the model can accurately capture the underlying patterns of the time series and predict the variation trends of the process parameters. 

3.2.2. Prediction results of the WOA-BiLSTM-MINLF model 
To compare and analyze the ultra-early prediction performance of the WOA-BiLSTM-MINLF model more intuitively, 1400 sets of 

data, including the first alarm in the process parameters of crude methanol feed flow in the methanol pre-distillation tower are still 
used as examples for analysis. The prediction model of WOA BiLSTM process parameters was used to predict 1400 data sets, and the 
results are shown in Fig. 13. The model accurately predicted the trends in this data set. 

The alarm threshold for the crude methanol feed flow rate is yalarm = 130m3/h, the alarm interlock threshold is I = 150m3/ h, and 
the historical data mean is Y = 111.7m3/h. According to Formula (24), the loss function can be expressed as follows: 

L=
1 − e− (y− 111.7)2/2γ2

1 − e− 38.32/2γ2
(31) 

The shape factor γ = 10.21 is obtained using the least squares method, and the maximum instantaneous rate of change in flow is 
determined to be ΔVmax = 13.267. By substituting the predicted process parameters yi into the aforementioned formula, this study 
obtains the corresponding loss function value. The inherent and trend risk of abnormal fluctuations of process parameters can be 
expressed as follows: R1 = L× P, P = 1 and R2 = (1 − L)× P, respectively, where P = e− 13.267/ΔVi . The risk R of abnormal fluctuations of 
predicted process parameters can be calculated using Formula (26). On the basis of these formulas, this study derived the risk of 
abnormal variations of crude methanol feed flow, and the results are illustrated in Fig. 14. 

According to Fig. 8, the crude methanol feed flow rate reaches the alarm threshold at 1225 s and triggers a DCS alarm. Through the 
ultra-early prediction model of process parameters constructed in this article, the predicted value of process parameters is converted 
into a dynamic risk value, causing the risk value to start triggering the risk threshold at 233 s and then exceed the alarm limit multiple 
times. The results show that the WOA-BiLSTM-MINLF prediction model constructed in the present research sounds alarm some 16 min 
(960 s) earlier than DCS, achieving ultra-early prediction of process parameters in coal chemical processes. It can reserve sufficient 
time for operators to take safety protection measures in advance and prevent the occurrence of safety production accidents. 

4. Conclusion 

Coal chemical production has strong continuity and dynamism, and there is a certain degree of danger in equipment and hazardous 
materials involved in the production process. This study combines data collected during coal chemical production to construct a WOA- 
BiLSTM-MINLF-based ultra-early prediction model for process parameters, and the effectiveness of the model is assessed. The key 
conclusions are as follows:  

(1) The BiLSTM prediction model was established according to the temporal variation characteristics of process parameters in the 
coal chemical production and the WOA-BiLSTM process parameter prediction model was formed by using WOA to optimize the 
learning rate, discard rate, training batch, number of neurons, and other hyperparameters in the BiLSTM network. The pre-
diction performance of the RNN, LSTM, BiLSTM, WOA-LSTM, and WOA-BiLSTM models were compared and analyzed. Ac-
cording to the error evaluation indices of MSE, MAE, RMSE, and R2, the prediction performance of the BiLSTM model is better 
than that of the RNN and LSTM models. The prediction performance of the WOA-LSTM and WOA-BILSTM models using WOA to 
optimize network parameters is better than that of the LSTM and BiLSTM models. The WOA-BiLSTM model is superior to other 
models as evinced by the four error-evaluation indices, which indicates that the model can mine the trends of variations in the 
process parameters more accurately; 
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(2) To derive the risk of abnormal fluctuations of process parameters based on residual time theory, including inherent risk and 
trend risk, process parameter values predicted by the WOA-BiLSTM model were used to construct a MINLF. This comprehensive 
model, referred to as WOA-BiLSTM-MINLF, was established to convert abnormal fluctuations of process parameters into dy-
namic risk values, enabling the real-time monitoring of equipment and hazardous materials and facilitating early risk prediction 
in the production process. Through case analysis, the study demonstrated the effectiveness of the model. Specifically, the WOA- 
BiLSTM-MINLF model could detect abnormal conditions approximately 16 min earlier than the DCS, thereby achieving ultra- 
early prediction of process parameters;  

(3) This study selects the process parameters related to equipment and materials when developing the model for predicting process 
parameters. These parameters comprise continuous data; hence, future research should explore the use of discrete data for risk 
prediction. To more comprehensively and accurately predict the evolving risks in coal chemical production processes, can 
ultimately guide enterprises in managing and controlling risks. 

Fig. 11. Model prediction performance without WOA.  

Fig. 12. Model prediction performance with WOA.  

Table 4 
Prediction errors of different models.  

Evaluation index RNN LSTM BiLSTM WOA-LSTM WOA-BiLSTM 

MSE 50.7041 12.6173 11.4301 4.1025 2.6289 
MAE 6.9271 2.9856 3.1880 1.4825 1.1399 
RMSE 7.1207 3.5521 3.3801 2.0255 1.6214 
R2 0.0336 0.7595 0.7821 0.9218 0.9499  
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