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Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause
several adverse health effects. Aerobic bioremediation of PCBs involves the activity
of either one bacterial species or a microbial consortium. Using multiple species will
enhance the range of PCB congeners co-metabolized since different PCB-degrading
microorganisms exhibit different substrate specificity. We have isolated a bacterial
consortium by successive enrichment culture using biphenyl (analog of PCBs) as the
sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate,
and protocatechuate. Whole-community DNA extracted from the consortium was used
to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library
and to determine the metagenome by whole-genome shotgun Illumina sequencing.
Biodiversity analysis shows that the consortium consists of 24 operational taxonomic
units (≥97% identity). The consortium is dominated by strains belonging to the
genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains.
whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of
sequenced DNA, representing around 65% of the expected DNA in the consortium.
Bioinformatic analysis of this metagenome has identified the genes encoding the
enzymes implicated in three pathways for the conversion of biphenyl to benzoate
and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates,
allowing us to model the whole biodegradation network. By genus assignment of
coding sequences, we have also been able to determine that the three biphenyl to
benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging
to Pseudomonas and Bordetella are the main responsible of three of the benzoate to
TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-
CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria
belonging to genera such as Achromobacter and Variovorax. We have isolated a
Rhodococcus strain WAY2 from the consortium which contains the genes encoding the
three biphenyl to benzoate pathways indicating that this strain is responsible for all the
biphenyl to benzoate transformations. The presented results show that metagenomic
analysis of consortia allows the identification of bacteria active in biodegradation
processes and the assignment of specific reactions and pathways to specific bacterial
groups.
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INTRODUCTION

Biphenyl has been widely used as a mineralizable polychlorinated
biphenyls (PCBs) analog in biodegradation studies (Leigh et al.,
2006; Uhlik et al., 2009; Leewis et al., 2016; Vergani et al., 2017a).
PCBs are a family of man-made persistent organic chemicals
that consist of a biphenyl skeleton where 1–10 hydrogen
atoms are substituted by chlorine giving rise to up to 209
congeners. PCBs have been widely manufactured because of their
chemical and physical properties (National Research Council,
1979) and a significant amount of PCBs has been released
into the environment (Pieper, 2005; Sharma et al., 2014). The
relative volatility of PCBs contributes to their spread throughout
the globe (Gomes et al., 2013) where they bioaccumulate and
biomagnify in the food web (Turrio-Baldassarri et al., 2007).
PCBs have been shown to pose a broad range of exposure-
related health effects in humans (Ross, 2004; Quinete et al., 2014)
and are categorized as carcinogens (Mayes et al., 1998; Lauby-
Secretan et al., 2013). Because of their chemical stability, poor
water solubility, and toxicity, PCBs are considered recalcitrant
toxics.

Bacteria can co-metabolize PCBs anaerobically and
aerobically. Anaerobic cometabolism consists of reductive
dehalogenation, a process in which highly chlorinated PCBs act
as electron acceptors and reduce their chlorination (Quensen
et al., 1988; Fennell et al., 2004). Thus, the biphenyl skeleton
is not degraded through this pathway. Aerobic biodegradation
on the contrary is better suited for low chlorinated congeners
(Pieper, 2005; Furukawa and Fujihara, 2008; Pieper and Seeger,
2008) and biphenyl can be aerobically mineralized either by a
single microorganism or by a consortium (Hernandez-Sanchez
et al., 2013). Aerobic bioremediation of PCBs has been one of
the main approaches to alleviate their persistence (Harkness
et al., 1993; Pieper, 2005; Sharma et al., 2017) and usually occurs
through its cometabolism by enzymes of the biphenyl upper
degradation pathway, encoded by the bphABCDEFG gene cluster
(Furukawa and Fujihara, 2008), although gene clusters for
ethylbenzene (etb) and naphthalene (nar) degradation have also
been shown to contribute to biphenyl and aerobic degradation
of PCBs (Kimura et al., 2006; Iwasaki et al., 2007), resulting in
the formation of (chloro)benzoic acid using biphenyl as carbon
and energy source (Pieper, 2005; Pieper and Seeger, 2008). The
specificity toward different PCB congeners depends mainly of
the particular BphA enzyme (Gibson and Parales, 2000), some
of which have been shown to produce the dechlorination of
certain chlorinated biphenyls (Haddock et al., 1995; Seeger
et al., 2001). The genes from the biphenyl upper degradative
pathway have been extensively studied in Paraburkholderia
xenovorans LB400, Pseudomonas pseudoalcaligenes KF707, and
Rhodococcus jostii RHA1 due to the wide range of PCB congeners
that they are able to metabolize (Seeger et al., 1995; Seto et al.,
1995; Mondello et al., 1997; Furukawa and Fujihara, 2008).
Aerobic degradation of PCBs usually occurs via cometabolism as
their chlorinated derivatives might be channeled into dead-end
pathways (Brenner et al., 1994) and it has been shown that some
chlorinated intermediates are toxic to bacteria (Dai et al., 2002;
Camara et al., 2004). After formation of (chloro)benzoic acid, it

can be further funneled through catechol, protocatechuate, or
the box pathways, ending up into tricarboxylic acid (TCA) cycle
intermediates (Harwood and Parales, 1996; Gescher et al., 2002),
known as the lower biphenyl degradation pathways.

Strategies for bioremediation of PCBs have been mainly
focused on single microorganisms, either natural or modified
(Haluska et al., 1995; Abbey et al., 2003; Sierra et al., 2003;
Villacieros et al., 2005; Saavedra et al., 2010), which combined
with biostimulation and bioaugmentation have resulted in
enhanced degradation capabilities of a wide range of congeners
(Singer et al., 2000; Fava et al., 2003; Ohtsubo et al., 2004;
Field and Sierra-Alvarez, 2008). On the other hand, plant–
microorganism interaction also plays a major role in degradation
of PCBs (Leigh et al., 2006; Gerhardt et al., 2009; Vergani
et al., 2017b). The use of PCB-degrading strains together with
others that are capable of degrading their metabolic products
(i.e., chlorinated benzoic acids) has also shown to extend the
degradation rate of PCBs and results in complete mineralization
of certain chlorobiphenyls (Fava et al., 1994; Hernandez-Sanchez
et al., 2013).

In this study, we report the isolation and characterization
of a soil bacterial consortium that is able to grow aerobically
with the PCBs analog biphenyl as the sole carbon and energy
source. In order to characterize this consortium, we have followed
a metagenomic approach. Previous work using stable isotope
probing (SIP) has shown to be useful in order to identify
the bacterial populations implicated in biphenyl and benzoate
degradation in soil microcosms (Leewis et al., 2016). However,
the complexity of the bacterial community and the abundance
of cross-feeders limit the study. Here, we show that reducing
the community complexity to a lower number of bacterial
populations by means of enrichment cultures, the metagenomic
analysis allows not only to identify the populations playing a
role in biphenyl and benzoate degradation but also to assign
specific reactions and pathways to specific populations and
therefore elucidating the trophic relationships occurring within
the consortium to a higher detail.

MATERIALS AND METHODS

Isolation of the Biphenyl-Degrading
Consortium and Growth Conditions
For the isolation of the biphenyl-degrading consortium, 2 g of
rhizospheric soil collected near a petrol station (Tres Cantos,
Madrid, Spain) was added to 500 ml of sterile liquid minimal salt
medium (MM) (Brazil et al., 1995), supplemented with 1 ml/l
of phosphate-buffered mineral medium salts (PAS) (Bedard
et al., 1986) and 0.005% of yeast extract. One gram per liter
of biphenyl crystals was added as the sole carbon and energy
source. The culture was grown at 28◦C with shaking (135 rpm)
and maintained within a 9-day subculture. After five subcultures,
when the culture was unable to grow without biphenyl as the sole
carbon and energy source, 20 ml of the culture was centrifuged
at 4,248 × g. The pellet was then resuspended in 0.75 ml of
MM+PAS and mixed with 0.25 ml of glycerol (80%) and deep-
frozen at −80◦C. The isolated consortium was routinely grown
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on MM+PAS with 1 g/l of biphenyl as the sole carbon and energy
source at 28◦C with shaking. For solid media, 1.5% agar (w/v) was
added to the media and the biphenyl crystals were placed on the
Petri dish lid.

The culture growth assessment on different organic
compounds was performed as above but benzoic
acid, protocatechuate, benzoate, 2-chlorobenzoic acid,
3-chlorobenzoic acid, or 4-chlorobenzoic acid (1 g/l) were
added as the sole carbon and energy source.

DNA Extraction, Sequencing, Processing
of Reads, and Assembly
DNA extraction from the biphenyl-degrading consortium at
exponential growth (OD600 = 0.6) was carried out using the
Realpure Genomic DNA Extraction Kit (Durviz, Spain). The
16S rRNA gene and the complete metagenome were sequenced
by means of amplification of the V3–V4 16S rRNA region
(primers 16SV3-V4-CS1; 5′-ACA CTG ACG ACA TGG TTC
TAC ACC TAC GGG NGG CWG CAG-3′ and 16SV3-V4-CS2;
5′-TAC GGT AGC AGA GAC TTG GTC TGA CTA CHV
GGG TAT CTA ATC C-3′) prior to libraries preparation and by
whole-genome shotgun sequencing, respectively. The sequencing
was carried out by Parque Científico de Madrid (Spain) using
Illumina MiSeq paired 300-bp reads. Reads from the 16S rRNA
gene and the whole metagenome were filtered and trimmed using
Trimmomatic v0.36 (Bolger et al., 2014) software. Those with
less than 50 nts in the case of the 16S rRNA gene or 100 nts in
the case of the whole metagenome were removed. Reads from
whole-metagenome sequencing were assembled using SPAdes
v.10.1 software (Bankevich et al., 2012), metaSPAdes option, and
default settings. Assembly quality was assessed using QUAST v4.4
(Gurevich et al., 2013). The resulting contigs were annotated
using RAST (Aziz et al., 2008).

Reconstruction of Nearly Complete
Genomes from Metagenome Shotgun
Sequencing
Trimmed pair-reads from the whole-metagenome shotgun
sequencing (as described above) were mapped against all
available and closed NCBI genomes of Achromobacter, Bordetella,
Cupriavidus, Microbacterium, Pseudomonas, Rhodococcus, and
Stenotrophomonas using bowtie2 v 2.3.3.1 software (Langmead
and Salzberg, 2012) with an expected range of inter-mate
distances between 373 and 506 nts, consecutive seed extension
attempts of 20, number of mismatches allowed in a seed
alignment of 0, and length of the seed substrings to align of
20. For each genus, mapping reads and those without matching
alignments across all genera examined were merged, processed,
and retrieved with samtools v1.6 software (Li et al., 2009) for
further assembly with SPAdes. Chimeric and misassigned contigs
were checked by comparing assemblies of each genus against the
same databases used for reads mapping using BLAST v.2.2.28+
software (Camacho et al., 2009). Contigs without positive hits
within the expected genus were removed along with those
with matching hits belonging to different genera. Contigs of
Cupriavidus, Microbacterium, and Rhodococcus assemblies were

also removed as genomic sizes were too small for a complete or
nearly complete genome. In the case of Pseudomonas, contigs
were also classified as belonging to P. pseudoalcaligenes or
P. putida based on best blast hits.

Diversity Analysis of the 16S rRNA Gene
and Coding DNA Sequences (CDSs)
Data analysis of the 16S rRNA gene diversity was assessed
with QIIME v1.9.0 (Caporaso et al., 2010) and UPARSE v9
(Edgar, 2013) following the 16S profiling data analysis pipeline
specified in the Brazilian Microbiome Project1. Briefly, filtered
and trimmed forward and reverse reads were assembled using the
fastq-join algorithm2 and further length-filtered by a minimum
of 430 nts, representing more than 99% of total reads. Singletons
were also removed. These sequences were imported into UPARSE
to identify operational taxonomic units (OTUs) at a 97%
sequence identity. Chimeras were removed using SILVA v123
database (Quast et al., 2013) as reference, which was also used
for genus assignation. QIIME was also used to perform alpha
rarefaction analysis. Convergence of observed OTUs rarefaction
curve was determined using R (R Core Team, 2013) and the R
package iNEXT (Hsieh et al., 2016) with a bootstrapping of 1,000
and a confidence interval of 5%.

To assess the diversity of coding DNA sequences (CDSs), after
whole-metagenome assembly and annotation (see above), CDSs
were blasted against the NCBI nt database (on April 2017) using
blastn from BLAST v2.2.28+ software (Camacho et al., 2009).
For each query, the first hit was kept and further filtered by a
minimum of 75% sequence identity and 50% coverage. Genus
assignation of the CDSs was based on the subject entry.

Identification of CDSs Involved in
Biphenyl Metabolism and Phylogenetic
Analysis
Aminoacid sequences for biphenyl 2,3-dioxygenase (BphA1),
BenA, benzoate-CoA ligase (BclA), CatA, CatE, PobA,
protocatechuate 4,5-dioxygenase alpha subunit (LigA), and
protocatechuate 3,4-dioxygenase alpha subunit (PcaG) enzymes
(Supplementary File 1) were downloaded from the NCBI and
used to build blast databases using makeblastdb from BLAST.
These databases were used as queries for orthologs identification
within the whole-metagenome proteome. Results were filtered
by 75% sequence identity, 50% coverage, and 1e−10 expected
value and further blasted against the nr NCBI database (on April
2017) to validate their annotation. After orthologs identification,
clusters of CDSs were searched within the whole-metagenome
contigs and represented using own Perl scripts. Contigs carrying
bph CDSs were also compared with those reported on reference
sequences of Rhodococcus strains HA99 (AB272986.1), RHA1
(AB120955.1), and SAO101 (AB110633.1) to reconstruct
the gene clusters using Clustal Omega (Sievers et al., 2011).
Synteny representation was based on GenBank annotations and
represented as described above.

1http://www.brmicrobiome.org/
2https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqJoin.md
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Phylogenetic Analysis
BphA1, NarA1, and EtbA1 protein sequences from the
metagenome annotation of the biphenyl-degrading consortium
were aligned using Clustal Omega (Sievers et al., 2011) against
15 well-known BphA1 and closely related NarA1 and EtbA1
protein sequences. Results were imported into MEGA v7
(Kumar et al., 2016) to build the phylogenetic tree using
maximum-likelihood with Tamura–Nei model, 1,000 bootstrap
replicates, and represented with MEGA. BenA protein sequence
of Pseudomonas putida PRS200 was used as an outgroup.

Rhodococcus Isolation and Genetic
Analysis
Rhodococcus sp. WAY2 was isolated by plating washed (NaCl2
0.85%) and diluted biphenyl-degrading consortium culture on
MM+PAS solid medium with biphenyl (1 g/l) as the sole carbon
and energy source. After 12 days of incubation at 28◦C, colonies
were replated under the same conditions as above. This process
was repeated twice. Finally, a single colony was grown on liquid
MM+PAS media supplemented with 1 g/l of biphenyl. The
culture was centrifuged at 4,248 × g prior to DNA extraction
using the Realpure Genomic DNA Extraction Kit (Durviz, Spain).
16S rRNA gene was amplified using the universal primer pairs
27F (5′-AGA GTT TGA TCM TGG CTC AG-3′) and 1492R (5′-
CTA CGR RTA CCT TGT TAC GAC-3′) (Weisburg et al., 1991).
Amplicons were cloned into pGEM R©-T Easy Vector System I
(Promega) and transformed into E. coli DH5α. Plasmid DNA
was extracted using the kit Wizard R© Plus SV Minipreps DNA
Purification System (Promega). Inserts were sequenced by means
of Sanger sequencing using the universal primers T7 and SP6.

The three bph gene clusters identified in the whole
metagenome of the biphenyl-degrading consortium were
screened by PCR on the genome of the isolated Rhodococcus sp.
WAY2 using the own-designed primers BphClus1F (5′-CGC
CTC ATC ACG AAT GTG ACC G-3′), BphClus1R (5′-GCG
TCC TCA TGC GTA CAG GTG TCC-3′), BphClus2F (5′-CGA
CTG CTC GGA CTG GAG GG-3′), BphClus2R (5′-CCC ATC
GAG TTA CCG ACT ATG TGC G-3′), BphClus3F (5′-GCC
CGA CCA AGC AGT ACA AAG TG-3′), and BphClus3R
(5′-GTC CAG TCG GAC TTC ACG TCG-3′). Primers were
designed on the genomic sequence of these clusters. Melting
temperature, absence of dimerization and hairpin formation, and
lack of secondary priming sites were assessed with OligoAnalyzer
3.13. PCR was carried out in a total volume of 25 µl containing
2.5 µl of 10× PCR buffer MgCl2 free, 1 µl MgCl2 50 mM,
0.5 µl dNTP mix 10 mM (2.5 µM each), 1 µl of each primer
at 10 µM, 1 µl of Taq DNA polymerase 1 U/µl (Biotools), and
1 µl of DNA template 30–50 ng/µl. The cycling conditions
consisted in a first denaturation step at 95◦C for 5 min followed
by 32 cycles of amplification (45 s denaturation at 95◦C, 45 s of
primer annealing at 58◦C, and an elongation step at 72◦C for
1.5 min) followed by a final elongation step at 72◦C for 7 min.
PCR products were electrophoretically separated in 0.8% (w/v)
agarose gels and post-dyed with GelRed.

3https://eu.idtdna.com/calc/analyzer

FIGURE 1 | Diversity and composition of the biphenyl-degrading consortium.
(A) Rarefaction curve of observed OTUs (≥97% sequence identity) over the
number of 16S rRNA sequences and (B) relative abundance of genus based
on 16S rRNA and CDSs taxonomic assignment. Only taxa with a minimum
relative abundance of 0.15% for 16S rRNA and 0.9% for CDSs is represented.

Sequence Deposition
Raw reads of the 16S rRNA gene amplicons and whole-
metagenome shotgun sequencing of the biphenyl-degrading
consortium were deposited to the NCBI Sequence Read Archive
under the accession numbers SRR6076973 and SRR6076972,
respectively. Assemblies of Achromobacter sp., Bordetella sp.,
P. pseudoalcaligenes, Pseudomonas sp., and Stenotrophomonas
sp. reconstructed from the metagenome were deposited to
GenBank under the accession numbers PKCB00000000,
PKCD00000000, PKCC00000000, PKCE00000000, and
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PKCF00000000, respectively. The 16S rRNA gene sequence
of the isolated Rhodococcus sp. WAY2 was submitted to GenBank
and it is available under the accession number MF996860. The
16S rRNA gene sequence of the 24 identified OTUs is shown in
Supplementary File 2.

RESULTS AND DISCUSSION

Metagenomic Sequencing and Bacterial
Diversity
After sequencing the 16S rRNA genes of bacteria in the biphenyl-
degrading consortium, a total of 44,644 sequences were obtained
and assigned to 24 OTUs (≥97% sequence identity). The
rarefaction curve shows a clear and early saturation of observed
OTUs, as shown in Figure 1A, which indicates that a full
community coverage was achieved before 40,000 sequences and
the presence of other taxa is unlikely. Furthermore, statistical
analysis of the rarefaction curve (Supplementary File 3) showed
that doubling the sampling would not increase the number of
detected OTUs. On the other hand, the whole-genome shotgun
sequencing of the metagenome resulted in 78.4 Mpb distributed
in 45,046 contigs (Supplementary File 4). After annotation,
66,967 coding DNA sequences (CDSs) were obtained, from
which 47,689 (71.2%) were assigned to the genus level, showing
a high concordance with the identified OTUs. The relative
abundance of the 16S rRNA and the CDSs (Figure 1B) shows
that the biphenyl-degrading consortium is clearly dominated
by Pseudomonas (28.97% 16S rRNA and 41.57% CDSs). Other
genera that are present in the consortium are Bordetella (21.28%
16S rRNA and 11.75% CDSs), Achromobacter (12.67% 16S
rRNA and 9.88% CDSs), Stenotrophomonas (8.57% 16S rRNA
and 12.99% CDSs), Rhodococcus (2.18% 16S rRNA and 8.17%
CDSs), and Cupriavidus (1.51% 16S rRNA and 7.62% CDSs).
This distribution is detailed in Supplementary File 5. The main
difference between the 16S rRNA and CDSs relative genus
abundance lies in Pigmentiphaga, which is relatively abundant
in the 16S rRNA analysis (20.54%) but is almost absent on
CDSs representation (0.04%). This is probably due to lack of
sequenced Pigmentiphaga genomes in the NCBI database, which

makes CDSs assignation to this genus impossible and explains
the higher relative abundance of the remaining genera in the
CDSs diversity analysis. However, some genera, such as Bordetella
and Achromobacter, have a lower relative CDSs representation
than in the 16S rRNA. This could be explained by an incomplete
metagenome, given that around 120 Mpb metagenome size
was expected (considering an average bacterial genome size of
5 Mpb) to achieve a full genomic representation of the 24 OTUs
identified in the biphenyl-degrading consortium. Furthermore,
the presence of only 16 16S rRNA genes annotated in the
metagenome is congruent with an incomplete one. However,
it is important to indicate that the seven most represented
genera represent more than 95% of the bacterial community
and 96% of the identified CDS (Figure 1B), indicating a high
coverage of the metagenome. This level of coverage would
be impossible to achieve analyzing directly a soil sample or
microcosm.

On the other hand, we have been able to reconstruct five
nearly complete genomes from the whole-metagenome sequence,
which correspond with the most abundant OTUs identified in
the consortium (Table 1). These include two genomes classified
as P. pseudoalcaligenes and Pseudomonas sp., Achromobacter sp.,
Bordetella sp., and Stenotrophomonas sp. Their genomic sizes and
%GC content are congruent with their closest relative genome.

Identification of Biphenyl Upper
Degradative Pathway Gene Clusters
In order to identify the metabolic pathways involved in
the biphenyl biodegradation that are present in the whole
metagenome of the biphenyl-degrading consortium, alpha
subunits of the BphA1 were used as query to search for
orthologous sequences. Three different BphA1 were identified
(Table 2), which are present in three different contigs and are
classified as belonging to the Rhodococcus genus by sequence
identity (Supplementary File 6). BphA1 encodes the α subunit
of biphenyl dioxygenases, and are responsible for the enzyme
specificity (Gibson and Parales, 2000). As shown in Figure 2D,
BphA1 proteins can be classified into three families. Typical
BphA1 have been identified and characterized in many bacterial

TABLE 1 | Genomic statistics of the five nearly complete genomes reconstructed from the whole-metagenome sequence of the biphenyl-degrading consortium.

Assembly
(Accs. No.)

OTU No.a Closest relative
genomeb (Accs. No.)

Contigs Largest contig Total length GC% N50

Achromobacter sp.
(PKCB00000000)

4 A. xylosoxidans DPB_1
(MTLI00000000.1)

2,603 31,468 7,352,073 65.7 3,641

Bordetella sp.
(PKCD00000000)

2 B. petrii DSM 12804
(NC_010170.1)

2,637 33,811 5,644,602 65.3 3,914

Pseudomonas
pseudoalcaligenes
(PKCC00000000)

3 P. pseudoalcaligenes
KF707 (NZ_AP014862.1)

1,404 73,619 5,455,424 66.2 8,550

Pseudomonas sp.
(PKCE00000000)

12 P. putida KF715
(NZ_AP015029.1)

7,053 12,148 6,703,495 63.4 1,079

Stenotrophomonas
sp. (PKCF00000000)

5 S. maltophilia ISMMS3
(NZ_CP011010.1)

411 38,486 4,489,164 66.8 12,006

aSee Supplementary File 2. bAccording to contigs size and best blast hits.
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TABLE 2 | Summary of the number and genus affiliation of the main CDSs for
enzymes involved in the biphenyl and metabolic derivatives degradation identified
in the biphenyl-degrading consortium.

Gene Protein/genus assignation Number of CDSs

bphA1 Biphenyl 2,3-dioxigenase (EC 1.14.12.18) 3

Rhodococcus 3

benA1 Benzoate 1,2-dioxigenase (EC 1.14.12.10) 10

Pseudomonas 5

Bordetella 4

Rhodococcus 1

catA Catechol 1,2-dioxygenase (EC 1.13.11.1) 13

Pseudomonas 5

Rhodococcus 4

Bordetella 2

Achromobacter 1

Variovorax 1

catE Catechol 2,3-dioxygenase (EC 1.13.11.2) 5

Variovorax 2

Cupriavidus 2

Uncultured/unclassified 1

pobA 4-Hydroxybenzoate 3-monooxygenase (EC 1.14.13.2) 10

Pseudomonas 4

Bordetella 2

Uncultured/unclassified 1

Achromobacter 1

Ralstonia 1

Rhodococcus 1

pcaG1 Protocatechuate 3,4-dioxygenase (EC 1.13.11.13) 9

Pseudomonas 4

Achromobacter 2

Bordetella 1

Cupriavidus 1

Ralstonia 1

ligA1 Protocatechuate 4,5-dioxygenase (EC 1.13.11.8) 4

Uncultured/unclassified 2

Pseudomonas 1

Bordetella 1

boxA1 Benzoyl-CoA oxygenase (EC 1.14.13.208) 4

Achromobacter 3

Variovorax 1

1Only alpha subunits of multimeric enzymes are considered.

strains, including P. xenovorans LB400 (Seeger et al., 1995),
P. pseudoalcaligenes KF707 (Taira et al., 1992), and R. jostii
RHA1 (Seto et al., 1995). None of the BphA1 CDS identified
here belongs to this family. A second family of atypical BphA1
was identified in several strains of the genus Rhodococcus,
including strains HA99 and R04 (Taguchi et al., 2007; Yang
et al., 2007). One of the CDS identified here is identical to
these atypical BphA1. The other family is formed by proteins
with proved BphA1 activity, but formerly identified as NarA1
or EtbA1. These proteins have also been identified within the
genus Rhodococcus (Kimura et al., 2006; Iwasaki et al., 2007)
and two of the BphA1 CDSs identified here are identical to
CDSs in Rhodococcus opacus SAO101 and R. jostii RHA1,
respectively. On the other hand, the comparison between these

CDSs and the ones previously reported in other Rhodococcus
strains sequences allowed us to reconstruct the bph gene
clusters from the whole-metagenome contigs, as shown in
Figure 2. The first cluster (Figure 2A) was reconstructed from
four different metagenome contigs and shows high sequence
identity with the bph gene clusters reported in Rhodococcus
sp. HA99 (Taguchi et al., 2007). This cluster is composed
by bphBCA1A2A3A4 and bphD, which are responsible for
biphenyl and PCBs degradation into (chloro)benzoate and 2-
hydroxypenta-2,4-dienoate (Taguchi et al., 2007). The second
gene cluster (Figure 2B) was reconstructed from three different
metagenome contigs and presents high sequence identity with
bph and etb gene clusters which have been reported to be
involved in both, biphenyl and PCBs degradation in R. jostii
RHA1 (Iwasaki et al., 2006, 2007). This cluster is composed
by etbA1A2C and bphDE2F2. The third gene cluster is present
in a single metagenome contig (Figure 2C) and shows high
sequence identity with nar gene clusters previously described
in the plasmid pWK301 of R. opacus SAO101 (Kimura et al.,
2006). This gene cluster is composed by narA1A2BC and two
transcriptional regulators narR1R2 and it has been reported to
be involved in the degradation of a wide range of substrates,
including biphenyl and PCBs (Kimura and Urushigawa, 2001;
Kitagawa et al., 2004; Kimura et al., 2006). These results strongly
suggest that Rhodococcus is the only genus responsible for
initiating the biphenyl degradation in the consortium and that
initial degradation can proceed through three distinct pathways.
To our knowledge, multiple pathways have only been found in
R. jostii RHA1, where a bph and an etb pathways have been
described (Iwasaki et al., 2006, 2007).

To further study if the bph, etb, and nar gene clusters identified
in the metagenome belong to one or multiple Rhodococcus strains
that might be present in the biphenyl-degrading consortium,
we isolated a Rhodococcus strain (R. sp. WAY2) from the
consortium and tested for the presence of these three gene
clusters by means of PCR. The results revealed that the three
clusters are present in a single Rhodococcus strain WAY2,
which 16S rRNA showed a high sequence identity (>99%) with
R. jostii RHA1. This might suggest that the etb gene cluster
is present in the chromosome of the isolated WAY2 strain as
it is in the case of RHA1, while bph and nar gene clusters
could be present in plasmids, as reported in strains HA99
and SAO101, respectively (Kimura et al., 2006; Taguchi et al.,
2007).

Identification of Biphenyl Lower
Degradative Pathway Genes
Biphenyl is metabolized to benzoate and 2-hydroxypenta-
2,4-dienoate by either the bph, etb, or nar gene clusters.
Benzoate can be then further mineralized by three different
aerobic pathways: catechol, protocatechuate, or benzoyl-coA
ligation (Harwood and Parales, 1996; Rather et al., 2010; Fuchs
et al., 2011). All the CDSs for enzymes of these aerobic
benzoate degradation pathways were screened and found in
the metagenome of the biphenyl-degrading consortium and
are summarized in Table 2 (for details see Supplementary File
6). The benzoate degradative pathway via catechol formation
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FIGURE 2 | Synteny and sequence identity of gene clusters involved in biphenyl degradation compared with reference sequences. (A) Biphenyl degradative gene
cluster, (B) ethylbenzene degradative gene cluster, and (C) naphthalene degradative gene cluster. Rhodococcus sp. HA99, R. jostii RHA1, and R. opacus SAO101
sequences are shown as reference. Contigs from the metagenome are represented as black lines and their ID number is shown below. Black arrows represent
hypothetical genes. Percentage according to nucleotide sequence identity of the CDSs. (D) Phylogenetic tree showing the relation of the isolated BphA1 protein
sequences with previously characterized proteins. A BenA protein sequence from Pseudomonas putida was used as an outgroup.

is first initiated by BenABCD to form catechol. The coding
sequence for benzoate 1,2-dioxygenase alpha subunit (BenA)
was found 10 times in different contigs and was mainly
assigned to Pseudomonas (five) and Bordetella (four). The
remaining one was assigned to Rhodococcus (Table 2). After
catechol formation, it can be further mineralized by ortho
or meta cleavage, in which catechol 1,2-dioxygenase (CatA)
or catechol 2,3-dioxygenase (CatE) is, respectively, involved.
The coding sequence of CatA was found 13 times in the
metagenome and was mainly assigned to Pseudomonas (five)
and Rhodococcus (four). The remaining ones were assigned
to Bordetella (two), Achromobacter (one), and Variovorax

(one) (Table 2). On the other hand, the coding sequence
for CatE was found five times in the metagenome and
was assigned to Variovorax (two), Cupriavidus (two), and
the remaining two could not be assigned (Table 2). These
results suggest that the degradation of benzoate via catechol is
mainly supported by Pseudomonas, Bordetella, and Rhodococcus,
while other genera such as Achromobacter, Variovorax, and
Cupriavidus have a smaller involvement in this pathway.
Regarding the presence of this pathway in Rhodococcus, the
isolated strain R. sp. WAY2 was unable to grow on benzoate
as the sole carbon and energy source, suggesting that another
Rhodococcus strain, different than the one harboring the bph,
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FIGURE 3 | Box gene clusters identified in the metagenome of the biphenyl-degrading consortium. Black arrows represent genes with no involvement in benzoate
degradation. Genus assignation of the clusters based on sequence identity of CDSs.

TABLE 3 | Summary of the pathways assigned to the main genus present in the biphenyl-degrading consortium.
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Relative abundance (%)

Genus 16S rRNA CDSs

Pseudomonas 28.97 41.57 + + + + +

Bordetella 21.28 11.75 + + + + +

Pigmentiphaga 20.54 0.04

Achromobacter 12.67 9.88 + + + +

Stenotrophomonas 8.57 12.99

Rhodococcus 2.16 8.18 + + + +

Cupriavidus 1.51 7.62 + + +

etb, and nar gene clusters, is present in the biphenyl-degrading
consortium.

Benzoate can also be metabolized via protocatechuate
formation, in which a benzoate 4-monooxygenase (CYP450)
and a 4-hydroxybenzoate 3-monooxygenase (PobA) are involved
(Fuchs et al., 2011). The coding sequence of PobA was found
10 times in different contigs in the metagenome and was
assigned to Pseudomonas (four), Bordetella (two), Achromobacter
(one), Ralstonia (one), Rhodococcus (one), and the remaining
one could not be assigned to any genus (Table 2). After
protocatechuate formation, it can also be mineralized via ortho
and meta cleavage, in which protocatechuate 3,4-dioxygenase
(PcaGH) and protocatechuate 4,5-dioxygenase (LigAB) are,
respectively, involved. The coding sequence for PcaG was
found nine times in the metagenome and was assigned to
Pseudomonas (four), Achromobacter (two), Bordetella (one),
Cupriavidus (one), and Ralstonia (one) (Table 2). On the
other hand, the coding sequence of LigA was found four
times in the metagenome and was assigned to Pseudomonas
(one) and Bordetella (one). The remaining ones could not
be assigned to any genus (Table 2). These results suggest

that the degradation of benzoate via protocatechuate formation
is also dominated by Pseudomonas and Bordetella, harboring
both, the ortho and meta protocatechuate cleavage pathways,
while Achromobacter, Ralstonia, and Cupriavidus only have the
coding sequences for protocatechuate formation and/or its ortho-
cleavage pathway.

Finally, benzoate can also be mineralized by a novel pathway
in which acetyl-CoA is first ligated to benzoate by a BclA
and further epoxidated by benzoyl-CoA 2,3-epoxidase (BoxAB)
(Rather et al., 2010). The coding sequence for BoxA was
found four times in different contigs in the metagenome
and was assigned to Achromobacter (three) and Variovorax
(one) (Table 2). Contigs carrying the BoxA-coding sequence
were also found to contain the remaining genes for the box
cluster (boxABCD and bclA), along with the transcriptional
regulator boxR and several coding sequences involved in benzoate
transport, as shown in Figure 3. However, two of these
contigs assigned to Achromobacter lack the boxD gene, which
might result in dead-end production of 3,4-didehydroadipyl-
CoA semialdehyde and formate, although they could be source
of carbon and energy through alternative pathways.
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FIGURE 4 | Pathways from biphenyl degradation identified in the metagenome of the biphenyl-degrading consortium. Blue, biphenyl degradation; red, benzoate
degradation via catechol; black, benzoate degradation via protocatechuate; violet, protocatechuate degradation via meta cleavage; purple, protocatechuate
degradation via ortho cleavage; yellow, catechol degradation via ortho cleavage; orange, catechol degradation via meta cleavage; green, benzoate degradation via
benzoyl-CoA formation. All the genes shown in the graph have been found in the metagenome of the biphenyl-degrading consortium. Their number of CDSs and
genus assignation are specified under the gene names. Compounds: I, biphenyl; II, 2,3-dihydroxy-4-phenylhexa-4,6-diene; III, 2,3-dihydroxybiphenyl; IV,
2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate; V, 2-hydroxypenta-2,4-dienoate; VI, 4-hydroxy-2-oxopenta; VII, benzoate; VIII, 2-hydro-1,2-dihydroxybenzoate;

(Continued)
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FIGURE 4 | Continued
IX, catechol; X, cis,cis-muconate; XI, mucolactone; XII, 3-oxooadipate enol-lactone; XIII, 3-oxoadipate; XIV, 2-hydroxy-muconate-6-semialdehyde; XV,
2-oxo-penta-4-enoate; XVI, 4-hydroxy-2-oxovalerate; XVII, benzoyl-CoA; XVIII, 2,3-epoxy-benzoyl-CoA; XIX, 3,4-dehydroadipyl-CoA semialdehyde; XX,
3,4-dehydroadipyl-CoA; XXI, hydroxybenzoate; XXII, protocatechuate; XXIII, 2-hydroxy-4-carboxymuconic semialdehyde; XXIV, 2-keto-4-carboxypenta-enoate; XXV,
4-hydroxy-4-carboxy-2-ketovalerate; XXVI, 3-carboxy-cis,cis-muconate; and XXVII, 4-carbxymucolactone. Genes: bphA1A2A3A4, biphenyl 2,3-dioxygenase; bphB,
cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase; bphC, biphenyl-2,3-diol 1,2-dioxygenase; bphD, 2,6-dioxo-6-phenylhexa-3-enoate hydrolase; bphE,
2-hydroxypenta-2,4-dienoate hydratase; bphF, 4-hydroxy-2-oxovalerate aldolase; benABC, benzoate 1,2-dioxygenase; benD,
1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase; catA, catechol 1,2-dioxygenase; catB, muconate cycloisomerase; catC, muconolactone
delta-isomerase; catD, 3-oxoadipate enol-lactonase; catIJ, 3-oxoadipate CoA-transferase; catF, 3-oxoadipyl-CoA thiolase; catE, catechol 2,3-dioxygenase; 2HM H,
2-hydroxymuconate semialdehyde hydrolase; 2OE H, 2-oxopent-4-enoate hydratase, 4HO A, 4-hydroxy-2-oxovalerate aldolase; B4M, benzoate 4-monooxygenase;
pobA, 4-hydroxybenzoate 3-monooxygenase; ligAB, protocatechuate 4,5-dioxygenase; ligC, 2-hydroxy-4-carboxymuconate semialdehyde hemiacetal
dehydrogenase; ligI, 2-pyrone-4,6-dicarboxylate lactonase; ligJ, 4-oxalomesaconate hydratase; ligK, 4-hydroxy-4-methy-2-oxoglutarate aldolase; pcaGH,
protocatechuate 3,4-dioxygenase; pcaB, 3-carboxy-cis,cis-muconate cycloisomerase; pcaC, 4-carboxymuconolactone decarboxylase; blcA, benzoate CoA-ligase;
boxAB, benzoyl-CoA 2,3-epoxidase; boxC, 2,3-epoxybenzoyl-CoA dihydrolase; and boxD, 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP(+)).

Population Roles in the
Biphenyl-Degrading Consortium
The catabolic pathways for biphenyl and its metabolic derivatives
found in the metagenome of the biphenyl-degrading consortium
and the genus affiliation of the coding sequences for these
pathways (Table 2 and Supplementary File 6) provide a complete
understanding of the different roles of the main bacterial
populations that are present in the consortium with regard
of their relative abundance. It is interesting to note that the
seven most represented genera in the consortium have been
identified as the source of 90% of the CDSs identified in the
biphenyl/benzoate degradation pathways and that these genera
harbor all the enzymatic activities in the degradation pathways.
These results reflect a high degree of functional redundancy,
as the same reactions seem to be carried out by different taxa.
These results are summarized in Table 3 and the metabolic
pathways reconstructed for the biphenyl-degrading consortium
is represented in Figure 4. Rhodococcus is the genus responsible
for initiating the biphenyl degradation into benzoate as the three
BphA1 that have been found in the metagenome have been only
assigned to this genus. Furthermore, the presence of complete
gene clusters for bph, etb, and nar in a single Rhodococcus
strain, and the previous reports of the involvement of these
clusters in both biphenyl and PCBs degradation (Kimura et al.,
2006; Iwasaki et al., 2007; Taguchi et al., 2007), makes this
strain suited for bioremediation of PCBs. However, although the
consortium was not able to grow in any of the chlorobenzoates
tested (2-, 3-, or 4-chlorobenzoic acid) as the sole carbon
and energy source (Table 4), cometabolism of chlorobenzoates
as well as PCB congeners should be further analyzed. After
formation of benzoate as the product of biphenyl degradation,
the remaining bacterial populations can thrive, either by using
benzoate, catechol, or protocatechuate. Our results show that
protocatechuate and catechol degradative pathways in the
consortium are rather abundant (Table 2), and are dominated by
Pseudomonas and Bordetella, harboring genes for both, ortho and
meta cleavage of protocatechuate and ortho cleavage of catechol.
The relative high abundance of this genus in the consortium can
be explained by the different alternative pathways for benzoate
and its metabolic derivates degradation. Other genera such as
Achromobacter and Cupriavidus are likely using catechol and/or
protocatechuate to grow (Table 3). In addition, the consortium

TABLE 4 | Consortium growth on different organic compounds as the sole carbon
and energy source.

Substrate Growth

Biphenyl +

Benzoic acid +

Protocatechuic acid +

2-Chlorobenzoate −

3-Chlorobenzoate −

4-Chlorobenzoate −

was able to grow on benzoate and protocatechuate as the sole
carbon and energy source (Table 4), which is in agreement with
the results presented here. On the other hand, the benzoate
degradative pathway via acetyl-CoA ligation was mainly assigned
to Achromobacter, which explains its presence in the consortium
although it could also use protocatechuate and catechol via ortho
cleavage (Table 3).

Interestingly, two of the most abundant genera within the
consortium, Pigmentiphaga and Stenotrophomonas (20.54 and
8.57% 16S rRNA relative abundance, respectively) do not
have any of the coding sequences for enzymes screened in
the metagenome (Table 2 and Supplementary File 6). In the
case of Pigmentiphaga, it is clear that the lack of sequenced
genomes available on the NCBI database (on April 2017)
prevented the affiliation of CDSs to this genus. However, it is
unclear if any of the coding sequences for enzymes of these
pathways that could not been assigned to any genus (Table 2)
might belong to Pigmentiphaga or if other metabolic abilities
are involved. Regarding Stenotrophomonas, it is a common
member of biphenyl, PCBs, and other aromatics-degrading
communities (Leigh et al., 2007; Uhlik et al., 2013; Wald
et al., 2015) and exhibits high metabolic versatility (Hauben
et al., 1999). Its presence in the biphenyl-degrading consortium
might be explained by cross-feeding on secondary metabolites
produced by the rest of the consortium members, as it has
been previously suggested (Wald et al., 2015). These results
show that the metagenomic analysis of this consortium allows
the determination of the biodegradation network involved in
biphenyl degradation, being able to determine the specific role
of different bacterial populations in the biodegradation process.
The combination of these data with transcriptomic/proteomic

Frontiers in Microbiology | www.frontiersin.org 10 February 2018 | Volume 9 | Article 232

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00232 February 13, 2018 Time: 19:15 # 11

Garrido-Sanz et al. Metagenomics of Biphenyl-Degrading Bacterial Consortium

and metabolomic approaches could result in robust models of
biodegradation processes, explaining the metabolic fluxes. This
approach is also a proof of concept of the possibility of generating
rationally designed inoculants for environmental restoration.
Consortia, as this described here, can be thoroughly characterized
and could be used as an inoculant, as a source of novel
bioremediation strains or as a background for bioaugmentation
with previously isolated strains.

The results presented here show that metagenomic analysis is
a powerful tool for the functional characterization of consortia
designed for bioremediation of complex contaminants. The
analysis of consortia rather than soil microcosms has obvious
advantages. First of all, while a typical soil microcosm usually
contains thousands of genotypes, a consortium such as the one
shown here contains less than a hundred genotypes, and therefore
the depth of sequencing is much higher. Furthermore, while most
of the genotypes detected in the consortium play a role in the
biodegradation process, as shown here, most of the populations
in a microcosm are irrelevant for the process. Furthermore,
metagenomic analysis has proven to be advantageous over
SIP in analyzing the biodegrading populations. While SIP
was able to identify the bacterial populations involved in
biphenyl and benzoate degradation in a soil microcosm and to
determine that biphenyl and benzoate were mostly degraded
by different populations (Leewis et al., 2016), here we have
been able to determine not only the biodegrading populations,

but also to assign specific functions and reactions to specific
populations, identifying all the biodegradation pathways and
therefore providing a deeper insight in the biodegradation
process.
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