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Spatial competition constrains resistance to
targeted cancer therapy
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Adaptive therapy (AT) aims to control tumour burden by maintaining therapy-sensitive cells

to exploit their competition with resistant cells. This relies on the assumption that resistant

cells have impaired cellular fitness. Here, using a model of resistance to a pharmacological

cyclin-dependent kinase inhibitor (CDKi), we show that this assumption is valid when

competition between cells is spatially structured. We generate CDKi-resistant cancer cells

and find that they have reduced proliferative fitness and stably rewired cell cycle control

pathways. Low-dose CDKi outperforms high-dose CDKi in controlling tumour burden and

resistance in tumour spheroids, but not in monolayer culture. Mathematical modelling indi-

cates that tumour spatial structure amplifies the fitness penalty of resistant cells, and

identifies their relative fitness as a critical determinant of the clinical benefit of AT. Our

results justify further investigation of AT with kinase inhibitors.
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Kinase inhibitors targeting signaling pathways have shown
major value in targeted cancer therapies but generally fail
due to acquired resistance1, 2. Numerous studies have

identified activation of alternative signaling pathways as possible
resistance mechanisms (e.g., ref. 3), suggesting that combination
therapies directed against multiple pathways would be beneficial.
As an alternative strategy, adaptive therapy (AT) is proposed to
be advantageous in such settings, and more effective at control-
ling resistance than conventional maximal tolerated dose (MTD)
approaches4–8. In AT, therapeutics are used at low-dose, adjusted
to maintain tumour burden constant rather than eradicating all
tumour cells. This in theory preserves therapy-sensitive cells that
will outcompete resistant cells, due to the reduced proliferative
fitness of the latter. This assumption has not been validated.
Furthermore, whereas previous mathematical modelling7

indicated that AT should confer a large survival benefit, this
model assumed that the relative fitness of resistant cells is pro-
portional to their frequency in the population. As such, the
relative fitness of rare resistant cells would approach zero, which
is unlikely. Crucially, experimental investigations of AT did not
monitor resistance frequency nor measure cell fitness. In mouse
xenograft models using cytotoxic chemotherapy, combining one
MTD dose followed by lower doses resulted in better long-term
tumour control than the MTD treatment alone4, 6. Although this
result might indeed reflect reduced selection for resistance,
alternatively, it may have been due to the higher cumulative drug
dose applied. The principles underlying AT thus remain
unproven.

To test the assumptions of AT, we developed a new mathe-
matical model of the population dynamics of therapy-sensitive
and resistant cells, and an experimental system allowing us to test
its predictions. We hypothesised that resistance to inhibitors of
cell cycle regulators would likely incur a fitness cost, potentially
fulfilling the assumptions of AT and allowing us to test which
parameters are critical. We focused on cyclin-dependent kinases
(CDKs), which control the cell cycle and whose pathways are
universally deregulated in cancer9. Small molecule CDK inhibi-
tors (CDKi) have been developed as agents for cancer therapy.
Early clinical trials with non-specific CDKi showed promising
responses but were hindered by toxicity10. In 2015, palbociclib
(PD0332991), which targets CDK4 and CDK6, was approved for
use in cancer therapy11, 12. However, not all cancer cells respond to
CDK4/6 inhibition, and loss of RB1 renders cells insensitive13–16.
Yet probably all cancer cells have active CDK1 and CDK2. CDK1
is essential for cell proliferation17, 18, whereas CDK2 knockout
mice are viable19, 20 and CDK2 knockdown is tolerated by most
cancer cells21. Nevertheless, acute pharmacological or peptide-
based inhibition of CDK2 strongly inhibits cancer cell prolifera-
tion22–25, CDK2 counteracts Myc-induced cellular senescence26

and CDK2-knockout mouse cells are resistant to oncogenic
transformation19. Thus, CDK1 or CDK2 inhibition will likely
have therapeutic benefits.

We predicted that resistance to CDK1/CDK2 inhibitors might
arise through alteration of cell cycle pathways, reducing pro-
liferative fitness. We therefore generate colorectal cancer cells
with acquired resistance to a CDK1/CDK2-selective inhibitor,
and identify mechanisms of resistance. These involve stable
rewiring of cell cycle pathways, resulting in compromised cellular
fitness. Based on competition experiments with different treat-
ment regimes and computer simulations, we find that tumour
spatial structure is a critical parameter for AT. Competition for
space increases fitness differentials, allowing effective suppression
of resistant populations with low-dose treatments.

Results
Mathematical modelling of tumour evolution under AT. To
investigate the hypothesis that AT might control tumour growth
more effectively than MTD, we first developed a new minimally
complex mathematical model of tumour evolutionary dynamics
during therapy to capture the fundamental dynamics of AT and
MTD. Previous mathematical modelling7 indicated that AT could
confer very large survival benefit, that strongly depended on the
fraction of resistant cells in the population (frequency) when
treatment begins. However, relative fitness of resistant cells was
assumed to be proportional to their frequency (Fig. 1a, solid line),
a probable oversimplification of dynamics in situ. The premise
underlying AT is that, on average, resistant cells proliferate more
slowly when surrounded by sensitive cells than other resistant
cells. Yet competition for diffusion-limited resources is generally
confined to relatively small neighbourhoods, and a change in
frequency below or above certain thresholds should not much
affect resistant cell fitness. From these considerations and a
geometrical analysis of resistant subclone growth within a three-
dimensional tumour (Supplementary Methods; Supplementary
Fig. 1), we propose that the relationship between the relative
fitness and the frequency of resistant cells can be more realisti-
cally represented by a sigmoidal function, with its lower asymp-
tote greater than zero (Fig. 1a, dashed lines). The two asymptotes
correspond to the relative fitness of resistant cells when they are
either (i) surrounded by drug-sensitive tumour cells that con-
strain their population growth (lower), or (ii) more abundant and
have escaped from competition with drug-sensitive cells (upper).
We assume that the transition between fitness levels is relatively
abrupt as resistant cells that escape competition with sensitive
cells will rapidly expand. Yet our model predicts that the relative
benefits of AT are insensitive to the exact frequency of the
transition (Supplementary Methods; Supplementary Fig. 1).

We used coupled differential equations to model population
dynamics. We obtained approximate analytical solutions to
determine how treatment outcomes depend on biological
parameters (Supplementary Methods). To confirm their validity
and to facilitate comparisons between studies, we also ran
numerical simulations for AT and MTD regimes that were
examined in previous analysis7. In simulations of MTD, therapy
was applied as a constant-dose bolus at regular intervals. For AT,
we began with half the MTD dose and adjusted it by 20% if the
total population size had increased or decreased since the
previous treatment. The AT dose was not allowed to exceed that
of MTD. The cell number at treatment onset was set at 109,
approximating the cell population in a typical human tumour at
first detection (1 cm3). We compared the predicted survival time
(defined as the time taken for the tumour cell population to reach
1012), and progression-free survival time (defined as the time
taken for the tumour to regain its pre-therapy size) between AT
and MTD regimes.

With the previously-described linear fitness function7, AT can
stall tumour growth indefinitely, provided resistance is suffi-
ciently rare at the start of treatment and resistant cells maintain
some sensitivity (Fig. 1b; Fig. 1c, black solid line). Even if some
cells are 100% resistant, the benefit of AT, relative to MTD, is
unbounded and increases rapidly with decreasing initial resis-
tance frequency (Fig. 1c, black dashed line).

Conversely, with our more plausible sigmoidal fitness function,
the benefit of AT is predicted to be more modest (Fig. 1b). The
relative benefit of AT for progression-free survival (Fig. 1c) or
overall survival (Supplementary Fig. 2a), is limited by an upper
bound that is independent of the initial resistance frequency but
varies with the maximum growth rate of resistant cells (Fig. 1d)
and the degree of resistance (Supplementary Fig. 2b). For realistic
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parameter values, the upper bound can be approximated as

1
fmin

� λW
μW

1
fmin

� 1

� �
; ð1Þ

where fmin is the relative fitness of resistant cells when they are
rare; λW is the division rate of sensitive cells without treatment;
μW is the death rate of sensitive cells under MTD (Supplementary
Methods). The maximum benefit of AT is thus strongly
dependent on fmin, and increases as fmin decreases.

The same pattern holds for less frequent dosing (Supplemen-
tary Fig. 2c) and for sigmoidal rather than exponential growth
curves (Supplementary Fig. 2d). In summary, this model predicts
that AT will only have limited survival benefit over MTD unless
the fitness differential between therapy-sensitive and resistant
cells is large (at least a factor of two).

Cell cycle rewiring in CDKi-resistant cells. To test how the
results of mathematical modeling compare with experimental
data, we first generated CDK1/CDK2 inhibitor-resistant (ir) cells
and analysed their fitness. We chose the CDKi NU6102 since we
found that it is CDK2-selective at low doses and we could gen-
erate NU6102-resistant alleles of CDK2 by engineering combi-
natorial mutations in the kinase domain27. We confirmed that
NU6102 had similar growth-inhibitory effects in several cancer
cell lines of different origins and in non-transformed fibroblasts
(Supplementary Fig. 3a). In all cell lines, growth was arrested at 20
μM, whereas 50 μM caused major cell death. We chose the col-
orectal cancer cell line HCT-116 which can rapidly evolve resis-
tance to cell cycle kinase inhibitors28. We could also compare CDK
inhibition by NU6102 with CDK2 gene deletion (CDK2−/−)29.
We found that CDK2−/− cells were less sensitive to NU6102 than
wild-type (WT) cells (Supplementary Fig. 3b), confirming that loss
of CDK2 confers partial resistance to a CDK1/CDK2-selective
inhibitor.

We stably expressed eGFP in the parental HCT-116 cells, to
distinguish them from resistant cells in mixed cultures. To obtain
NU6102-resistant cells, we applied either escalating concentra-
tions of NU6102 (up to 10, 20 or 50 μM), or maintained the same
concentrations from the start. We obtained NU6102-resistant
colonies, which we designated R10, R20 or R50 (e.g., R50 is
resistant to 50 μM NU6102), but no line was totally impervious to
the inhibitor (Supplementary Fig. 3c). Without NU6102, popula-
tions resistant to higher concentrations grew more slowly,
indicating compromised fitness (Supplementary Fig. 3c). We
next profiled the expression of cell cycle regulators in control,
CDK2−/− and resistant cells (Supplementary Fig. 3d). In resistant
and control cells, CDK2, CDK1, cyclin A2, cyclin E1, cyclin B1,
cyclin D1, p21 and the CDK2 substrates RB and CDC6 were
expressed at similar levels, while CDK6 was slightly increased in
R20 cells. Cyclin A2, cyclin B1, CDK6, CDC6 and RB were
strongly reduced in R50 cells, in accordance with their poor
proliferation in the presence of inhibitor. However, after serial
passaging in 50 μM NU6102, R50 cell proliferation became totally
refractory to the inhibitor (Fig. 2a, compare R50-early and -late).
Thus, resistance can evolve. Without inhibitor, R50-early and
R50-late cells both proliferated less well than control cells,
indicating that resistance indeed incurred a fitness penalty, in
agreement with our original prediction. We tested the fraction of
cells synthesising their DNA by analysing 5-ethynyl deoxyuridine
(EdU) incorporation after either pulse-labelling or 24-hour
exposure. This revealed that all R50 and WT cells replicated
within a 24-h period, but 20% fewer R50 cells were in S-phase at a
given time, indicating an altered cell cycle distribution (Supple-
mentary Fig. 3e). R50 did not have increased apoptosis, as
determined by 7-aminoactinomycin D staining and western

blotting for cleaved caspase-3 (Supplementary Fig. 3f). To test
whether resistance was reversible, we withdrew the inhibitor for 2
or 6 months (“drug holidays”). Re-exposure to NU6102 did not
affect the cell growth, demonstrating that resistance was
irreversible (Supplementary Fig. 3g).

We next tested the sensitivity of R50 to other CDKi, and found
that they were more sensitive than controls to another tri-
substituted purine, purvalanol A30 (Supplementary Fig. 4a), that
also strongly inhibits CDK1 and CDK227. This suggests that cells
were not generally drug-resistant and that a specific alteration in
CDK pathways contributed to NU6102 resistance. We cloned and
sequenced the CDK2 gene from R50 cells and found no
mutations. We then measured CDK2 kinase activity by assaying
phosphorylation of histone H1 on immunoprecipitates of CDK2
or cyclin A from R50 cells, CDK2−/− cells, WT cells, and WT cells
treated with 20 μM NU6102 (Fig. 2b). As expected, only
background CDK2 activity was detectable in CDK2−/− cells,
though cyclin A-associated activity (which includes CDK1) was
less affected. WT cells treated with 20 μM NU6102 had higher
maximal CDK2 activity than control cells, an expected result of
their arrest in G2/M. Despite having similar levels of cyclin A-
CDK2 complexes to WT (Supplementary Fig. 4b), CDK2 activity
from R50 cells was reduced (Fig. 2b), perhaps contributing to
their NU6102 resistance. To investigate CDK2 activity directly in
cells, we used a recently-developed sensor, DHB-Venus31. This
probe translocates from the nucleus to the cytoplasm upon
phosphorylation by CDK2. However, the probe behaved similarly
in CDK2−/−, R50 and WT cells (Supplementary Fig. 4c),
indicating that another kinase can substitute for CDK2 in G1/S.
Altogether, these results suggest that while CDK2 activity was
reduced in R50, overall CDK activity was comparable, implying
rewiring of CDK pathways.

Upregulating Ras signaling pathways and cyclin E expression is
involved in resistance to CDKi in HEY ovarian cancer cells16.
Cyclin E expression was normal in R50 cells (Supplementary
Fig. 3d). We probed the activity of major cell signaling pathways
by protein phosphorylation array analysis, but found no major
alterations between WT cells, WT cells treated with 20 μM
NU6102, R50 cells or CDK2−/− cells (Supplementary Fig. 4d).
This further highlights the CDK-specificity of NU6102 and is
consistent with specific resistance mechanisms. We next inves-
tigated gene expression genome-wide by microarray analysis. R50
cells clustered with CDK2−/− cells, and the effects of loss of CDK2
gene or activity (NU6102 resistance) on the transcriptome were
distinct from, and generally opposite to, the effects of CDK
inhibition (Fig. 2c and Supplementary Data 1). Gene ontology
analysis showed that the most altered pathways in R50 cells
compared to WT cells±NU6102 included pathways in cancer,
the cell cycle, and RNA transport (Supplementary Fig. 4e). We
confirmed by qRT-PCR that CDK6 was highly upregulated in
R50 cells (but not CDK2−/− cells) (Fig. 2d). While CDK4 levels
were slightly reduced, both CDK6 protein and kinase activity
were strongly increased in proliferating R50 cells (Fig. 2e, f). As
determined by western blotting immunoprecipitated cyclin D1
and cyclin D3 from R50 cells, CDK6 showed no cyclin D
specificity, whereas CDK4 preferentially complexed with cyclin
D1 (Supplementary Fig. 4f). These results suggest that upregula-
tion of CDK6 is involved in resistance to CDK2 inhibition.
Determination of CDK2, CDK4 and CDK6 enzyme kinetic
parameters in vitro (Methods and Supplementary Fig. 4g) showed
that CDK6 affinities for ATP and NU6102 were intermediate
between those of CDK2 and CDK4. The Km(ATP)/Ki(NU6102)
ratio, which reflects inhibitor sensitivity, was 2-3-fold lower for
CDK6-cyclin D1 than for CDK2-cyclin A2. R50 and CDK2−/−

cells were more sensitive than control cells to the CDK4/CDK6
inhibitor PD0332991 (Fig. 2g). CDK6 knockdown by siRNA
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reduced cell proliferation similarly in both WT and R50 cells, as
reflected by a decrease in cyclin A and phospho-RB levels
(Fig. 2h). However, in R50, the CDK6 level remaining after
siRNA was comparable to that of untreated WT cells. Thus,
resistance to a CDK2-selective inhibitor led to increased
dependency on CDK6, suggesting that CDK2 and CDK6 can
perform similar cellular functions in HCT-116 cells.

Next, we tested the physiological relevance for tumourigenesis
of this rewiring of CDK pathways. In vivo, tumour formation will
depend on sensitivity to limiting oxygen and nutrients. We
therefore compared growth curves of GFP + and R50 under
conditions of low nutrients or hypoxia. R50 cells were markedly
sensitive to culture in 1% oxygen (Fig. 3a), and low serum, but
were less sensitive to low glucose (Fig. 3b), indicating possible

effects of CDK rewiring on metabolism. We next subcutaneously
injected parental (WT), R50 and CDK2−/− cells in nude mice. All
three cell lines could form tumours in mice, but R50 grew
markedly more slowly than WT and CDK2−/− tumours (Fig. 3c).
Lower mitotic index indicated impaired cell proliferation (Fig. 3d).
Thus, whereas CDK2 gene deletion did not affect tumour cell
growth, R50 cells have lower proliferative fitness both in vitro and
in vivo.

These results confirmed our initial hypothesis and suggested
that, when mixed together in the absence of inhibitor, resistant
cells should be outcompeted by sensitive cells. We adjusted results
to compensate for loss of eGFP expression (as quantified in
control experiments). When seeded at a 1:1 ratio, eGFP-
expressing cells were outcompeted by eGFP-negative control
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subcutaneously with WT, CKD2−/−, or R50 cells, and tumour volume was measured at 3-day intervals (n= 8 mice per condition; mean±SD). d
Immunohistochemistry analysis of mitotic index, Ki67 expression and necrosis (Caspase 3a) in xenograft tumour samples from c (represented as % of
cells, mean±SEM; t-test, ns, not significant). e, f Frequency dynamics (top row) and selection coefficients for competition assays, compared to predictions
from growth rates (bottom row). In the bottom row, each point corresponds to a selection coefficient calculated from a competition assay (i.e., a period
between consecutive points in the top row). Solid lines are means. Red dashed lines indicate predictions based on the growth rates of each cell type in
isolation (Supplementary Methods). A single prediction is shown whenever growth curves were measured at the same time as competitions were
conducted; otherwise pairs of lines show maximum and minimum predictions based on non-contemporaneous growth curves. Results are shown for
competitions between GFP+CDKi-sensitive cells and drug-holiday GFP- CDKi-resistant (R50) cells (e), and for competitions between GFP+CDKi-sensitive
cells and mCherry+R50 cells with different initial ratios (f)
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cells, indicating impairment of growth due to eGFP expression
(Supplementary Fig. 5a). We then competed R50 cells with eGFP-
expressing control cells in equal initial proportions, in the absence
of inhibitor. Although R50 cells initially grew faster, they were
later outcompeted by control cells (Supplementary Fig. 5a). This
indicates that resistant cells are significantly less fit than control
cells in long-term co-culture. Their initial higher competitiveness
suggested a possible addiction to inhibitor, so to test this we
competed eGFP control cells with R50 cells that had been grown
without inhibitor for 2 or 6 months (“drug holiday”). Indeed, R50
drug-holiday cells were even less fit and had no initial growth
advantage (Fig. 3e). For each competition we estimated the
selection coefficient, which measures the fitness difference
between the two cell lines and corresponds to the difference
between the growth rates of the two cell lines grown separately.
R50 cells growing with eGFP cells had a selection coefficient
similar to that predicted from the difference between the
monoculture growth rates (Supplementary Fig. 5a). In contrast,
the selection coefficient of drug-holiday R50 cells was substan-
tially lower than expected (Fig. 3e), indicating further adaptation
that reduces their competitiveness, i.e., drug addiction.

To offset the fitness differential caused by expression of eGFP
and to allow direct quantitation of the resistant and sensitive
populations, we generated R50 cells stably expressing mCherry.
We grew each cell line either alone or in mixed cultures at
different initial ratios, and quantified populations over a one-
month period by flow cytometry. R50-mCherry cells (R50-mCh)
were outcompeted by WT-eGFP cells, and the selection

coefficient was approximately equal to the difference in mono-
culture growth rates (Fig. 3f, Supplementary Fig. 5b).

Effective AT requires spatially structured growth. Our mathe-
matical model predicts that AT performs substantially better than
MTD only if resistant cells are relatively much less fit (>2-fold)
than sensitive cells when resistance is rare. Our CDKi R50 cells
had a relative fitness of 90–95%, regardless of their frequency,
suggesting that AT would not be advantageous over MTD in
slowing the growth of resistant cells in monolayer culture.

To test this prediction, we first mimicked AT and MTD
therapy by treating mixed monolayer cultures of R50-mCh and
control GFP+ cells (seeded at 1:99 initial ratio) with either 50 μM
NU6102 to kill sensitive cells (MTD, with or without [MTDx] a
2-day break between drug treatments), or an initial concentration
of 15 μM NU6102, i.e., just below the concentration required to
maintain a stable population (AT). We modified the concentra-
tion of NU6102 in AT by± 20% at 3-day intervals to maintain a
constant cell density. We determined the proportions of R50-
mCh and GFP + at different time points by flow cytometry. As
expected, MTD simply eliminated GFP+ cells while R50-mCh
cells grew freely (Fig. 4a; Supplementary Fig. 6a). Although AT
arrested growth of GFP+ cells (while not proliferating, they
increased in size, reminiscent of senescent cells; Fig. 4b;
Supplementary Fig. 6b), it had negligible effect on R50-mCh cell
growth. We tested different concentrations of NU6102 for AT
treatment, but under no condition did GFP+ cells strongly
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compete with, and hinder, growth of resistant cells, thus
confirming the predictions of our mathematical model.

In the above experiments, cells were grown in monolayers and
it was essential to avoid confluency to allow continued
measurement of cell growth and adjustment of AT doses.
Competition for space was therefore minimal, and the relative
lower fitness of resistant cells and their dependence on higher
oxygen and growth factors might not have been fully exploited.

We reasoned that fitness differentials might be further
accentuated by spatial structure. To test this hypothesis, we
created a computational model (Supplementary Methods,
Supplementary Fig. 7a, b). We devised a more sophisticated
model to investigate how fitness differentials can arise from

competition for space and oxygen in tumour spheroids, a system
that recapitulates the spatial cellular interactions and the resource
gradients found in solid tumours. The model comprises
subpopulations of sensitive and resistant cells that divide and
die stochastically at rates dependent on local concentrations of
oxygen and CDKi, which diffuse from the surrounding medium.
To account for crowding effects, cells are able to divide only if
there is sufficient nearby space. In the absence of CDKi, these
factors decrease cellular fitness along a gradient from the tumour
spheroid periphery toward the core. Based on our results, we
assumed that, without CDKi, the proliferation rate of resistant
cells is 90% of that of sensitive cells. CDKi effects on cell
proliferation and death rates were also derived from our
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experimental data, whereas parameter values related to oxygen
were obtained from the literature (Supplementary Methods;
Supplementary Fig. 7c). To test the general validity of the model,
we disregarded the higher sensitivity of R50 to hypoxia. The code
used for tumour spheroid simulations is available under a
permissive free software license32. We started the model with 1%
resistant cells randomly distributed within the tumour spheroid
and allowed an initial competition period before introducing
CDKi, during which the spheroid increased in volume from 0.07
mm3 to 0.3 mm3. During treatment for 24 days at 20 μM CDKi,
the median increase of the tumour spheroid volume was 38%,
whereas at 50 μM it was 930% (Fig. 5a, b; Supplementary
Movies 1–5). The median frequency of resistance was 0.8% after
24 days at 20 μM but reached 100% over the same period at 50
μM CDKi (Fig. 5c). At 20 μM CDKi, resistant cells were much
more likely to increase in frequency if they were initially located
close to the spheroid periphery (Fig. 5d), where abundant space
and oxygen confer high relative fitness.

To further investigate the effects of spatial structure, we varied
the model’s parameter values and the time of treatment initiation.
Removing the fitness cost of resistance had a relatively small
effect, compared to the effect of the initial location of resistant
cells (Fig. 5e). In contrast, removing the competition during the
initial growth period up to the spheroid volume of 0.3 mm3 when
the treatment was started, and with a random spatial distribution
of resistant cells, resulted in much faster population growth
(median 950% increase in volume over 24 days) and higher final
resistance frequency (median 74% after 24 days) (Fig. 5f). This is
because resistant cells located close to the periphery have higher
relative fitness. Finally, when we removed crowding inhibition of
proliferation, so that even cells far from the periphery were able to
proliferate (at rates dependent on local oxygen and CDKi
concentrations), tumour spheroids grew faster at the 20 μM
CDKi dose than at 50 μM (Supplementary Fig. 7d), and the
frequency of resistance after 24 days typically reached 100%
(Fig. 5g). Thus, in summary, lower doses better control tumour
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growth and resistance than high doses, but only when resistant
cells are spatially constrained by sensitive cells.

To test the model experimentally, we set up competition
experiments in 3D by growing tumour spheroids. We mixed R50-
mCh and control GFP + cells at a 1:99 ratio and maintained them
in various concentrations of NU6102. Without CDKi, tumour
spheroids grew exponentially to a diameter of around 400 μm,
and R50-mCh cells were undetectable, confirming their reduced
fitness (Fig. 6a, b; Supplementary Fig. 8). Since we could not wash
out the inhibitor without disrupting or losing spheroids, we
mimicked AT and MTD using constant low, intermediate or high
concentrations of the drug. There was good qualitative agreement
between the results of the computational model and those of the
experimental system (Figs. 5a, b, and 6a, c; Supplementary
Movies 1–5), except that the simulated tumour spheroids were
able to grow beyond the maximum size attainable in vitro. At 50
μM NU6102 (MTD), growth of spheroids was initially arrested,
but then, as expected, spheroids rapidly grew back and became
entirely composed of R50-mCh cells (Fig. 6a–c; Supplementary
Fig. 8). Importantly, at lower NU6102 concentrations, overall
tumour growth was slightly (10 μM) or strongly (20 μM)
inhibited, and spheroids were overwhelmingly composed of
GFP + cells (Fig. 6c; Supplementary Fig. 8). Thus, low concentra-
tions of the drug were more effective than high concentrations in
restraining both tumour growth and proliferation of resistant
cells. This result provides strong support for the AT hypothesis as
it shows that by reducing the selective pressure imposed by
therapy to allow tumour maintenance rather than eradication,
fitness differentials can be exploited to limit emergence of
resistance. That this result could be achieved only in tumour
spheroids, and not in monolayer culture, supports the conclusion
drawn from our computational modelling: spatial structure that
reduces the average relative fitness of resistant cells is a critical
factor for effective AT.

Discussion
Conventional cytotoxic chemotherapies generate unsustainable
DNA damage in highly proliferative tissues, killing cancer cells
that are sensitised to apoptosis. These regimes are usually based
on the MTD, which by definition engenders severe side effects,
necessitating treatment-free recovery periods. The discontinuous
nature of such treatments may well be a factor in disease relapse
and resistance, which is almost invariably encountered in the
clinic. Furthermore, the DNA damage resulting from disrupted S-
phase or mitosis might contribute indirectly to resistance
mechanisms by increasing mutation rates. Targeted therapies are
more specific, and include inhibitors of protein kinases that are
deregulated in certain cancers. Kinase inhibitors are increasingly
used in cancer treatment, but also consistently confront resis-
tance2. To limit development of resistance, which emerges as a
result of selective pressure of treatment, alternative approaches,
such as metronomic chemotherapy and adaptive therapy, have
been proposed.

In their seminal description of the AT hypothesis, Gatenby
et al. stated4, “The goal of adaptive therapy is to enforce a stable
tumour burden by permitting a significant population of che-
mosensitive cells to survive so that they, in turn, suppress pro-
liferation of the less fit but chemoresistant subpopulations.” The
questions we set out to answer were: (1) Does resistance to a
candidate AT drug truly incur a cost? (2) Can sensitive cells
indeed suppress proliferation of resistant cells? (3) Which para-
meters are decisive for AT to be effective?

Protocols resembling AT, using human breast and ovarian
cancer cell lines, were previously tested in immunodeficient mice
using conventional chemotherapeutics4, 6, and resulted in long-

term stabilisation of tumour burden. However, over the course of
the experiment, more of the drug was given in “AT” than in the
“MTD” arm, and the cumulative dose will likely directly affect the
outcome. Furthermore, the treatments used might further have
indirect impact through inhibition of proliferation of endothelial
cells responsible for angiogenesis, as previously seen in metro-
nomic chemotherapy33, 34. MTD-based therapies may work less
well in this regard since they cannot be tolerated indefinitely,
unlike the lower doses of metronomic or adaptive regimes. In any
case, whether the benefit of AT indeed depends on increased
overall dose directly affecting tumour cells, competition between
therapy-sensitive and therapy-resistant cells5, or, like in metro-
nomic chemotherapy, effects on angiogenesis, is not known.

To maximize the chances of resistance reducing cell fitness, we
chose CDK inhibitors, an emerging class of cancer drugs. We
characterised resistant cells in terms of both biochemical
mechanisms and fitness in vitro and in vivo. Our results provide
strong support for the adaptive therapy hypothesis. We show that
tumour cell-intrinsic resistance mechanisms can reduce fitness,
and this difference in fitness is amplified by spatially structured
tumour growth to a point where lower drug doses are better than
higher doses at controlling tumour burden and resistance. This
fitness penalty was additionally context-dependent as resistant
cells were sensitised to hypoxia and low serum. Nutrients and
oxygen become limiting in the interior of tumour spheroids and
even more so in vivo. Context-dependent fitness penalties might
be generally true for resistance to targeted therapies, as a recent
study found that resistance to the EGFR kinase inhibitor erlotinib
in lung cancer cells incurred a fitness penalty that varied
according to nutrient and oxygen availability35. However, mod-
elling shows that even without any context specificity, the com-
bination of spatial confinement and the inherent fitness penalty of
resistance allows effective competition between sensitive and
resistant populations. In this context, AT is advantageous.

That our results were obtained in vitro (and reproduced in
silico) is important since further confounding issues of the
tumour environment are avoided. We demonstrated that the
reduced fitness of resistant cells holds both in cell culture and in
mouse xenografts. As vascularised tumours are much larger than
tumour spheroids, have more complex microenvironmental het-
erogeneity, and much more limited substrate, we would expect
the fitness cost of resistance to be amplified in vivo, thus
favouring AT. Further investigation is needed to test this pre-
diction. Clinical outcomes will also depend on the pharmacody-
namics of individual drugs, cancer cell type, microenvironment,
and mechanisms of resistance36. The CDKi that we used is the
most specific inihibitor available for CDK2 but does not have
sufficient pharmacodynamics to be tested in mice37.

In tumours, the local microenvironment might contribute to
drug resistance, e.g., due to insufficient drug perfusion. Drug
gradients in large tumours may be steeper than in our spheroid
models, and prolonged exposure to low drug concentrations may
facilitate the evolution of intrinsic resistance. Yet the expansion of
intrinsically resistant cell populations will always be subject to
competition with sensitive cells. Thus, our results are not unduly
affected by the presence of environmentally-mediated resistance.

Whereas treatment schedules have been compared in previous
computational models of AT4, 7, 38, 39 and in models incorpor-
ating microenvironmental feedback (reviewed in40), the rela-
tionship between AT and metronomic therapy has received less
attention. We thus integrated our general mathematical model of
adaptive therapy with an experimentally validated metronomic
model accounting for interplay between the tumour and its vas-
cular support41 (Supplementary Methods). Interesting dynamics
arise from this extended model, indicating that AT may be more
effective when administered in frequent, low doses than at longer
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intervals and higher doses (Supplementary Fig. 9a). This is
because the tumour’s vascular support recovers, promoting the
growth of resistant cells during the breaks in treatment (Sup-
plementary Fig. 9a). When the treatment’s antiangiogenic effect is
large and the dose frequency is elevated, metronomic therapy
with high drug doses compares favourably with AT, but in all
other circumstances AT performs best (Supplementary Fig. 9b).
Further research is needed to characterise the effects of additional
factors, such as immune responses and modulation of resistant
cell fitness by environment. For example, whereas our CDKi-
resistant cells were more sensitive to hypoxia, this was not the
case in erlotinib resistance35. Generally, however, AT and
metronomic therapy probably both exploit competition between
therapy-sensitive and resistant cells as well as effects on the
microenvironment.

Our results support the argument that targeting non-essential
CDKs that control the cell cycle might be a useful approach for
cancer therapy. While specific inhibition of a single CDK is
unlikely to be a realistic aim, we have shown that inhibitors with
selectivity for CDK2 can effectively limit tumour cell prolifera-
tion. We further demonstrated that upregulated CDK6 can
compensate for compromised CDK2 functions and the two
kinases have similar kinetic parameters. That resistance of cells
was maintained for a six-month drug holiday suggests that it was
stably encoded in epigenetic modifications. Resistant cells were
sensitised to the CDK4/CDK6 inhibitor palbociclib, which is
currently approved for therapy of certain breast cancers and, like
other CDK4/CDK6 inhibitors, is undergoing clinical trials for
other types of cancer42. We suggest that, reciprocally, upregulated
CDK2 might contribute to palbociclib resistance, a scenario
already discovered in acute myeloid leukemia cells with a mutated
Flt3 receptor tyrosine kinase43.

Since CDK1/2 inhibitor-resistant cells are sensitised to CDK4/6
inhibitors, combining both inhibitors could be an advantaegous
strategy, exploiting a double-bind whereby cells might be unable
to evolve resistance to both inhibitors of CDK1/CDK2 and
CDK4/CDK6 without drastic reductions in fitness. This need not
involve sequential administration of two drugs, as a recent
study44 determined that simultaneous treatment is more effective
provided there is no cross-resistance to both drugs. Collateral
sensitivity of resistant cells to alternative drugs has recently been
validated in experimental models of acute lymphoblastic leukemia
and shown by modelling to exploit evolutionary trajectories,
much like AT45. CDKi-resistant cells were also sensitive to
hypoxia and low serum, suggesting other collateral sensitivities
that could be exploited by an additional double-bind38, poten-
tially aiming for cure rather than long-term tumour maintenance.
While empirical therapeutic approaches avoid making untested
assumptions and will continue to be the mainstay of cancer
therapy for the immediate future, mathematical modelling of
evolutionary trajectories will take on increasing importance46.

Methods
Cell lines. The parental and CDK2−/− HCT116 (human colon cancer) cell lines,
were purchased from Horizon, UK (HD R02-015). Other cell lines used were:
U2OS (human osteosarcoma; purchased from ATCC); BJ-hTERT (human foreskin
fibroblasts, immortalized with hTERT; obtained from Dr J. Piette); SK-MEL-28
(human melanoma; gift from Dr Ch. Theillet, IRCM Montpellier). Cells were not
authenticated subsequently but were tested for mycoplasma contamination on a
weekly basis.

All cells were grown in Dulbecco modified Eagle medium (DMEM–high
glucose, pyruvate, GlutaMAX–Gibco® LifeTechnologies) supplemented with 10%
fetal bovine serum (SIGMA, HyClone or Pan-Biotech). Cells were grown under
standard conditions at 37 °C in a humidified incubator containing 5% CO2. Cell
lines were not authenticated in-house but were tested on a weekly basis for
mycoplasma contamination.

Establishing resistant cell lines. Adaptive-resistant RA10 and RA20 cell lines
were obtained by treating HCT116 cells with NU6102 at the initial 2 μM con-
centration, increased every three days by 2 μM (2>4>6 μM, etc.) until 10 and 20
μM, respectively. R10, R20 and R50 cell lines were grown from the beginning in 10
μM, 20 μM and 50 μM NU6102. Cells were passaged every three days (1/10 dilu-
tion) with adding fresh inhibitor.

Establishing fluorescent cell lines. HCT116 cells were plated at 1.5 × 104/cm2

density and transfected 24 h later with eGFP-N1 (1 μg/ml) or pmCherry-N1
(1 μg/ml) vectors, using JetPEI (Polyplus) or lipofectamine 3000 (Invitrogen),
respectively, according to the manufacturer’s protocol. eGFP-transfected cells were
selected with 1 mg/ml G418 for 10 days. GFP and mCherry-expressing cells were
sorted with FACS Aria (BD Biosciences, SanJose, CA). Cell sorting was repeated
every 6 months due to the loss of GFP expression.

Drug treatments. CDK inhibitors were dissolved in DMSO and used at con-
centrations indicated in figure legends: NU6102 (1–50 μM; Enzo Life Sciences);
PD03320991 (0.5–10 μM; Selleckchem); Purvalanol A (0.5–5 μM; Enzo Life Sci-
ences). For analyzing the effects of CDK inhibitors on cell proliferation, cells were
plated at density of 150000 or 250000 cells per well in 6-well plates. 6 h later, the
medium was replaced with medium containing appropriate concentration of
inhibitor.

For AT and MTD/MTDx treatments, mixed cultures of R50-mCh (1%) and
WT-GFP + cells were plated at 200000 in 60mm dishes. Cells were treated with
either 50 μM NU6102 (MTD: 1 day treatment, 2 days without drug; MTDx:
continuous drug treatment), or an initial concentration of 15 μM NU6102 for AT,
i.e. just below the concentration required to maintain a stable population. The
concentration of NU6102 in AT arm was subsequently modified by± 20% at 3-day
intervals to maintain a constant cell density (70–80%). The proportions of R50-
mCh and WT-GFP + were determined by flow cytometry at different time points.

Cell proliferation assays. Cells were counted using Muse Cell Analyzer and Muse
Cell counting reagent (Millipore) according to manufacturer instructions. Briefly,
cells were trypsinised, washed in PBS and resuspended in 1 ml of PBS. Pre-warmed
counting reagent (380 μl) was mixed with 20 μl of cell suspension and incubated at
RT for 5 min. processing on Cell Analyzer.

Cell extracts and Western-blotting. Frozen pellets (harvested by trypsinisation,
washed with cold PBS) were lysed with lysis buffer (150 mM NaCl, 50 mM Tris pH
7.5, 0.2% Triton, 1 mM EDTA; freshly added: 1 mM DTT, 0.1 mM NaVO4, pro-
tease inhibitors cocktail (Roche)) and incubated on ice for 30 min. Samples were
centrifuged for 10 min at 13000 rpm and supernatant collected. Protein con-
centrations were determined by BCA protein assay (Pierce Biotechnology). Sam-
ples were boiled for 5 min in Laemmlli buffer. Equivalent amounts of proteins were
separated by SDS–PAGE (usually on 12 cm × 14.5 cm; 7.5% or 12.5% gels). The
proteins were semi-dry transferred onto Immobilon membranes (Milipore). Sec-
ondary antibodies were either goat antibodies to mouse IgG-HRP (DACO) or
donkey antibodies to rabbit IgG-HRP (GE Healthcare). The detection system was
Western Lightning Plus-ECL (PerkinElmer) and Amersham Hyperfilm (GE
Healthcare). Primary antibodies used were: pRB (G3-245; BD Pharmingen); Rb
phospho-S795 (Abcam, ab47474); cyclin A (6E6; Novocastra); cyclin E1 (clone
HE12, Santa Cruz Bio.); cyclin D1 (DSC6; Cell Signaling); cyclin D3 (D-7 and B-10;
Santa Cruz Bio.); cyclin B1 (GNS1; Santa Cruz Bio.); CDK2 (D-12 and M-2; Santa
Cruz Bio.); CDK1 (clone 17; Santa Cruz Bio.); CDK4 (C-22; Santa Cruz Bio.);
CDK6 (C-22 and B-10; Santa Cruz Bio.); Cdc6 (180.2; Santa Cruz Bio.); p21 (C-19;
Santa Cruz Bio.); Caspase-3 (Cell Signaling); cleaved Caspase-3 (Asp175; Cell
Signaling). Uncropped scans are provided in the Supplementary Figs 10–12.

siRNA transfections. The SMARTpool: ON-TARGETplus siRNAs (Cdk6, L-
003240-00-0005; non-targeting, D-001810-10) were purchased from GE Dhar-
macon (Lafayette, CO, USA). Cells were transfected with siRNA at 100 nM by
calcium phosphate transfection method. Briefly, cells were plated at 1.5 × 104/cm2

density. 24 h later, medium was changed for medium without antibiotics. Calcium
phosphate–DNA coprecipitate was prepared (44 µl H2O, 5 µl 2.5 M CaCl2 and 1 µl
100 μM siRNA). 50 µl CaCl2-siRNA solution was combined with equal volume of
2xHBS buffer (50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, 10 mM KCl; pH
7,04). Coprecipitates were incubated at room temperature for 1 min, mixed by
pipetting, added drop by drop into medium above cells and gently mixed.

RT-PCR. Total cellular RNA (1 µg in total volume of 10 µl), extracted by RNeasy
Mini Kit (Qiagen), was mixed with 1 µl of 10 mM dNTPs (2.5 mM of each; Life-
Technologies) and 1 µl of 50 µM random hexaprimers (New England Biolabs).
Samples were incubated at 65 °C for 5 min., then immediately transferred on ice,
followed by addition of 5 µl of 5xFirst Strand Buffer, 2 µl 100 mM DTT and 1 µl
RNasin® Plus RNase Inhibitor (Promega). Samples were incubated at 25 °C for 10
min. and at 42 °C for 2 min. 1 µl of M-MLV reverse transcriptase (Thermo Fisher
Scientific ref. 28025-013) was added to each sample, and incubated at 42 °C for 60
min., then at 70 °C for 15 min.
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qPCR. qPCR was performed using LightCycler 480 SYBR Green I Master (Roche)
and LightCycler 480 qPCR machine. The reaction contained 5 ng cDNA, 2 µl 1 μM
qPCR primer pair (final concentration of each primer 200 nM), 5 µl 2x Master Mix,
and final volume made up to 10 µl with DNase free water. qPCR was conducted at
95 °C for 10 min, followed by 40 cycles of 95 °C for 20 s, 58 °C for 20 s, and 72 °C
for 20 s. The specificity of the reaction was verified by melt curve analysis. Each
reaction was performed in three replicates.

qPCR primers (Tm −60 °C): human CDK6 5′-TCAGCTTCTCCGAGGTCT
GG-3′, 5′-TAGGTCTTTGCCTAGTTCATCG-3′.

Flow cytometry - cell cycle analysis. Cells were harvested, washed once with cold
PBS, resuspended in 300 µl cold PBS and fixed with 700 µL chilled 100% ethanol.
Cells were kept at −20 °C, at least overnight. On the day of analysis, cells were
pelleted by centrifugation at 5000 r.p.m. for 5 min. After washing once with 1%
BSA in PBS, cells were stained with Propidium Iodide (PI) solution (10 µg/ml PI,
1% BSA, 200 µg/ml RNase A in PBS) for 30 min. at room temperature, and ana-
lysed with BD FACS Calibur (BD Biosciences, SanJose, CA).

EdU/BrdU incorporation. To analyse the fraction of replicating cells, cells were
either pulse-labeled (15 min.) or incubated for 24 h with either bromodeoxyuridine
(BrdU, 200 μM; Sigma Aldrich) or 5-ethynyl-2′-deoxyuridine (EdU, 20 µM; Life-
Technologies). Cells were harvested, washed once with cold PBS, resuspended in
300 µl cold PBS and fixed with 700 µl ice-cold 100% ethanol. EdU incorporation
was detected using the Click-iT® EdU Alexa Fluor® 488 Imaging Kit (Life-
Technologies), and analysed with BD FACS Calibur.

For BrdU detection, cells were washed with cold PBS and permeabilised with 2
N HCl and 0.5% Triton X-100 for 30 min. at room temperature, with occasional
vortexing. After adding 5 ml of PBS, cells were pelleted and resuspended in 200 μl
anti-BrdU antibody (BD 347580, No.408) at 1:30 in PBS-0.5% Tween 20 and 1%
BSA, and incubated 2 h at room temperature. Cells were washed with PBS and
incubated with anti-mouse Alexa Fluor 488 (LifeTechnologies) for 2 h at room
temperature. After wash in with PBS, cells were resuspended in 500 μl PBS
containing 3 μg/ml 7AAD (LifeTechnologies), 200 μg/ml RNAse A (Sigma
Aldrich). Samples were incubated for 2 h at room temperature and analysed on FL-
1 and FL-3 channel with FACS Calibur.

Cell competition experiments. WT and R50 cells (extensively washed prior to the
experiment to eliminate the inhibitor) were plated at the indicated ratios (2 million
cells in total) in 10cm-dish, without the inhibitor. Cells were harvested every three
days, and 1/10 of the mixed cell population was plated again. After harvesting, 1
million cells were washed once with cold PBS, resuspended in 1 ml of PI solution
(1% BSA in PBS, 10 µg/ml PI) and analysed on Fortessa flow cytometer (BD
Biosciences, SanJose, CA) for the percentage of GFP/mCherry positive cells.

Microarray analysis–transcriptome. RNA was prepared from HCT116 WT,
CDK2 KO, R50 and WT cells treated with 20 µM NU6102 for 24 h, in duplicates,
using RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions. RNA
was labelled with Cyanin 3 and complementary RNA (cRNA) was synthesized.
Cy3-labelled cRNA was amplified and hybridized on the Agilent SurePrint G3
Human GE 8 × 60k Microarray according to the procedures by Hybrigenics
Company (Paris, France). Raw data were processed using GeneSpring GX software
(Agilent Technologies) to define differently expressed genes, using one-way
ANOVA, with a Benjamini-Hochberg corrected p-value < 0.001 and post hoc
Student Newman Keuls.

Human phospho-kinase antibody array. Human Phospho-Kinase Antibody
Array (R&D Systems) is a set of nitrocellulose membranes on which capture and
control antibodies for 43 kinases and 2 total proteins have been spotted in
duplicates. Cell lysates from WT, Cdk2 KO, R50 and WT cells treated with 20 µM
of NU6102 for 24 h, were added to array membranes and processed according to
the protocol of R&D Systems. Signal from the membranes was imaged with ECL
camera and the intensity of the signal quantified with ImageJ software.

Live-cell CDK2 activity sensor. The CDK2 activity sensor was a gift from Sabrina
Spencer (Stanford University, CA, USA). The sensor includes 994–1087 amino
acids of human DNA helicase B fused to the yellow fluorescent protein mVenus
(DHB-Ven) and contains four CDK consensus phosphorylation sites, a nuclear
localisation signal and a nuclear export signal31. Sensor was transduced into WT,
CDK2 KO and R50 cells by lentiviral infection (see below). To obtain stable cell
lines, cells were selected for YFP using cell sorter (FACS Aria).

Lentiviral infection. Viral particles were produced by transfecting packaging cells
HEK293 cells with tat, rev, gag/pol, vsv-g vectors (provided by Dr E. Bertrand,
IGMM Montpellier) by calcium phosphate transfection (see above). Cells were
plated the day before transfection at density of 4 × 106 cells in 10 cm plates. Vectors

were transfected in the following proportions:

20 : 1 : 1 : 1 : 2

backbone : tat : rev : gag=pol : vsv � g

20 μg 1 μg 1 μg 1 μg 2 μg ¼ 25 μg total DNA

The day after transfection, the supernatant from the virus producing cells was
recovered, filtered with 0.45 µm filter and centrifuged in 2 ml eppendorfs at 4 °C for
3 h at maximum speed. The supernatant was collected in 50 ml Falcon tube tightly
closed on ice in the cold room. The procedure was repeated the following day. For
lentiviral infection, HCT-116 WT cells were plated in a 12-well plate, 5 × 104 cells/
well. Cells were rinsed once with fresh medium and supplemented with infection
mix (300 μl of medium without serum, 6 μg/ml polybrene). Cells were incubated
for 2 h at 37 °C, 5% CO2 with occasional tilting (every 20 min). After 2 h, 1 ml of
fresh medium was added and cells were left to recover overnight. The next day
medium was changed and culture was expanded.

Immunoprecipitation. Cell lysates were prepared as described above and 100 µl
was used for every immunoprecipitation reaction. Each sample was incubated with
3 µl of appropriate antibody on ice for 2 h, followed by incubation with 50 µl of
Sepharose beads (Protein A Sepharose or Protein G Sepharose 4 Fast Flow, GE
Healthcare (previously Amersham Biosciences)) on Adams Nutator Mixer at 4 °C
for 30 min. Supernatants were collected and saved for analysis. Beads were washed
three times with 900 µl of lysis buffer, incubated with 30 µl Laemmlli buffer at 37 °C
for 15 min., and immunoprecipitated proteins were analysed by Western-blotting.

In vitro kinase assays. Wash buffer I: 25 mM Tris pH 7.5, 150 mM NaCl, 0.1%
Triton X-100, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, protease inhibitors.

Wash buffer II: 25 mM Tris pH 7.5, 10 mM MgCl2, 1 mM DTT.
Kinase buffer 2x: 100 mM HEPES pH 7.5, 20 mM MgCl2, 2 mM DTT, 0.04%

Triton X-100.
Kinase mix 1x (20 µl): 10 µl kinase mix 2×, 2 µl histone H1 (1 mg/ml)

(Calbiochem-Merck Millipore) or Rb-CTF peptide (0.678 mg/ml; ProQinase), 1 µl
ATP (1 mM), 0.25 µl γATPP33 (Perkin Elmer), 6.75 µl H2O.

Kinase assays on immunoprecipitated CDK complexes. Immunoprecipitations
was performed as described above. Beads were washed two times with 500 µl of
Wash buffer I and once with the same volume of Wash buffer II. Beads were
incubated with kinase mix at 37 °C for 20 min. with occasional tapping the tube.
Kinase mix contained either histone H1 (for cyclin A and CDK2) or Rb-CTF
peptide (for CDK6/4) as a substrate. Negative controls were kinase mix without
kinase (beads only) and IP beads incubated with kinase mix without substrate. The
reaction mix was spotted on P81 phosphocellulose (Millipore) paper and washed
three times in 1% orthophosphoric acid (10 ml per sample). Papers were air-dried
at room temperature and counted with scintillation counter.

Evaluation of Km and Ki of recombinant CDK complexes. Recombinant CDK/
cyclin complexes (CDK2/cyclin A2; CDK4/cyclin D1; CDK4/cyclin D3; CDK6/
cylin D1; CDK6/cyclin D3) were obtained from ProQinase and used at 6.8ng/µl.
Kinase assays were performed in triplicates, with Rb-CTF peptide as a substrate
(final concentration 34ng/µl; ProQinase). For measuring Km, assays were per-
formed with ATP at different concentrations (0, 100 M, 200 µM, 500 µM, 1mM, 2
mM). For Ki, kinase assays included NU6102 at 0, 0.2 µM, 0.5 µM, 1 µM, 3 µM, and
10 µM. Assay time was 8 min. Kinetic parameters were calculated using GraphPad
Prism software.

Sensitivity to glucose depletion and hypoxia. 150000 or 250000 of cells per well
were plated in 6-well plates. For measuring the response to hypoxia, the plates were
placed in the incubator with 1% O2 (37 °C, 5% CO2) and the number of cells was
analysed every 24 h for 3 days. For low glucose and low serum sensitivity analysis,
the cells were plated in medium with low glucose (1 g/L), or medium with 1% of
FBS, respectively, and the number of cells was counted every 24 h for 3 days.

Tumour xenografts. 36 female athymic nude mice (Envigo) of 5 weeks were
injected subcutaneously into the right flank with 1.5 × 106 WT, CDK2 KO or R50
cells, in total volume of 150 µl (12 mice per each cell type). Tumour size and animal
weight were measured weekly; mice were sacrificed when tumours reached the size
of 1500 mm3. Tumours were dissected and samples were frozen for further protein
and DNA analysis. Parts of tumours were embedded into paraffin blocks for
immunohistochemistry analysis.

Multicellular tumour spheroids. Competitions in 3D were initiated by mixing
sensitive (WT) HCT-116 GFP-positive cells with 1% R50-mCherry cells at day 0.
100% WT-GFP and 100% R50-mCherry spheroid cultures were prepared in par-
allel as controls.

Spheroids were initiated in 96-well plates according to Friedrich et al.47. Each
well was coated with 50 μl of 1.5% sterile agarose (wt/vol; Sigma, France) in
DMEM. Spheroids were initiated by seeding 1500 cells in 200 μl of complete
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culture medium (DMEM, 10% FBS) per well. After 96 h, spheroids with a mean
diameter of about 350 µm were formed. At day 4, treatment was started by
exchanging 50% of the 200 µl medium with 100 µl of fresh medium containing
NU6102 (2× final concentration). For control conditions, untreated and DMSO-
treated spheroids, 100 µl of media were replaced with fresh culture medium or
DMSO-containing fresh medium, respectively. Media were changed every three
days as described above. At least 4 spheroids were treated and analysed per
condition.

Volume, integrity and fluorescence composition (GFP/mCherry) of each
spheroid were monitored starting at day 4 and, every 3 days up to day 28. Phase
contrast, GFP and mCherry images were acquired with 2.5x objective using Zeiss
Inverted Axiovert 200M microscope (Carl Zeiss, Germany). All phase contrast
images of spheroids were checked and any deformed or irregular shaped spheroids
were eliminated from calculations.

Analysis of spheroid volume was performed using ImageJ (v 1.44) with a macro
automating size measurements for a folder of phase-contrast spheroid images48.
The measured area (S) of spheroids 2D projection was used to calculate the radius
(R) and the volume (V) of an equivalent sphere.

For flow cytometry, 4–5 spheroids of each condition were collected in 1.5 ml
Eppendorf tube and dissociated enzymatically (using 0.05% trypsin, 15 min.
treatment), and mechanically (by pipetting up and down three times). The cell
suspension was washed with PBS and fixed in 3% paraformaldehyde.

Flow cytometry analysis was performed using a Fortessa flow cytometer (BD
Biosciences, SanJose, CA) equipped with blue laser (488 nm) and yellow laser (530
nm). Flow cytometry data were analysed with FlowJo v.10.2 software (LLC
2006–2016). Forward and Side scatter of aggregates of cells were determined using
log scale SSC/FSC plots. In general, samples were analysed at a medium flow rate
and 10000 events were acquired for each sample.

Statistical analysis. Significant differences between experimental groups were
determined using an unpaired two-tailed Student t-test in Prism 5 (GraphPad). For
all analyses, p-values < 0.05 were considered statistically significant.

Calculation of selection coefficients. Competition between two cell lines can be
described using the selection coefficient. If the population sizes are P and Q then
the corresponding frequencies are defined as

p ¼ P
P þ Q

; q ¼ Q
P þ Q

¼ 1� p:

The selection coefficient of one cell line relative to another is then defined as the
rate of change of the ratio of the frequencies. That is,

s ¼ d
dt
log

p
q
¼ d

dt
log

p
1� p

: ð4Þ

If s is positive then P will increase relative to Q; if s is negative then P will decrease
relative to Q.

If two cell lines in competition grow exponentially and do not interact then the
selection coefficient can be predicted from their growth rates49. This is because

log
p

1� p
¼ log

P
Q
¼ log

P 0ð ÞexpðrPtÞ
Q 0ð ÞexpðrQtÞ ¼ log

Pð0Þ
Qð0Þ þ rP � rQð Þt;

where rP and rQ are the growth rates and P(0) and Q(0) are the initial sizes of
populations P and Q, respectively. Hence

s ¼ rP � rQ:

Accordingly, we predicted the selection coefficient for each competition assay as
the difference between the exponential growth rates of the competing cell lines. We
then compared this prediction to the selection coefficients calculated from the com-
petition assay frequency dynamics. We made a single prediction whenever growth
curves were measured at the same time as competitions were conducted; other-
wise we made maximum and minimum predictions based on non-
contemporaneous growth curves. We estimated the growth rate of each cell type as
the mean slope of log-transformed growth curves during the first 72 h in
monolayer culture.

Adjusting for loss of the GFP marker. To adjust data for loss of the GFP marker
in competitions between GFP + and GFP- subpopulations, we began by normal-
izing the data (so the two subpopulation sizes summed to unity). We then esti-
mated the rate of loss of the GFP marker by fitting a regression curve to the log-
transformed frequency of GFP + cells in the GFP + control assay. We calculated
adjustment factors as

c tð Þ ¼ exp at þ bð Þ;

where a is the slope of the regression line, b is the intercept, and t is time. We
adjusted all GFP+ cell frequencies for loss of the GFP marker by multiplying by 1/c,

and all GFP- cell frequencies by multiplying by (1−c)/c. Finally, we renormalized
the data. In no case did this adjustment change a qualitative outcome.

Non-spatial mathematical model. Our non-spatial mathematical model of cancer
adaptive therapy is inspired by that of Silva et al.7 However, whereas that paper
described population dynamics using recurrence relations, we instead use coupled
differential equations, which are easier to parameterize and analyze. We begin with
growth equations

dW
dt

¼ λWW;
dR
dt

¼ λRf R;Wð ÞR;

where W and R are the chemosensitive and resistant populations, respectively; λW
and λR are the maximum growth rates; and f is a frequency-dependent relative
fitness function. We also consider a model using a Gompertz growth function,
which is the most widely-used function for modelling sigmoidal tumour growth
curves50:

dW
dt

¼ λWW
logðK=NÞ
logðK=N0Þ ;

dR
dt

¼ λRf R;Wð ÞR log K=Nð Þ
log K=N0ð Þ ;

where N=W + R is the total population size, N0 is the initial population size, and K
is the carrying capacity.

In our numerical simulations (using the R programming language package
deSolve51), therapy is applied as a bolus at regular intervals and causes
instantaneous cell death. The treatment effect is simulated by multiplying each
subpopulation at the time of treatment by

1
1þ ρ=IC50X

;

where ρ is the dose, and IC50X is either IC50W (the half maximal inhibitory
concentration for sensitive cells) or IC50R (the corresponding value for resistant
cells). We are interested in the relative benefits of two types of therapy. For
maximum tolerated dose (MTD) therapy, every bolus dose is the same. For
adaptive therapy (AT) in numerical simulations, the dose is increased (respectively
decreased) by 20% if the total population size has increased (respectively decreased)
since the previous treatment.

Model analysis and further justification for the choice of frequency-dependent
fitness function can be found in Supplementary Methods.

Non-spatial model with microenvironmental feedback. To examine how
microenvironmental feedback might affect adaptive therapy outcomes, we inte-
grated our frequency-dependent fitness model with an experimentally-validated
model of tumour vascularisation developed by Hahnfeldt and colleagues52. As
before, we assumed that tumour growth is limited by a carrying capacity according
to a Gompertz growth function:

dW
dt

¼ λWW log
K
N
;
dR
dt

¼ λRf R;Wð ÞR log
K
N
;

where N=W + R is the total population size, and K is the carrying capacity. We
further assumed that the carrying capacity is linked to the degree of tumour vas-
cularisation, which can change over time due to an interplay of stimulatory and
inhibitory factors:

dK
dt

¼ bN � dN
2
3K;

where b and d represent how strongly the tumour stimulates and inhibits vascu-
larisation, respectively. The second term in the above equation derives from a
mathematical analysis of inhibitory factor diffusion from the surface of a three-
dimensional tumour52. Finally, we assumed that treatment not only kills tumour
cells but also inhibits vascularisation. Like in the case of cell death, the treatment
effect was simulated by multiplying K at the time of treatment by

1
1þ ρ=IC50K

;

where ρ is the dose, and IC50K is the half maximal inhibitory concentration.

Spatial computational model. To simulate the tumour spheroid experimental
system, we created a so-called hybrid cellular automaton computational model53

(written in the C language) in which each cell inhabits a point on a two-
dimensional square grid, which represents a cross-section through a three-
dimensional tumour spheroid. Cells proliferate and die at rates that depend on
local chemical concentrations and cell density.

At the start of each updating loop, all cells that have insufficient oxygen to
survive undergo cell death. These dead cells persist (unless replaced by living cells)
and form the necrotic core of the tumour spheroid. Next, cells attempt proliferation
or (due to effects of the CDK inhibitor) undergo cell death. We use the well-
established Gillespie algorithm54 to select cells and event types, and to determine
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the periods between events. According to this algorithm, the probability that cell k
will be chosen for either proliferation or death is ðPk þMkÞ=

P
i

Pi þMið Þ; where Pi
and Mi are proliferation and death rates, respectively. The selection process
amounts to sampling with replacement, so the choice of cell is independent of
which cells have been selected previously. The chosen cell attempts proliferation
with probability Pk=ðPk þMkÞ, or else undergoes cell death. The time between
events is calculated by drawing from an exponential distribution with mean
1=

P
i

Pi þMið Þ. For computational efficiency, the diffusion equations are not re-
solved after every cell proliferation or death event. Instead, events occur
sequentially until the number of cells that have undergone division or death
reaches 10% of the population size, at which time the diffusion equations are re-
solved and the proliferation and death rates are recalculated for each cell.

Further details of the computational model are in Supplementary Methods.

Code availability. Code used for tumour spheroid simulations is available under a
permissive free software license.32.

Data availability. Microarray gene expression data is available on the NCBI GEO
database with the accession number GSE102165.
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