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Abstract

The ongoing COVID-19 pandemic has overwhelmingly demonstrated the need to accurately

evaluate the effects of implementing new or altering existing nonpharmaceutical interven-

tions. Since these interventions applied at the societal level cannot be evaluated through tra-

ditional experimental means, public health officials and other decision makers must rely on

statistical and mathematical epidemiological models. Nonpharmaceutical interventions are

typically focused on contacts between members of a population, and yet most epidemiologi-

cal models rely on homogeneous mixing which has repeatedly been shown to be an unreal-

istic representation of contact patterns. An alternative approach is individual based models

(IBMs), but these are often time intensive and computationally expensive to implement,

requiring a high degree of expertise and computational resources. More often, decision

makers need to know the effects of potential public policy decisions in a very short time

window using limited resources. This paper presents a computation algorithm for an IBM

designed to evaluate nonpharmaceutical interventions. By utilizing recursive relationships,

our method can quickly compute the expected epidemiological outcomes even for large

populations based on any arbitrary contact network. We utilize our methods to evaluate the

effects of various mitigation measures in the District of Columbia, USA, at various times and

to various degrees. Rcode for our method is provided in the supplementry material, thereby

allowing others to utilize our approach for other regions.

Introduction

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was dis-

covered in Wuhan China [1]. The virus causes the Coronavirus Disease 2019 (COVID-19),

characterized by fever, cough, shortness of breath and other respiratory or flu-like symptoms.

Severe cases can lead to pneumonia, respiratory failure, multi-organ dysfunction and death
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[2–4]. Since its discovery, the virus has rapidly moved across the globe and on March 11th, 2020

the World Health Organization declared COVID-19 to be a global pandemic. To date, over 27.6

million cases and over 900,000 deaths have been reported worldwide [5]. Nearly all countries

have identified COVID-19 cases, with 158 countries reporting greater than a thousand cases

and 50 countries having recorded over a thousand deaths [5]. As the size of the pandemic con-

tinues to grow experts expect COVID-19 will pose a significant threat for many months and

potentially years. Thus, the burden not just to population health, but also the overall healthcare

system, skilled and long-term care, and the global economy are likely to be substantial.

Given the rapid growth with which COVID-19 has moved across the globe, policy makers

have sought guidance to slow the spread, reduce the severity of the epidemic, or guide strate-

gies for reopening. Consequently, many infectious disease models have been developed to

forecast the trajectory of the current epidemic and to understand the likely impact of a range

of interventions [6–15]. Models designed to capture certain aspects of the epidemic (e.g., fore-

casting mortality) may not be well suited for others (e.g., evaluating policy decision making),

and so decision makers have increasingly had to navigate a range of diverse modeling

approaches while attempting to find approaches that can meet the specific nature of a given

setting [16]. In short, decision makers need information on the effects of public policy mea-

sures on an epidemic that is both timely and accurate. From a modeler’s perspective, this trans-

lates into a model which is both computationally efficient and which captures salient features

of transmission through a population.

Many models have been developed to represent the disease transmission process and evaluate

control measures related to COVID-19. Such models typically fall into one of two major catego-

ries: homogeneous mixing compartmental models and individual/agent-based models (IBMs).

Equation-based models are typically less computationally expensive and can be implemented

quicker than IBMs. For example [7], implemented an early forecast for COVID-19 in Hubei,

China, using a mass action compartmental model [17]; developed a compartmental model with

homogeneous mixing which was used to capture the undocumented cases of COVID-19 [18];

used a compartmental model with homogeneous mixing which allowed for time-varying repro-

duction number; and two web-based forecasting platforms applied an interactive deterministic

compartmental model assuming homogeneous mixing and allow a user to alter a time-depen-

dent intervention [8, 9]. Some approaches have tried to estimate the effect of social distancing

measures on COVID-19 such as [19] which uses a stochastic mass action compartmental model

and [20] which used an age stratified mass action model. A limitation of equation-based com-

partmental models is that they rely on the assumption of homogeneous mixing, or mass action.

An alternative to equation-based compartmental models are IBMs, which provide a method

for capturing heterogeneous mixing by simulating contacts among individual agents. A wide

range of IBMs have been developed for COVID-19 [21–40]. IBMs have been developed to

evaluate numerous interventions including community lockdowns or closures [22, 26, 27, 31,

32, 35, 36, 38, 39], contact tracing, isolation and quarantine [22–24, 26, 27], mask wearing [29,

32, 33, 39, 40], social distancing [22, 24–26, 29, 35] and travel restrictions [26]. IBMs have also

been developed to simulate multiple contact settings (e.g., homes, schools, workplaces, public

transportation, etc.) [22–24, 27] and have been applied across a range of populations, cities

and countries [22, 24, 26, 27, 32]. However, not all IBMs accurately capture realistic contact

networks, such as [34] which assumes that individuals’ degrees follow a Poisson distribution.

Such a short-tailed degree distribution misses the profound impact that so-called supersprea-

ders have on the outbreak [41–43] states (p.120),

[superspreaders] transmit infection to many other members of the population, while most

infectives do not transmit infections at all or transmit infections to very few others. This
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suggests that homogeneous mixing at the beginning of an epidemic may not be a good

approximation.

These IBMs, however, come at a steep computational cost and can often necessitate a large

time commitment as well as a high level of expertise to design and code efficiently.

IBM’s are particularly well-suited to evaluate nonpharmaceutical interventions that focus

on contacts between individuals. To accurately understand the effects of these types of inter-

ventions, we must more accurately model how individuals contact one another. This has been

commented on by others; e.g., [44] wrote “realistic mixing can be an important factor to con-

sider in order for the models to provide a reliable assessment of intervention strategies” (p.31).

There is a large body of research showing how in many settings homogeneous mixing is inade-

quate for accurately modeling disease dynamics, such as [43–49] (see [46] and [48] for further

reference listings on this). As a recent concrete example [50], evaluated model assumptions in

the West African Ebola outbreak and stated, “we see that alternative hypotheses for how

[Ebola Virus Disease] spreads, such as homogeneous mixing and nearest neighbor interac-

tions, provide quantitatively poorer agreement with data” (p.3). While not a focus of this

paper, one important aspect is preferential mixing based on age [51]. While this has been done

successfully for age-stratified homogeneous mixing models (see, e.g., [52]), if a model is to

incorporate age when evaluating interventions on contacts, we believe that it would be better

to incorporate this into a realistic network model through social selection mechanisms.

One of the advantages of equation-based models over IBMs is the simplicity and speed

with which the former can typically be implemented [53]. The computational complexity of

IBMs, especially when simulating large populations and complex contact networks, often

require extensive programming, algorithmic efficiency, computing power and parallel pro-

cessing [54–56]. Conversely, many equation-based models can be quickly implemented using

more simplistic numerical computing environments or even basic spreadsheet software [57].

Thus, equation-based models may be utilized more quickly during an outbreak setting of an

emerging infectious disease. Indeed, during the COVID-19 pandemic many of the earliest

modelling estimates were produced by equation-based models [58–61] or branching process

models (that focused on early stages of an outbreak) [36, 62–64]. Some of the earliest exam-

ples of IBMs applied to COVID-19 involved the re-purposing of models designed for previous

outbreaks (e.g., influenza or smallpox) [22, 26, 27, 63]. In the early stages of an outbreak, pol-

icy makers may need to quickly evaluate multiple types of complex interventions under a

range of unknown parameter values, and some policy actions may more well-suited to IBMs

[65]. Thus, there is a need to develop methods that can produce estimates consistent with

IBM-based approaches while offering the computational efficiency typically represented by

most equation-based models.

The contribution of this paper is primarily to present a computationally efficient estimation

method for a network-based IBM which can be used for evaluating nonpharmaceutical inter-

ventions such as implementing or lifting social distancing measures or implementing universal

personal protective equipment (PPE). Our second contribution is to use this method to pro-

vide critical information on the effects of various nonpharmaceutical mitigation measures in

the District of Columbia (D.C.) at various times and to various degrees.

Methods

Overview

Our proposed method for modeling disease transmission dynamics through a susceptible-

exposed-infectious-recovered (SEIR) model relies on a contact network rather than mass
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action assumptions. It focuses on the individuals in the population, but rather than simulating

disease over an individual-based model and averaging the results to obtain an estimated epi-

demic curve, our method directly estimates the probability that a particular individual is infec-

tious at a particular time. Through the use of recursive relationships, the expected number of

infected individuals can be efficiently computed at each time point.

The primary benefit of our proposed approach is the ability to obtain the expected epicurve

from an SEIR IBM analytically, thereby saving practitioners from having to run thousands of

simulations for each possible parameter configuration and counterfactual scenario. Other

strengths of the method include the following. First, it relies on a realistic or observed contact

network. This is in contrast to assumptions of homogeneous mixing, or that the contact degree

distribution is not heavy tailed (e.g., Poisson). This crucially allows us to capture the effects of

superspreaders [41, 42], burstiness of the epidemic (i.e., the tendency for an epidemic to show

alternating patterns of slow and rapid growth, as opposed to a steady growth curve) [66, 67],

and other salient features of realistic contact graphs. Second, our approach explicitly captures

the way nonpharmaceutical interventions can affect the disease transmission through

quarantining/social distancing or reducing the risk that a susceptible-infective contact will

lead to a new transmission through, e.g., personal protective equipment (PPE).

Our method is limited in that some disease characteristics are simplified in exchange for

more accurate contact patterns and computational efficiency. Specifically, it assumes that

everyone who becomes infected experiences a constant latent period and is able to transmit

the disease to their set of regular contacts (either directly or through the environment) for the

same amount of time. While these quantities can be estimated from the data, it does not reflect

the varying lengths of time individuals are susceptible nor the varying lengths of time individu-

als are infectious before recovering, dying, or being effectively isolated. In addition, it may be

that the population is partitioned such that subpopulations have varying levels of infectivity

and susceptibility; for example, susceptible individuals of different ages may be more or less

easily infected by infectives. While our approach allows (1) contacts patterns to differ between

subpopulations and (2) transmission rates to vary over time, we have not accounted for indi-

vidual level or dyadic level transmission rates.

While our proposed IBM may not be the most realistic model, as IBMs can always be more

nuanced, it offers a significant computational benefit. Our proposed approach can be used to

compute the expected results from a network-based IBM with large populations using limited

computing resources, and our method is easily and quickly deployed (a small R package for

implementing this methodology is provided in the S1 File). This computational efficiency

allows a user to quickly explore the effects of public policy changes on social distancing or uni-

versal PPE interventions, thereby providing decision makers a timely method of evaluating,

for example, when and to what degree social distancing measures should be implemented or

relaxed.

Approach

We begin by presenting the setup and notation we will use. For a population of size N, let the

initial probability that an individual is infected be denoted as p0. For j = 1, 2, . . ., N, let xtj = 1 if

individual j is infective at time t, t = 1, 2, . . ., T, and 0 otherwise. The probability that xtj = 1,

EðxtjÞ, is denoted by x̂tj. The N individuals in the population are connected through a contact

graph which is represented by a N × N adjacency matrix A such that Aij = 1 if i and j can con-

tact each other and 0 otherwise. The probability that a susceptible individual j is infected by

an infective neighbor on the contact graph at time t is denoted by pt. If this event occurs, the

susceptible enters a latent period of DE days where they have been exposed but are not yet
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infectious. This latent period is immediately followed by a period of DI days where the individ-

ual is infective, and hence ∑t xtj = DI 8 j. Let I t denote the set of infectives at time t, and let N j

denote the neighbors of j on the contact graph. At time t, let Qtj denote the event that suscepti-

ble individual j is self-quarantining, and let this event occur with probability qtj. Let ι denote

the daily probability of a susceptible individual importing the disease from outside the popula-

tion of interest. Finally, let Htj denote the event that j is successfully infected at time t (and

hence will enter the latent period for DE days), where H0j corresponds to the event that j is the

outbreak’s initializer/patient zero. We denote the probability that an event, such as Htj, has

occurred by Prob(Htj), and the probability that it has not occurred by ProbðH0tjÞ, and for condi-

tional probabilities we use | to separate the unknown event (left) from the events which we

know to have occurred (right).

The goal of the analysis is to estimate the expected number of new infections each day- or

equivalently each day’s expected cumulative number of infections- according to the individ-

ual-based model described above. To achieve this, we first focus on estimating the probability

of being infective for each individual in the population on each day, i.e., x̂tj.

For the first few days of the outbreak, the only infective(s) will be the outbreak initializer(s).

If the latent period is longer than the infectious period then there will be one or more days

with zero infectives. If the opposite is true (DE< DI), then following these first few days there

will be a period where the probability an individual is infective equals the probability that they

are either the outbreak initializer or were infected within the first t − DE days. After this, the

probability that an individual is infective equals the probability that they were not an initializer

and were infected within a moving window such that they have passed the latent period but

have not yet recovered. To put this concretely in mathematical terms, we have the following.

For 1� t�min(DE, DI),

x̂tj ¼ p0: ð1Þ

If DE> DI, then for DI< t� DE,

x̂tj ¼ 0; ð2Þ

else if DE< DI, then for DE< t� DI,

x̂tj ¼ Prob
[t� DE

s¼0

Hsj

 !

: ð3Þ

Finally, we have for t> max(DI, DE),

x̂tj ¼ Prob
\maxð0;t� DE � DI Þ

s¼0

H0sj

( )

\
[t� DE

s¼maxð1;t� DE � Diþ1Þ

Hsj

( ) !

: ð4Þ

If individual j is still susceptible at time t, they can become infected by either importing the

disease from outside of the study population or by being infected by an infective neighbor on

the contact graph. This latter method requires both that j is not quarantined at time t and that
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at least one infective neighbor infects j. Hence by the law of total expectation we have that

Prob Htj

�
�
�
�

\

s<t

H0sj

 !

¼ iþ ð1 � iÞð1 � qtjÞð1 � EðProbðno infectives infect jjQ0sj; xtÞÞ

¼ iþ ð1 � iÞð1 � qtjÞ 1 � E
Y

i2N j\I t

ð1 � ptÞ

0

@

1

A

0

@

1

A

¼ iþ ð1 � iÞð1 � qtjÞð1 � Eðð1 � ptÞ
x0tA�jÞÞ;

where xt = (xt1, xt2, . . ., xtN)0 and A � j is the jth column of the adjacency matrix A. Using a first

order Taylor’s expansion around x̂ t , we have

Prob Htjj
\

s<t

H0sj

 !

� iþ ð1 � iÞð1 � qtjÞð1 � Eðð1 � pÞx̂
0
tA�j þ ðxt � x̂ tÞ

0
rfð1 � ptÞ

x0tA�jgjxt¼x̂ tÞÞ;

¼ iþ ð1 � iÞð1 � qtjÞð1 � ð1 � pÞx̂
0
tA�jÞ;

ð5Þ

or equivalently

Prob H0tjj
\

s<t

H0sj

 !

� ð1 � iÞðqt þ ð1 � qtÞð1 � ptÞ
x̂ 0tA�jÞ: ð6Þ

For ease of notation, we let this quantity in (6) be notated as ftj.
Combining Eqs (1)–(6) yields the following.

1 < t � min ðDE;DIÞ; x̂tj ¼ p0;

min ðDE;DIÞ < t � maxðDE;DIÞ; x̂tj ¼
1 � ð1 � p0Þ

Yt� DE

s¼1

fsj if DE < DI

0 if DE > DI

8
>><

>>:

t > maxðDE;DIÞ x̂tj ¼ amaxð0;t� DE � DI Þj
1 �

Yt� DE

s¼maxð1;t� DE � Diþ1Þ

fsj

 !

:

ð7Þ

Here αtj is defined to be the probability that individual j is still susceptible by time t. These

quantities can be computed recursively in the following manner. First,

a0j ≔ ProbðH0
0jÞ ¼ 1 � p0. Subsequently for t> 0 we have

atj ≔ Prob
\t

s¼0

H0sj

 !

¼ aðt� 1Þjftj: ð8Þ

These recursions then allow us to compute the quantity of interest, namely the number of

infections we expect to have by time t. This is derived from the expected number of susceptible
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individuals:

Eð# infectedÞ ¼ Pop: size � Eð# susceptibleÞ

¼ N �
XN

j¼1

atj:
ð9Þ

The parameters to be estimated include the length of the disease’s latent period (DE), the

number of days an individual is infective (DI), the probabilities that a contact leads to a trans-

mission event (pt), and the probabilities that an individual is quarantined at time t (qt). The

initial probability p0 may also need to be estimated, but in many cases this will be a known

(small) number, such as 1/N for a single initializer. Given a contact graph, prior to social dis-

tancing and any intervention which may affect transmission probabilities the quantities pt may

be related to the more intuitive reproduction number, or R0, defined to be the expected num-

ber of new infections generated by a given infective. This can be computed as

R0 ¼ ð#days infectiousÞ � Eð#contacts per dayÞ � ProbðS � I contact leads to new transmissionÞ;

and hence

pt ¼
R0

DI
�d
; ð10Þ

where �d is the average degree in the contact graph A, i.e., the average number of neighbors in

A. Estimation can be performed via ordinary least squares (OLS), i.e., minimizing the sum of

squared differences between the observed and the expected number of daily cases.

COVID-19 in District of Columbia

Case data

We used publicly available data collected by The COVID Tracking Project [68] for Washing-

ton D.C. This data source provides the daily number of lab confirmed cases which we used to

train our IBM. We used data from the first case at the beginning of March until the end of

May when protests over the killing of George Floyd led to a large number of unexpected poten-

tial transmission events.

To obtain estimates of the number of infections, we used results from a study involving a

random sample of individuals to test in Indiana [69] which estimated the infection fatality rate

(IFR) to be 0.58%. We then used a 30-day rolling window to compute the reporting rate for

each day; deaths were shifted by 16 days, as this was the average time between symptom onset

and death [70]. That is, for day t, we looked at the reporting rate RRt

RRt ¼

Pt
s¼t� 29

#reported cases on day s
Ptþ16

s¼t� 13
#reported deaths on day s

� �
=IFR

These daily reporting rates were then used to rescale the number of reported cases to obtain

an estimate of the daily number of infections.

Contact graph

We based our contact graph on a study of inter-personal daily contacts in Hong Kong [71]. In

this study, 1,450 individuals were recruited from 857 households, where a contact was defined

to be a social encounter which included a “face-to-face conversation or touch (such as hand-

shake, a kiss, games and sports or similar events involving body touch)” [71]. As was consistent
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with other studies, they found the distribution of contacts to be heavy tailed, which has pro-

found effects in the context of infectious disease as this indicates potential super-spreaders.

Overall, individuals had on average 12.5 contacts per day. This matches closely with an eco-

logical momentary assessment study of individuals in upstate New York which found the aver-

age number of daily contacts to be 12 [72]. We then constructed a network of 705,749 nodes

by randomly assigning each node a number of stubs drawn from a negative binomial distribu-

tion with mean 12.5 and dispersion parameter 1.3. Each stub was randomly connected to

another node’s stub, and in this way we preserved the desired degree distribution.

Mobility data

We estimated individual response to quarantine policy measures and the corresponding

mobility patterns using Google Community Mobility Reports [73]. The authors complied with

the terms and conditions of https://www.google.com/covid19/mobility/. Google Community

Mobility Reports use geolocated mobile phone data to assess various populations’ movement

patterns. This was measured by first capturing a baseline rate of movement and then evaluat-

ing deviations from this baseline rate. These baseline measurements were taken from the

period 3 January, 2020—6, February, 2020, and were broken down by day of the week and by

category (workplace, retail and recreation, etc.). We chose to focus on the category of retail

and recreation, as this seemed to best reflect voluntary movement patterns. We used ordinary

least squares (OLS) to find a parameter by which we could multiply the deviations given in the

Google Community Mobility Reports in order to obtain a daily estimate of the probability an

individual would self-quarantine.

Scenarios

On March 11, 2020 the mayor of D.C. issued a State of Emergency declaration [74]. From the

mobility data it is clear that this prompted a sudden shift towards self-isolation (see Fig 1). In

addition, a face mask mandate was issued on April 15 [74]. We trained our model using OLS

on the daily number of infections, estimating the effect of the lockdown as well as the effect

of the face mask mandate; the latter of these was estimated as a rescaling of the transmission

parameter.

We then computed the expected number of daily infections were the declaration of emer-

gency to have occurred one week earlier and one week later than March 11; this was done by

shifting the mobility data either backward or forward a week. We also considered the scenario

where there was no declaration of emergency. We then evaluated the effect of replacing the

lockdown via the declaration of emergency with a face mask mandate for the dates March 4,

11, and 18. We additionally evaluated the effect of supplementing the lockdown with a face

mask mandate, again for the same three dates. Since the dates under consideration were so

early in the course of the epidemic, we assumed that it would take some time before the same

level of mask-wearing compliance as seen on April 15 would be observed. We therefore

allowed the transmission rate to change smoothly from pre-mandate to post-mandate levels

through a Gaussian kernel such that after ten days the transmission rate was 90% through the

transition towards its final value.

We further estimated the effects of reimplementing social distancing for only a strategic

portion of the population. This was determined by implementing social distancing for those

individuals with the highest number of contacts (e.g., healthcare professionals rotating

between long term care facilities) while maintaining no social distancing measures for the

remainder of the population. We evaluated the effects of a declaration of emergency on March

11 affecting only the top 10% as measured by number of contacts and for the top 50% both
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with and without an accompanying face mask mandate. In both cases, those designated to self-

quarantine did so at the rate observed from the mobility data (see Fig 1), while those not desig-

nated did not quarantine.

Lastly, we estimated the effect of delaying the lockdown induced by the declaration of emer-

gency by 1, 2, and 3 weeks while implementing a mask mandate. For all lockdown delays, this

mask mandate was implemented on March 11 (the day of the observed declaration of emer-

gency), and as before we allowed a gradual rollout of the mask mandate.

Results

By May 28, 2020, there were 453 deaths recorded in D.C. due to COVID-19 infections and

8,492 lab confirmed cases. Fig 2 shows the observed daily and cumulative case counts data

alongside the estimated expected number of confirmed cases.

We estimated an initial R0 of 1.54, an exposed period of 3 days, an infectious period of 6

days, and a daily probability of an individual importing COVID-19 from outside of the popu-

lation of 8.6 × 10−5. The estimated effect of the face mask mandate was a reduction in transmis-

sibility (pt) of 23%.

Fig 3 shows the main results for projecting under various mitigation measures through the

date of the face mask mandate. Each of the three subfigures corresponds to a given date of

implementing the nonpharmaceutical interventions, March 11, March 4, and March 18, repre-

senting the actual date of intervention, the preceding week, and one extra week delay respec-

tively. In each figure for comparison is the expected number of daily infections with no

intervention (solid). Also given are curves representing the effects of a declaration of emer-

gency (i.e., lockdown), a mask mandate, and both.

Fig 4 shows the results for contexts when only a subpopulation is expected to quarantine.

Quarantine rates, i.e., the daily probability that an individual will quarantine, are constant

Fig 1. Estimated quarantining levels. Estimated levels of quarantining based on the Google Community Mobility Reports. The values in these reports

have been scaled by a quantity estimated by training our IBM. The vertical line corresponds to the Declaration of Emergency issued by the mayor of D.

C.

https://doi.org/10.1371/journal.pone.0241949.g001
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regardless of who is practicing quarantining. Results are shown for the contexts where all are

quarantining, and where the top 50% and 10% of the population in terms of number of con-

tacts are practicing quarantining. These strategies are also shown when augmented by a uni-

versal mask mandate applied to the entire population.

Fig 5 shows the results when the lockdown is delayed by 1, 2, or 3 weeks. As a frame of ref-

erence, the curve which corresponds to the actual policies enacted (lockdown beginning on

March 11 and no mask mandate). Excepting this reference curve, all projections correspond

to a mask mandate enacted on March 11 with a gradual rollout. Quarantining begins on later

dates which are marked by the vertical line segments of matching line type.

Discussion

In an ongoing outbreak, data streams are being continually updated, and estimates of the dis-

ease trajectory are highly dynamic. Data and estimates quickly become outdated, and hence it

is necessary to be able to provide accurate forecasts and projections of intervention effects rap-

idly. In other contexts, researchers do not have access to a powerful computing cluster that

allows one to perform the massive simulations required for an IBM. Our approach provides an

Fig 2. Estimated and observed number of daily infections. Fitting the individual-based model (black solid) to the (a)

daily and (b) cumulative number of confirmed infections (gray solid).

https://doi.org/10.1371/journal.pone.0241949.g002
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Fig 3. Projections for nonpharmaceutical interventions. Washington, D.C., COVID-19 projections for various

mitigation strategies starting on, one week prior to, and one week after March 11, 2020. Quarantining is based on the

changes in mobility due to the mayoral Declaration of Emergency. The face mask mandate matches the effects seen

from the mayoral face mask mandate given on May 15, 2020 except with a one-week gradual rollout.

https://doi.org/10.1371/journal.pone.0241949.g003

PLOS ONE Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0241949 November 10, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0241949.g003
https://doi.org/10.1371/journal.pone.0241949


Fig 4. Projections for nonpharmaceutical interventions on subsets of the population. Washington, D.C., COVID-19 projections for implementing

quarantining for the top 10% and 50% individuals with respect to number of contacts. Also shown are results for implementing quarantining for

everyone. Quarantining rates are the same observed levels regardless of the subpopulation practicing quarantining. The mask mandate applies to all

individuals.

https://doi.org/10.1371/journal.pone.0241949.g004

Fig 5. Projections for nonpharmaceutical interventions for a delayed lockdown. Washington, D.C., COVID-19 projections for implementing the

observed level of quarantining when quarantining is delayed by 1, 2, or 3 weeks. This strategy is in conjunction with a mask mandate which begins on

March 11 for all counterfactual scenarios. As a frame of reference, shown in gray is the result from a lockdown beginning on March 11 without a mask

mandate, which corresponds to the actual policies enacted.

https://doi.org/10.1371/journal.pone.0241949.g005
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analytically tractable solution to compute the expected epidemic curve and is thus inherently

fast and computationally inexpensive compared to simulation-based inference.

Our approach is limited in that in order to obtain credible or prediction intervals, simula-

tion would still be required. However, our work was motivated by the need to evaluate and

compare a high volume of scenarios of implementing or ceasing nonpharmaceutical interven-

tions, and our approach provides a fast and computationally inexpensive way to do this com-

pared to simulation-based inference.

While we have focused on static networks, it would be a trivial extension of our work to

account for time-varying networks. Eq (6) can be changed to reflect this by replacing A with

some time-specific adjacency matrix A(t), and all other formulas still hold. One important

application of this would be to address the fact that some distancing measures affect age strata

differently such as school or workplace closures. By replacing the static network by a time-

varying one, school closures, for example, could be reflected by having at a certain time t the

networks {A(s)}s � t break contacts between most school-age children. In addition, a vaccina-

tion pharmaceutical intervention applied at time t could be addressed by breaking all contacts

involving vaccinated individuals in the networks {A(s)}s � t. As mentioned previously, our pro-

posed approach cannot handle individual- or dyad-level varying transmission rates, and hence

we cannot account for nonpharmaceutical or pharmaceutical interventions that act differen-

tially in this way.

There are several key takeaways from our analysis of COVID-19 in D.C. First, an early lock-

down augmented with a face mask mandate has a powerful effect on the expected epidemic

trajectory. Adjusting for reporting rate, we estimate that there was a total of 44,590 infections

by April 15. Implementing a mask mandate alongside the lockdown on March 11, we estimate

we would have expected to have seen a total of 20,616 infections. Had these two interventions

been implemented a week earlier we estimate we would have seen a total of 11,703 infections.

However, a second takeaway is that this effect is greatly diminished if delayed. Delaying these

two interventions by one week would have led to a total of 47,564. Hence an early response

was critical to mitigating the extent of COVID-19 spread.

Third, a mask mandate alone would probably not be sufficient. Our results show that

there would have been a dramatic increase in infections had a face mask mandate been put

in place in lieu of a lockdown. This conclusion comes with a strong caveat, however. Because

individuals were wearing masks prior to the mask mandate, it is almost certain that we are

underestimating the effect of a mask mandate. That is, the effects of universal mask wearing is

underestimated due to the fact that this effect was already partially in place due to voluntary

mask wearing, and so the effect of a mask mandate we have estimated is in fact the effect of

mandating masks on those who would not voluntarily wear one.

Fourth, if careful consideration were to allow the strategic selection of individuals to quar-

antine, we could have seen almost the same level of reduction in infections by only implement-

ing the lockdown for the top 50% of individuals as ordered by number of contacts. This result

could have important economic impacts, in that only half the population would need to quar-

antine. We reiterate that this does not mean that half the population is always quarantined, but

rather this half of the population is quarantining at the same rate as what we observed from the

data for the overall population (see Fig 1). This strategic selection has a limit. Our results dem-

onstrate that only quarantining the top 10% of individuals would lead to a much worse epi-

demic trajectory. However, if this strategic 50% quarantining strategy were paired with a mask

mandate, we would have expected to see only 25,020 infections, just 56% of the expected num-

ber of infections when quarantining all individuals without a mask mandate.

Fifth, by implementing a face mask mandate we can achieve similar or better results when

delaying the lockdown by one to two weeks compared to an earlier lockdown without the
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mask mandate. Given the heavy economic cost of the lockdown [75], this result has potentially

strong consequences. Moreover, there is growing evidence of the clinical and public health

related harms that may be attributable to prolonged lockdowns and societal quarantine; exam-

ples include delayed medical care [76, 77], vaccination [78], cancer screening [79], increased

mental health problems [80] and food insecurity [81, 82]. Thus, there are potentially many

other indirect benefits to mask mandates that we do not account for in our model.

One important point is the sensitivity of our results to two factors. First, we made all infer-

ence based on a single network generated as described above. We checked and confirmed that

there was negligible variation in our results based on using other networks generated accord-

ing to the same mechanism. Second, we checked how the accuracy of our results fared due to

the approximation used in (5). To do this, we compared the mean epicurve using our proposed

method shown in Fig 2a to a Monte Carlo estimate obtained by simulation. We also compared

the estimated curves in Fig 3a to Monte Carlo estimates. There was an apparent problem of

scale during the peak of the epidemic, but the shape and conclusions drawn from the curves

were the same for those from our proposed approach and the Monte Carlo estimates. See the

S1 File for these and other sensitivity/accuracy results.

Another important limitation that is worth noting with any study involving the effects of

public health policy is the indirect link between behavior changes and policy. It is often impos-

sible to fully disentangle the endogeneity of behavior changes, the size of the epidemic, and the

timing public policy, when the counterfactual cannot be observed. It is likely that mask wear-

ing, social distancing and self quarantine are also driven by personal precautions and would

increase in absence of public policy mandates. Indeed, there is evidence that many behavior

changes that resulted in social distancing preceded policy changes [83]. Thus, our results

should be interpreted based on the assumed connection to behavior (e.g., the baseline, no
intervention, case may not reflect actual behavior in absence of any policy).
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