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ABSTRACT

Background. AU-rich elements (ARE) are vital cis-acting short sequences in the
3’UTR affecting mRNA stability and translation. The deregulation of ARE-mediated
pathways can contribute to tumorigenesis and development. Consequently, ARE-genes
are promising to predict prognosis of lung adenocarcinoma (LUAD) patients.
Methods. Differentially expressed ARE-genes between LUAD and adjacent tissues
in TCGA were investigated by Wilcoxon test. LASSO and Cox regression analyses
were performed to identify a prognostic genetic signature. The genetic signature was
combined with clinicopathological features to establish a prognostic model. LUAD
patients were divided into high- and low-risk groups by the model. Kaplan—-Meier curve,
Harrell’s concordance index (C-index), calibration curves and decision curve analyses
(DCA) were used to assess the model. Function enrichment analysis, immunity and
tumor mutation analyses were performed to further explore the underlying molecular
mechanisms. GEO data were used for external validation.

Results. Twelve prognostic genes were identified. The gene riskScore, age and stage were
independent prognostic factors. The high-risk group had worse overall survival and was
less sensitive to chemotherapy and radiotherapy (P < 0.01). C-index and calibration
curves showed good performance on survival prediction in both TCGA (1, 3, 5-year
ROC: 0.788,0.776,0.766) and the GSE13213 validation cohort (1, 3, 5-year ROC: 0.781,
0.811,0.734). DCA showed the model had notable clinical net benefit. Furthermore, the
high-risk group were enriched in cell cycle, DNA damage response, multiple oncological
pathways and associated with higher PD-L1 expression, M1 macrophage infiltration.
There was no significant difference in tumor mutation burden (TMB) between high-
and low-risk groups.

Conclusion. ARE-genes can reliably predict prognosis of LUAD and may become new
therapeutic targets for LUAD.
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INTRODUCTION

Lung cancer is one of the most life-threatening diseases and possesses the considerable high
morbidity and mortality (Siegel, Miller ¢ Jemal , 2020). Lung adenocarcinoma (LUAD)

is the most common histological subtype of lung cancer at present, accounting for 40%
of all lung cancer cases (Hutchinson et al., 2019; Huang, Qu & Du, 2019). The current
therapies include surgical resection, radiotherapy, chemotherapy, immune and targeted
therapy. However, due to the rapid progression, early metastasis and lack of accurate
biomarkers, most patients have an unfavorable survival (Hirsch ef al., 2017). Conventional
models utilize clinical tumor-node-metastasis (TNM) staging, vascular invasion, and other
parameters to help predict LUAD prognosis (Jia ef al., 2020). The efficacy of conventional
models is still unsatisfying due to the heterogeneity of LUAD. There is a formidable barrier
to fulfill the clinical promise of high-quality care and reduce LUAD burden (Hamann et
al., 2018). As a result, it is urgent to develop more accurate biomarkers to predict prognosis
of LUAD patients.

AU-rich elements (ARE) are crucial cis-acting sequences in the 3’ UTR, which mediate
the recognition of a series of RNA-binding proteins (Khabar, 2010). Specifically, the forms
of ARE sequences include U-rich or AU-rich sequences, repeats of overleaping pentamers
of AUUUA and the nonamers UUAUUUAUU, and the latter two forms are recognized
as the minimally functional ARE sequence (Khabar, 2010; Zubiaga, Belasco ¢» Greenberg,
1995). The AU-rich mRNAs are a cluster of mRNA containing ARE in the 3’ untranslated
regions (3 UTR), accounting for 10-15% of all transcripts (Halees, El-Badrawi ¢ Khabar,
2008). Tt is recognized that the length of 3 UTR is a determinant factor in RNA stability. It
appears that the 3’ UTR of ARE-mRNA is longer than non-ARE mRNAs such as those of
housekeeping genes (Al-Zoghaibi et al., 2007; Mukherjee et al., 2009). Longer 3’ UTR tend
to have a higher proportion of miRNA targets and the higher order of post-transcriptional
regulation complexity (Jing et al., 2005). Binding the RNA-binding proteins or synergized
by certain miRNA, ARE mediate rapid mRNA decay and thus affect translation of the
ARE-mRNA (Khabar, 2010). The genes coding for ARE-mRNA include cytokines, growth
factors and certain receptors such as VEGF, CCL2, EGF, EGFR et al., most of which play
important roles in chronic inflammation and cancer (Khabar, 2010). Tumor necrosis factor
(TNF-a) is an ARE-gene. It is recognized that TNF-a is a pro-inflammatory cytokine and
plays an important role in triggering production of other inflammatory mediators including
IL-8, IFN-y, CXCL10 and so on (Kontoyiannis et al., 1999). Despite the notion of its name
as tumor necrosis protein, TNF-a promotes initiation and development of multiple cancers
including hepatocellular carcinoma, colorectal cancer, epithelial ovarian cancer and lung
cancer et al. (Pikarsky et al., 2004; Popivanova et al., 2008; Kulbe et al., 2007; Zhao et al.,
2018). COX-2 is another ARE-gene which catalyzes the key step in the prostaglandin
production pathway. The increased stability and activity of COX-2 are associated with
colon and other cancers, and contribute to cellular proliferation, resistance to apoptosis,
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angiogenesis and metastasis (I'sujii et al., 1998; Sawaoka et al., 1999; Li, Yang ¢ Yan, 2002).
Moreover, pro-inflammatory cytokines, many of which are coded by ARE-genes, such
as IL-1, IL-6, are released from the tumor microenvironment favoring the initiation and
progression of tumors (Khabar, 2010). Consequently, ARE-genes are intimately associated
with tumor and have great potential to become new therapeutic targets of cancer.

Although there is increasing evidence suggesting that the ARE-genes play important
roles in tumorigenesis and progress (Haghnegahdar et al., 2000). The prognostic value
of ARE-genes on LUAD remains ambiguous. Here, we analyzed differentially expressed
ARE-genes between LUAD and adjacent tissues. Then, by univariate, LASSO, multivariate
Cox regression analyses, a prognostic genetic signature containing 12 genes was identified
and was combined with clinicopathological features to establish a prognostic model.
Kaplan—Meier curve, Harrell’s concordance index (C-index), calibration curves and
decision curve analyses (DCA) were used to assess accuracy and reliability of the model.
Furthermore, function enrichment analysis, immunity and tumor mutation burden (TMB)
analyses were performed to further explore the underlying molecular mechanisms. GEO
data were used for external validation. Finally, we explored the predicting role of AU-rich
genes on prognosis and therapeutic effects of LUAD.

MATERIALS AND METHODS

Data download

The mRNA expression profile, mutation data and clinicopathological information of LUAD
were obtained from TCGA database (discovery cohort) (https://portal.gdc.cancer.gov/).
To validate the accuracy of the prognostic model, an independent dataset was
downloaded from GEO database (GSE13213) (Tomida et al., 2009) (validation cohort)
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13213). The TCGA dataset met
the following criteria: (1) human LUAD and adjacent tissue; (2) integrated follow-up
information; (3) the number of samples > 30. The genes coding for ARE (ARE-genes)
were acquired from the human AU-rich element-containing mRNA database (ARED)
(https://brp.kfshrc.edu.sa/ared) (Bakheet, Hitti ¢ Khabar, 2018). Data were downloaded
from the publicly available database. Hence it was not applicable for additional ethical
approval.

Identification of a prognostic genetic signature

First, we identified the differentially expressed genes (DEGs) between LUAD and adjacent
samples in TCGA cohort using Wilcoxon test in R. |log,FC| > 1 and false discovery rate
(FDR) < 0.05 were set as the cutoffs for the DEGs. Then the intersection of DEGs and
AREs (DE-AREs) was visualized via a venn diagram and used to further analyze. Univariate
Cox regression was performed and P < 0.01 was considered statistically significant. The
DE-AREs which were significant in univariate Cox regression were further filtered by
least absolute shrinkage and selector operation (LASSO) and multivariate Cox regression
analyses (McEligot et al., 2020). Finally, a prognostic genetic signature was identified.

Liu et al. (2021), PeerdJ, DOI 10.7717/peerj.12275 3/23


https://peerj.com
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13213
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13213
https://brp.kfshrc.edu.sa/ared
http://dx.doi.org/10.7717/peerj.12275

Peer

Construction and validation of the AREs-based prognostic risk score
model

According to the prognostic genetic signature, we calculated the risk scores of each patient in
TCGA cohort based on a linear combination of the multivariate Cox regression coefficients
(B) multiplied with its mRNA expression level. The risk score = (Bmrna1 * expression
level of mMRNAT1) + (BmrNaz * expression level of mRNA2) + (Bmrnas * expression level of
mRNA3) + -+ 4+ (BmrNan * expression level of mRNAn) (Liu et al., 2019). The patients were
divided into the high- and low-risk groups according to their risk scores. Kaplan—Meier
plotter and C-index analysis were conducted to evaluate the model of the 12-gene signature.
To elevate the accuracy of the predicting model, we performed univariate and multivariate
Cox regression to screen the conventional clinical attributes including age, gender, stage,
treatment type, primary site, and race. Finally, a nomogram consisting of the genetic
signature and clinical attributes was constructed to predict the patients’ overall survival
(OS). The performance of this prognostic nomogram was evaluated by Kaplan—Meier
analysis, C-index, calibration curve and decision curve analyses(DCA) (Vickers ¢ Elkin,
2006). To validate the reliability of the prognostic model, a GEO dataset (GSE13213) was
used for the external validation.

Expression analyses of prognostic genes by GEPIA and HPA

To detect the mRNA and protein expression level of prognostic genes, we utilized two
online tools. GEPIA (Gene Expression Profiling Interactive Analysis) (http://gepia.cancer-
pku.cn/) is a web-based tool to provide series of functions including differential expression
analysis, profiling plotting, correlation analysis et al. based on TCGA and GTEx data (Tang
et al., 2017). The human protein atlas (HPA) (https://www.proteinatlas.org/) is an online
website which provides the expression information of a number of proteins in normal or
pathologic tissues.

Function enrichment analyses and tumor immunity analyses

In order to analyze gene enrichment difference between high- and low-risk groups, GO
and KEGG pathway analyses were performed (GSEA: version: 4.0.3) and visualized by
bioinformatics online tool (http://www.bioinformatics.com.cn/). GO enrichment analyses
include biological processes (BP), cellular components (CC), molecular functions (MF).
Via single sample Gene Set Enrichment Analysis (ssGSEA), each patient obtained a score
according to 29 genesets related to immunity and all patients were separated to different
subtypes. Stromal, immune and estimate scores were calculated with the ESTIMATE
(estimation of stromal and immune cells in malignant tumor tissues using expression
data) algorithm (Bi et al., 2020). Furthermore, we analyzed the correlation of risk scores
and ImmuneScores, StromalScores, tumor purity, respectively and the survival curves of
high, medium, and low immune subtypes were drawn. In addition, we also evaluated the
infiltrating levels of various immune cells including B cells memory, T cells CD4 memory
resting, T cells CD4 memory activated and T cells regulatory et al. Besides, the expression
of a series of HLA-related genes, classical markers in chemotherapy-induced immune
response and immune checkpoint genes between high- and low-risk groups were analyzed
(Danilova et al., 2019).
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Gene mutation analyses

The landscape of gene mutation between high- and low-risk groups was analyzed using
single nucleotide variation data in TCGA. By the Maftools package, Somatic mutation data
were visualized based on the Mutation Annotation Format (MAF) file (Mayakonda et al.,
2018). The top 20 genes with the highest mutation frequency in high- and low-risk groups
were manifested in waterfall charts. The chip-square test was performed to compare the
difference of total mutation and the top 3 genes mutation frequency between high- and
low-risk groups. The TMB for each patient was calculated as follows: TMB = (total count
of variants)/(the whole length of exons). Then, we compared the TMB of high-risk group
with that of low-risk group.

Statistical analysis
Statistical analysis was performed in R v.4.0.2 and SPSS. Unless otherwise stipulated, all
statistical tests were two-sided, and P < 0.05 was considered statistically significant.

RESULTS

Identification of differentially expressed ARE-genes

This study was conducted according to the flow chart shown in Fig. 1. Details of the TCGA
and GEO datasets in this study were shown in Table 1. We obtained 6778 DEGs between
tumor and adjacent tissues of the TCGA dataset using Wilcoxon test by R (version 4.0.2).
From the ARED, a total of 4884 ARE-genes were obtained. Intersecting the DEGs and
ARE-genes, 848 common genes were screened out (Fig. 2A).

Identifying genes for the prognostic model

First, by univariate Cox regression analysis, 113 genes were filtered from the 848 common
genes (P < 0.01). Then performing LASSO regression, the number of genes was further
reduced to 20 (A = —3) (Figs. 2B, 2C). After multivariate Cox regression, 12 genes were
finally determined to construct the prognostic model. They were TNFRSF11A, GALNT4,
PCDH?7, STK32A, CDK5R1, MAFF, ERO1B, GNPNATI1, ASAH2B, RASGEF1B, LDHA,
GCSAML. The hazard ratios of these genes were presented by a forest map (Fig. 2D).
STK32A, ERO1B, RASGEF1B and GCSAML were significantly low hazardous genes and
TNFRSF11A, GALNT4, PCDH7, CDK5R1, MAFF, GNPNAT1 and ASAH2B were high
hazardous genes. Next, we detected the expression of these genes at mRNA and protein
levels by GEPIA and HPA (Figs. S1, 52). The results suggested that only two genes (MAFF
and RASGEF1B) out of the twelve prognostic genes were significantly down-regulated
in LUAD and the others except for GCSAML were up-regulated at the transcription
level. At the protein level, MAFF, GNPNAT1 and RASGEF1B expression were significantly
down-regulated in LUAD and PCDH7, LDHA and GCSAML expression were up-regulated.
STK32A, CDK5R1, ASAH2B and GALNT4 were not found in the HPA.

Construction and validation the prognostic model
The model of the 12-genes signature showed a strong predicting ability for OS and 1,
3, 5-year AUC of receiver operating characteristic (ROC) curve were 0.789, 0.752, 0.723
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Figure 1 The flow chart showing the scheme of the study on the prognostic signatures for lung adeno-

carcinoma.

Full-size Gal DOI: 10.7717/peerj.12275/fig-1

respectively (Figs. S3A, S3B). The risk score analyses of patients’ survival status, survival

time and gene expression were showed in Fig. S3C. To elevate the accuracy of the prognostic

model, several conventional clinical attributes including age, gender, stage, treatment type,

primary site and race were screened by univariate and multivariate Cox regression analyses.

The result of univariate Cox regression demonstrated that only age and stage had statistical
significance (age: HR 1.44, 95% CI [1.06-1.95] P = 0.018; stage II: HR 2.34, 95% CI
[1.62-3.38], P < 0.001, stage III: HR 3.27, 95% CI [2.23—4.81], P < 0.001; stage IV: 3.58,
95% CI [2.06-6.20], P < 0.001) (Table 2). The other attributes such as gender, treatment
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Table 1 Demographics and clinicopathologic characteristics of LUAD patients in the TCGA discovery
cohort and GEO validation cohort.

Variables Discovery cohort Validation cohort
TCGA (484) GSE13213 (117)

Gender
Male 221 (45.7) 60 (51.3)
Female 263 (54.3) 57 (48.7)
Age at diagnosis
Mean (SD) 65.2 (10.06) 60.7 (10.17)
Stage
I 263 (54.3) 79 (67.5)
i 117 (24.2) 13 (11.1)
/v 104 (21.5) 25 (21.4)
Survival event
Alive 307 (63.4) 68 (58.1)
Dead 177 (36.6 49 (41.9)
Median survival time
Time, Days (Range) 876.4 (4-7248) 1936.8 (186-3295)
Treatment type
Chemotherapy 250 (51.7) NA
Radiotherapy 234 (48.3) NA
Metastasis (Lymph nodes or distance)
No 202 (41.7) 87 (74.4)
Yes 174 (36) 30 (25.6)
NA 108 (22.3) 0 (0)

Notes.

SD, standard deviation.

type, primary site and race have no significant difference. Multivariate Cox regression
also validated that age, stage and gene riskScore were independent prognostic factors (age:
HR 1.4, 95% CI [1.0-1.9], P = 0.028; stage: HR 1.6, 95% CI [1.3-1.8], P < 0.001; gene
riskScore: HR 1.1, 95% CI [1.1-1.2], P < 0.001) (Fig. 2E). Finally, age and stage were added
to the model and a prognostic nomogram was drawn (Fig. 2F). The nomogram showed
that gene riskScore played the most important role in the LUAD prognosis followed by
stage and age. In the nomogram, any category of the variables was matched with a score.
By collecting the variables and calculating the total score of the patient, clinicians could
speculate 1-/3-/5-year survival probability via drawing a line straight down to survival
probability scale from the total Points scale. As a result, clinicians could more easily
evaluate survival rate of LUAD patients by the nomogram. According to the risk scores’
median, the patients were divided into high- and low-risk groups. By Kaplan—Meier plotter,
it suggested that the high-risk group had a significantly worse prognosis than the low-risk
group (P =7.772e—16) (Fig. 3A). To further analyze the correlation of patients’ risk scores
and chemotherapy and radiotherapy resistance, we compared the survival curves of high-
and low-risk groups which accepted chemotherapy and radiotherapy, respectively. The
results consistently manifested that the high-risk group had worse prognosis (Figs. 3B, 3C).
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Figure 2 Construction of the AREs-based prognostic risk score model. (A) A total of 848 differentially

expressed ARE-genes between LUAD and normal tissues. (B, C) Determination of the number of genes

by the LASSO analysis. (D) Forest map of 12 prognostic genes by multivariate Cox regression analysis. (E)

Forest map of clinicopathological attributes and gene riskScore by multivariate Cox regression analysis.

(F) Prognostic nomogram to predict the survival of LUAD patients based on the TCGA discovery cohort.
Full-size & DOI: 10.7717/peerj.12275/fig-2

The C-index was used to evaluate the predicting ability of the prognostic model. 1, 3, 5-year
of AUC were 0.788, 0.776, 0.766, which suggested that the model had a high discrimination
(Fig. 3D). To detect the calibration of the model, the 3-year calibration curve was drawn

and reflected a robust consistency (Fig. 3E). In addition, we also plotted a DCA to ascertain
the clinical usefulness (Fig. 3F). The results demonstrated that the prognostic model had

high net benefit with abundant ranges of threshold probabilities, which indicated that the
model possessed good clinical applicability in predicting 3-year survival rate. To perform

an external validation, the GSE13213 dataset was downloaded and utilized to perform the
survival analysis, C-index, calibration curve (Figs. 3G—3I). The results manifested a good

concordance with the discovery cohort.
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Table 2 Univariate Cox regression analysis of overall survival (OS).

Variables n Overall survival (OS)
HR (95% CI) P Value

Age 484

<70 325 1 -

>70 159 1.44 (1.06-1.95) 0.018

Gender 484

Female 263 1 -

Male 221 1.08 (0.80-1.45) 0.623

Stage 484

I 263 1 -

I 117 2.34 (1.62-3.38) <0.001

111 79 3.27 (2.23-4.81) <0.001

v 25 3.58 (2.06-6.20) <0.001

Treatment type 466

Chemotherapy 239 1 -

Radiotherapy 227 0.79 (0.59-1.08) 0.14

Primary site 466

Lower lobe 163 1 -

Middle lobe 20 0.99 (0.40-2.46) 0.978

Upper lobe 283 0.83 (0.60-1.13) 0.228

Race 432

People of European 382 1 -

African and Latin-American descent 50 0.71 (0.42-1.19) 0.195
Notes.

Abbreviations: CI, confidence interval; HR, hazard ratio.

Function enrichment analyses

To explore the underlying molecular mechanism of difference of OS between the high-
and low-risk groups, we performed KEGG and GO enrichment analysis (Figs. 4A—4D).
The results of KEGG showed that multiple carcinogenic pathways were enriched including
small cell lung cancer, chronic myeloid leukemia, renal cell carcinoma and prostate cancer.
In addition, cell cycle and P53 signaling pathway also were enriched in the high-risk group.
Interestingly, the results of GO enrichment analysis were significantly correlated with
cell division, cell cycle checkpoint, DNA damage response and cell apoptosis whether

in biological processes (BP), cell components (CC) or molecular functions (MF). The
inflammation pathway also occupied the certain position in the results.

Tumor immunity analyses

According to the ssGSEA, the TCGA LUAD patients were divided into three subtypes
(Fig. 5A). We also drew a heatmap to show the correlation of risk score, ImmuneScore,
StromalScore, tumor purity, EstimateScore, various immune cells and immune pathways
(Fig. 5B). Further, we found that compared to the high-risk group, the low-risk group
had higher ImmuneScore (P < 0.001) and StromalScore (P < 0.01) (Figs. 5C, 5D). Hence,
the low-risk group was lower on the aspect of tumor purity (P < 0.001) (Fig. 5E). The
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Figure 3 Kaplan—Meier analyses, C-index, calibration curves and DCA curves of the prognostic nomo-
gram. dev: TCGA discovery cohort; val: GSE13213 validation cohort. (A) Kaplan—Meier analyses of OS
between the high- and low-risk groups in TCGA discovery cohort. (B, C) Survival analyses of high- and
low-risk groups receiving chemotherapy and radiotherapy, respectively. (D) 1, 3, 5-year ROC curves of
the high- and low-risk groups in TCGA discovery cohort. (E) Calibration curves of the high- and low-

risk groups in TCGA discovery cohort. The Y-axis represents actual survival, and the X-axis represents
nomogram-predicted survival. (F) DCA curves of 3-year survival probability of the prognostic nomogram
in TCGA discovery cohort. (G, H, I) Kaplan—Meier analyses, C-index, calibration curves of GSE13213 val-
idation cohort.

Full-size & DOL: 10.7717/peerj.12275/fig-3

Kaplan—Meier plotter revealed that survival rates were increased with immune scores
(Fig. 5F). The results of immune cell filtrating suggested that B cells memory, T cell CD4
memory resting, T cell regulatory, NK cell activated, monocytes, dendritic cells resting,

mast cells resting were decreased and T cells CD4 memory activated, NK cells resting,

macrophages M0, macrophages M1, mast cells activated were increased in the high-risk

group (Fig. 5G).
As for HLA-related genes expression, it was common that most important HLA-related
genes were significantly down-regulated in the high-risk group (Fig. 5H). The expression of
26 genes associated with chemotherapy-induced immune response was showed as Fig. 51.

17 (65.4%) genes were significantly differentially expressed, which suggested that different
risk groups had different responses to chemotherapy. On the aspect of immune checkpoint
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genes, 28 (59.6%) genes were differentially expressed (Figs. 6A, 6C) and notably, CD274
and CTLA4 had opposite expression. The high-risk group had higher CD274 expression
but lower CTLA4 expression (Figs. 6B, 6D), which may imply that the high-risk group
were more appropriate to anti-PD-L1 therapy rather than anti-CTLA4 therapy.

Gene mutation analyses

By analyzing the landscape of gene mutation between high- and low-risk groups, two
waterfall diagrams were plotted to show the top 20 genes with the highest mutation
frequency (Figs. S4A). There was slightly higher mutation frequency in high-risk group
than that in low-risk group (91.1% vs 86.19%). However, the total and top 3 genes mutation
(TP53, TTN, MUCI6) had no significant difference between high- and low-risk groups (all
P value > 0.05) (Table S1). To investigate whether TMB was associated with risk score, we
compared the TMB between high- and low-risk groups. There was no significant difference
between the two groups (P = 0.32) (Fig. S4C).

Liu et al. (2021), PeerdJ, DOI 10.7717/peerj.12275 11/23


https://peerj.com
https://doi.org/10.7717/peerj.12275/fig-4
http://dx.doi.org/10.7717/peerj.12275#supp-4
http://dx.doi.org/10.7717/peerj.12275#supp-5
http://dx.doi.org/10.7717/peerj.12275#supp-4
http://dx.doi.org/10.7717/peerj.12275

Peer

w)

C sk [ v [l o

4000 3000

000!

StromalScore

ImmuneScore

Tl co-inhibion

O N O O O 1 i risk
0001 O 0 | ooty 4 [ hign
I I I 1 ESTIMATEScore iow
A O ImmuneScore
SRR 1R 1 B AR R 1 B ) 5o 2 TumorPurity
09
il I ||
| (LA | | \ Jil \Mm cells o
| | ‘H | ‘\ ’ |l et sopse 03
T \HMMWMW I —
{ 4000
| I ‘ Newtor ohils ]
| | ‘ 1| reercrs -4
\ ‘ 1l (T e
Immun
| AFc,m,mnmmon uneScore
Il \ Parainflammation
| | pDCs.
| AFC_m_sﬂmummn
Il \ c 0
o
Il 1 IR LT TR () NK_cells StromalScore
‘ | ‘ LA Izmw
\ \\ \ u T o
I DB+_T_cells ~1000
I | ) Cytolytic_activity
| Inflammation-proming Subtype
| T cell ooty
Gheck-point ey L
T_call_co-stimulation Winmniy

s [ von [l ov

2000
1000
o
-1000
-2000

o I o I

°
©

TumorPurity

°
o

high Tow
risk high nan risk o
F Survival curve (p=0.015) G dsk B3 low £3 ngh A
- 3 — Immunity_L 0.5 B .
— Immunity_M . ::
© _| —— Immunity_H 0.4 °
o . 1}
503 .
2 o 3 H
T S 8
- ° T o2 . PR PP
2 . : :
Z < : .
" Wl éé IFRRE '
wlll i u
N
e S S & & \ &8 & &P
& & & & oﬁ PPN
& P @ e P PP e e P
o ¥ & NS E e ¥ E e ©
S ? <\‘°<\\ é@ q\{b %'l. & & & & & &
T T T T T g o‘*& o8 & W SR
0 5 10 15 20 o & &P
SIS
N «©
Time (year)
risk E3 low E3 high risk E3 low E3 high
1 EIF2A .
EIF2AK1 .
LRP1 ns
P2RY2 ns
EIF2AK3 ns
CXCL10
MET{ & = T e-
IFNE ——pe
IFNAR1 ——.
HMGB1 T "
CALR e®t tTER—.
TLR4{ —p———1" ”
IFNK{ B® o* ° o ns
IFNW1{ Be ns
IFNAR2 o—t5— .
EIF2AK2 S T — ="
FPR1{ ——————* ns
PRX7| —E—— .
IFNA2{ & ns
IFNAT{ &=° s
TLR3|{ —eEs—— .°
IFNBT{ (2%
ANXA1 °% s
EIF2AK4 —a—
PANX1 === R "
HGF | —E5—%6® &% *  °
N o © o
Gene expression Gene expression
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by single sample Gene Set Enrichment Analysis (ssGSEA). (B) A heatmap showing the correlation of risk
score, ImmuneScore, StromalScore, tumor purity, EstimateScore and various immune cells and immune
pathways. (C) The correlation of risk score and immuneScore. (D) The correlation of risk score and stro-

malScore. (E) The correlation of risk score and tumor purity. (continued on next page...)
Full-size & DOLI: 10.7717/peer;j.12275/fig-5

Liu et al. (2021), PeerdJ, DOI 10.7717/peerj.12275 12/23


https://peerj.com
https://doi.org/10.7717/peerj.12275/fig-5
http://dx.doi.org/10.7717/peerj.12275

Peer

Figure 5 (...continued)
(F) Kaplan—Meier curves of high, medium and low immuneScore group. Immunity_L: low immuneScore

group; Immunity_M: medium immuneScore group; Immunity_H: high immuneScore group. (G) The
infiltrating levels of various immune cells between the high- and low-risk groups. (H) The differential
mRNA expression of HLA-related molecules between the high- and low-risk groups. (I) The differential
expression of 26 genes associated with chemotherapy-induced immune response between the high- and
low-risk groups. * P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure 6 The expression analyses of immune checkpoint genes. (A, C) The differential expression of 47
immune checkpoint genes between the high- and low-risk groups. (B) The expression of PD-L1 between

the high- and low-risk groups. (D) The expression of CTLA4 between the high- and low-risk groups.
Full-size &l DOI: 10.7717/peerj.12275/fig-6

DISCUSSION

Lung cancer remains a major challenge for public health worldwide (Bade ¢ Cruz, 2020).
As the main histological subtype, LUAD possesses complex carcinogenic mechanisms and
obvious tumor heterogeneity. Although great progress has been made in diagnosis and
treatment of LUAD, the prognosis for LUAD patients remains unsatisfying, with a 5-year
survival rate ranging from ~10% to ~15%. Early metastasis, disease relapse, and drug
resistance are common causes of mortality in LUAD patients (Wu et al., 2012). So it is
greatly important to develop more effective biomarkers to predict prognosis of LUAD
patients.

ARE, as an important component of post-transcriptional control, are closely correlated
with mRNA decay (Yang et al., 2003). ARE-mediated changes are usually transient
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responses physiologically. Once the process of the ARE-mRNAs degradation is broken, it
will cause prolonged responses that subsequently may lead to undesirable, such as diseased
states including chronic inflammatory diseases and cancer (Khabar, 2010). For example,
uPA, as an ARE-gene, is up-regulated in multiple cancers and stimulates angiogenesis to
provide abundant nutrients, oxygen for tumor cells (Andreasen, Egelund ¢ Petersen, 2000).
Consequently, the ARE-genes are a cluster of genes with great potential prognostic value in
tumors. The value and novelty of this study is to indicate, for the first time by bioinformatic
analysis, that the prognostic value of ARE-genes in LUAD and establish a nomogram to
visualize the results.

In this study, we established a novel twelve-gene signature base on ARE-genes including
TNFRSF11A, GALNT4, PCDH7, STK32A, CDK5R1, MAFF, ERO1B, GNPNAT1, ASAH2B,
RASGEF1B, LDHA, GCSAML. Combined with age and stage, the prognostic model had
good robustness and could accurately distinguish high- and low-risk patients (1, 3, 5-year
ROC: 0.788, 0.776, 0.766). Previous studies had constructed several prognostic models of
LUAD by other gene sets. Song et al. constructed a LUAD prognostic model consisting of
immune-related genes and clinical factors (1, 3, 5-year ROC: 0.718, 0.668, 0.652) (Song
et al., 2020). Wang et al. utilized TCGA data to establish an epigenetic signature-based
model for LUAD patients’ prognosis (1, 3, 5-year ROC: 0.759, 0.747, 0.757) (Wang et al.,
2020). Although there are numbers of prognostic models based on different gene sets,
they still exist many problems, such as low accuracy, too much identified genes and too
expensive testing fee et al. This is why researchers constantly try to construct new prognostic
models. The genetic signature of 12 genes is acceptable in clinical practice and the accuracy
is higher than most counterparts. The results of multivariate Cox regression analysis
showed that TNFRSF11A, GALNT4, PCDH7, CDK5R1, MAFF, GNPNAT1, ASAH2B,
LDHA were negative prognostic factors and STK32A, ERO1B, RASGEF1B, GCSAML
were opposite. GCSAML, GALNT4 were the most significantly favorable and hazardous
prognostic factors, respectively (GCSAML HR 0.42, 95% CI [0.19-0.93]; P value 0.03;
GALNT4 HR 1.53 95% CI [1.07-2.17]; P value 0.02). GCSAML encodes a protein thought
to be a signaling molecule associated with germinal centers, the sites of proliferation and
differentiation of mature B lymphocytes (https://www.ncbi.nlm.nih.gov/gene/148823).
GALNT4 (Polypeptide N-acetylgalactosaminyltransferase4) participates in initiation
and progression of various cancers including colon cancer, non-small cell lung cancer,
hepatocellular carcinoma and prostate cancer. Numerous miRNAs target GALNT4 to
suppress the tumors, such as miR-4262, miR-506-3p, miR365b (Qu, Qu & Zhou, 2017;
Xing et al., 20205 Hu et al., 2019; Liu et al., 2017). Consequently, designing novel drugs
targeting the oncogenic ARE sequences specifically may be a new idea in the treatment
of tumor. In addition, the function and prognostic values of the rest genes have been
also studied in other tumors. miR-3150b-3p directly targets TNFRSF11a to inactivate the
p38 MAPK signaling pathway and thus inhibits proliferation and metastasis of cervical
cancer (Yu, Wang ¢ Li, 2020). In colon cancer, oncogenic IncRNA LNAPPCC promotes
metastasis and recurrence and contributes to bad prognosis via forming a positive feedback
loop with PCDH?7 (Li et al., 2020). Moreover, it has been verified that elevated expression
of CDK5R1, GNPNAT1, LDHA is tightly associated with worse prognosis in diverse
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cancers including hepatocellular carcinoma, oral squamous cell carcinoma et al. (Zeng et
al., 20215 Zheng et al., 20205 Cai et al., 2019). These results of the studies are consistent with
our findings. As structurally conserved sequence in mRNA, ARE ubiquitously mediate
the degradation of mRNA in mammalian cells (Otsuka et al., 2019; Chen & Shyu, 1995).
Consequently, it is promising for our findings to apply in other cancers.

To explore the underlying molecular mechanism of different prognoses between high-
and low-risk groups, function enrichment analyses and tumor immunity analyses were
performed. DEGs of the high- and low-risk groups mainly pointed to cell cycle, DNA
damage response, inflammatory response and cancer. The tumor cell proliferation and
chemotherapy resistance of tumor cells were strongly associated with cell cycle and DNA
damage response (Wu et al., 2019; He et al., 2017). Considerable oncogenic signaling
pathways are linked to deregulation of cell cycle including PI3K/AKT signaling pathway,
inactivation of P53-DREAM pathway et al. (Sizek et al., 2019; Engel, 2018). It has been
reported that P53 expression can be altered by ARE. P53 is a RNA binding protein
and contains ARE in the 3’ UTR of its mRNA. More importantly, P53 can regulate its
own expression through the binding to ARE sequences of P53-mRNA via translation-
independent and translation-dependent polysome-associated pathways (Derech-Haim
et al., 2020). As a vital onco-suppressor, change of stability of P53 Mrna by ARE may
contribute to the difference of DNA damage response, which can further contribute to
initiation, proliferation and chemotherapy of tumor cells (Hong et al., 2014). Sooncheol
et al. have reported that p38 MAPK-MK?2 signaling pathway stabilizes ARE mRNAs by
phosphorylation and inactivation of Tristetraprolin in GO phase, which permits expression
of ARE mRNAs that promote chemoresistance (Lee ef al., 2020). Targeting ARE-genes,
new cell cycle inhibitors and inducers of DNA damage response may be developed. A
growing body of evidence manifests that tumor microenvironment plays an important
role on forming malignant phenotype of various tumors. The main components of tumor
microenvironment are resident stromal cells and recruited immune cells (Bi ef al., 2020).
The correlation between stromal and immune scores and risk scores showed that the
high-risk group had lower stromal and immune scores, which meant it had more tumor
components and higher tumor purity. The survival analyses of different immune scores
also showed that the survival rates decreased with the decreasing of immune scores,
which indicated that induction of immune infiltration in high-risk group may increase
the survival rate of LUAD patients. On the aspect of immune cells, B cells memory,

T cell CD4 memory resting, T cell regulatory, NK cell activated, monocytes, dendritic
cells resting, mast cells resting were decreased and T cells CD4 memory activated, NK
cells resting, macrophages M0, macrophages M1, mast cells activated were increased in
high-risk group. Immune cell infiltration is a considerable complex process and the anti-
or pro-tumor effects of numerous immune cells depend on tumor types and stage. For
example, tumor infiltrating dendritic cells can be immunogenic or tolerogenic dependent
upon environment signals. Dendritic cells are usually tumor suppressive in early stages
and become tumor promoting as the tumor progresses (Hinshaw ¢» Shevde, 2019). Up to
now, macrophage M1 is ubiquitously thought to be tumor promoting and macrophage
M2 is the opposite (Yang ¢» Zhang, 2017). The result of macrophage M1 infiltrating is
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consistent with the present researches, which indirectly manifests macrophage M1 plays an
unfavorable role on LUAD prognosis. B cells, NK cell activated and dendritic cells resting
were increasingly recruited in the low-risk group. B cells and dendritic cells have the ability
of presenting tumor antigens and NK cell can kill tumor cells directly. They are important
members of innate immunity and adaptive immunity and stunt the tumorigenesis and
development (Hinshaw ¢ Shevde, 2019; Terrén et al., 2019; Tokunaga et al., 2019). Many
ARE-genes are responsible for coding cytokines, growth factors. It has been reported that
the mouse model with ARE deleted IFN-y displays increased numbers of plasmacytoid
dendritic cells (pDCs) in bone marrow and spleen (Hodge et al., 2014). ARE not only affect
mRNA stability but also their translational efficiency. In MO macrophages, TNF- oo mRNA
is inhibited translationally but promoted upon cell activation (Zhang et al., 2002). As a
result, ARE may regulate development, migration, differentiation and activation of various
immune cells via its function of mRNA degradation and translational efficiency.

In addition, various HLA-related genes expression were significantly different in the
high- and low-risk groups. In total, the low-risk group had higher HLA-related genes
expression. HLA molecules play an important role on initiation and metastasis of tumors.
HLA class I molecules on tumor cell surface are responsible for recognition by T cell and
NK cell. Tumors can escape T cell response by losing HLA class T molecules. Compared to
primary tumor, MHC class I phenotype of metastatic colonies can be highly diverse and
is not necessarily the same as that of the primary tumor (Garrido & Aptsiauri, 2019). HLA
class I alterations are an important factor determining clinical response to immunotherapy
(Garrido, 2019). So the effects of immunotherapy maybe improved successfully by up—
regulating HLA class I expression in high-risk group. Because many HLA-related genes
contain ARE and complex interaction of genes, the alteration of HLA expression is
reasonable. The survival analyses of chemotherapy and radiotherapy group showed that
high-risk group had worse prognosis. The expression of chemotherapy-induced immune
response and immune checkpoint-related genes also suggested the significant difference
between high- and low-risk groups, which implied the potential reasons for the difference
of therapies. CD274, namely PD-L1, was highly expressed in the high-risk group but
another famous immunotherapy target, CTLA4 was down-regulated in high-risk group,
which implied that the LUAD patients with high risk scores may be more appropriate
for anti-PD-L1 therapy rather than anti-CTLA4 therapy. It has been reported that RAS
signaling can up-regulate tumor cell PD-L1 expression through increasing PD-L1 mRNA
stability via modulation of the AU-rich element-binding protein tristetraprolin (Coelho
et al., 2017). In the future, drugs targeting ARE-sequences of specific DNA or RNA may
be developed to reverse the high-risk patients’ therapeutic effects on immunotherapy,
chemotherapy or radiotherapy and expand the therapeutic thoughts of tumors.

TMB is used to represent the number of somatic mutations per DNA megabase and has
been an independent predictor of immunotherapy in many tumors. It has been reported
that patients with high TMB had higher response rate and better prognosis than the
patients with low TMB when receiving PD-1 blockade (Carbone et al., 2017). However,
TMB between the high- and low-risk groups had no significant difference. Moreover, the
total mutation frequency and the top 3 genes with the highest mutation frequency (TP53,
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TTN, MUCIS6) all had no significant difference in the two groups, which may indicate
that the prognostic difference between high- and low-risk groups was not caused by gene
mutation. The results are coincident with the classical function of ARE. We speculate that
the altered expression of key genes mediated by ARE results in the survival difference.
However, the study still has some limitations. First, the detection of these genes is at the
RNA level, so it is expensive and difficult to apply in the clinical setting. Second, the data
of TCGA and GEO databases are mainly collected from people of European, African and
Latin-American descent. When applied on other ethnicities, the conclusion may be a little
different. Finally, all mechanical analyses in our study were descriptive, the underlying
mechanism of the twelve genes remains to be clarified by further functional experiments.

CONCLUSION

ARE-genes can reliably predict OS in LUAD and indicate the effects of chemotherapy and
radiotherapy for LUAD patients. We hope our study may provide new targets for LUAD
treatment.
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