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Abstract

Background: Abnormalities in the hypothalamic-pituitary-adrenal axis, serotonergic system, and stress response have been 
linked to the pathogenesis of major depressive disorder. State-dependent hyper-reactivity of the hypothalamic-pituitary-
adrenal axis is seen in major depressive disorder, and higher binding to the serotonin 1A receptor is observed as a trait in both 
currently depressed and remitted untreated major depressive disorder. Here, we sought to examine whether a relationship 
exists between cortisol secretion in response to a stressor and serotonin 1A receptor binding throughout the brain, both in 
healthy controls and participants with major depressive disorder.
Methods: Research participants included 42 medication-free, depressed subjects and 31 healthy volunteers. Participants were 
exposed to either an acute, physical stressor (radial artery catheter insertion) or a psychological stressor (Trier Social Stress 
Test). Levels of serotonin 1A receptor binding on positron emission tomography with [11C]WAY-100635 were also obtained 
from all participants. The relationship between [11C]WAY-100635 binding and cortisol was examined using mixed linear 
effects models with group (major depressive disorder vs control), cortisol, brain region, and their interactions as fixed effects 
and subject as a random effect.
Results: We found a positive correlation between post-stress cortisol measures and serotonin 1A receptor ligand binding 
levels across multiple cortical and subcortical regions, independent of diagnosis and with both types of stress. The 
relationship between [11C]WAY-100635 binding and cortisol was homogenous across all a priori brain regions. In contrast, 
resting cortisol levels were negatively correlated with serotonin 1A receptor ligand binding levels independently of 
diagnosis, except in the RN. There was no significant difference in cortisol between major depressive disorder participants 
and healthy volunteers with either stressor. Similarly, there was no correlation between cortisol and depression severity 
in either stressor group.
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Conclusions: This study suggests that there may be a common underlying mechanism that links abnormalities in the 
serotonin system and hypothalamic-pituitary-adrenal axis hyper-reactivity to stress. Future studies need to determine how 
hypothalamic-pituitary-adrenal axis dysfunction affects mood to increase the risk of suicide in major depression.
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Introduction
The hypothalamic-pituitary-adrenal (HPA) axis and the sero-
tonin system have a complex bidirectional relationship (Meijer 
and de Kloet, 1994; Porter et  al., 2004). This relationship is of 
potential importance in the pathogenesis of mood disorders, 
because major depressive episodes are associated with trait 
abnormalities in the serotonin system, including 5-HT1A re-
ceptor upregulation (Parsey et  al., 2006a), and with hyper-
active HPA axis responses to stress, which are state dependent 
(Cowen, 2010; Stetler and Miller, 2011). More severe depressive 
episodes, such as those characterized by psychomotor agitation 
or psychotic features, have more severely dysregulated HPA axis 
function as indicated by heavier adrenal glands, higher levels 
of corticotropin releasing factor (CRF) in brain tissue and cere-
brospinal fluid, lower CRF receptor binding in prefrontal cortex 
postmortem, a blunted cortisol suppression response to dexa-
methasone, and greater cortisol release both at baseline and 
in response to social stressors (Lindy et al., 1985; Brown et al., 
1986; Nemeroff et al., 1988; Arató et al., 1989; Pfennig et al., 2005; 
Mann et al., 2006; Melhem et al., 2016). Genetic and epigenetic 
associations with enhanced HPA axis stress responses have 
also been observed in major depressive disorder (MDD) and in 
those reporting early-life stress, which is a risk factor for MDD 
(McGowan et al., 2009; Coplan et al., 2011; Yin et al., 2016).

The relationship between markers of serotonergic tone and 
HPA axis function has been extensively studied. Cortisol induces 
tryptophan 2,3-dioxygenase, which metabolizes L-tryptophan, 
thereby decreasing L-tryptophan availability for serotonin syn-
thesis (Badawy et  al., 1995). Animal work has demonstrated 
that adrenalectomized rats show increased post-synaptic 
serotonin-1A (5-HT1A) receptor binding in the hippocampus, 
whereas chronic treatment with corticosterone reduces expres-
sion, binding, and function of 5-HT1A receptors in hippocam-
pal fields (Martire et  al., 1989; Mendelson and McEwen, 1992; 
Chalmers et al., 1993; Kuroda et al., 1994; Meijer and de Kloet, 
1994; Laaris et  al., 1995; Zhong and Ciaranello, 1995; Le Corre 
et al., 1997; Czyrak et al., 2002), suggesting receptor upregulation 
in response to low serotonergic tone. Some human studies are 
consistent with these findings, with corticosteroid treatment 
causing blunting of 5-HT1A receptor-mediated responses, includ-
ing the hypothermic and serum growth hormone responses to 

5-HT1A receptor agonists (Lesch et al., 1989; Young et al., 1994; 
Porter et al., 1998, 2002). However, overall, results are mixed and 
may depend on the type of corticosteroid used and the duration 
of exposure (Porter et al., 1999, 2002; Montgomery et al., 2001; 
Bhagwagar et  al., 2003). Prior positron emission tomography 
(PET) imaging studies in humans have failed to detect an effect 
of acute administration of corticosteroids on 5-HT1A receptor 
ligand binding (Montgomery et al., 2001; Bhagwagar et al., 2003). 
However, such studies did not examine stress-induced cortisol 
release, which may differ from pharmacologically induced cor-
tisol effects and be abnormal in subgroups of patients.

To better understand the relationship between stress, HPA 
axis reactivity, depression, and 5-HT1A receptor levels in the brain, 
we studied the relationship between the endogenous cortisol re-
sponse to acute stress and 5-HT1A receptor binding as measured 
by PET. We chose 2 different types of acute stressors: (1) the Trier 
Social Stress Task (TSST) (Kirschbaum et al., 1993), which is a psy-
chological stress paradigm, and (2) arterial line placement prior to 
PET, a physical stressor that involves restraint and physical dis-
comfort. Cortisol was measured in healthy volunteers and med-
ication-free depressed subjects: (1) in a blood sample drawn just 
after arterial line placement, or (2) in saliva as part of the TSST. 
Given our finding of elevated [11C]-WAY-100635 binding and HPA 
hyperactivity in MDD (Parsey et  al., 2006a; Miller et  al., 2009a; 
Parsey et al., 2010; Milak et al., 2018), we predicted a positive correl-
ation between regional [11C]-WAY-100635 binding and post-stress 
cortisol levels despite rodent studies that might predict an inverse 
relationship between the two. We predicted an inverse relation-
ship between resting cortisol and regional [11C]-WAY-100635 bind-
ing, as more severe depressive pathology is associated with higher 
5-HT1A binding on PET (Sullivan et al., 2015; Oquendo et al., 2016) 
and lower peripheral resting cortisol levels (Pfennig et al., 2005; 
Jokinen et al., 2010; McGirr et al., 2011; Melhem et al., 2016).

Methods

Participants

Seventy-three adult subjects with PET scans using [11C]WAY-
100635 were included in this analysis. Participants underwent 1 
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The relationship between the body’s response to stress and the function of serotonin in the brain has been a subject of interest 
in depression research. Several studies have examined this by manipulating the body’s stress response system externally—either 
by administering medications, such as steroids, or by removing adrenal glands surgically. The data resulting from these studies 
has been mixed and inconclusive. Here, we show human data from healthy volunteers and participants with major depression. 
We studied the body’s self-generated stress response, cortisol levels, to 2 different types of stressors: a physical and a psy-
chological stressor. We found that with both stressors, greater cortisol levels are associated with higher levels of serotonin 1A 
receptor binding throughout the brain. There is also an inverse association between resting cortisol levels and receptor binding. 
Both findings were independent of diagnosis. This suggests that healthy volunteers and depressed subjects are biologically on 
a continuum, and that individuals with a more pronounced stress response tend to have higher levels of serotonin 1A receptor 
throughout the brain. Our data add to the literature by demonstrating a link between acute stress responses and serotonin 1A 
receptor availability in humans.
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of 2 stressors: (1) arterial line placement before a PET scan (n = 34) 
or (2) the TSST (n = 39). Participants from stress paradigm (1) had 
cortisol assayed in a blood sample drawn immediately after their 
arterial line was placed, while participants of paradigm (2) had 
salivary cortisol assayed in samples collected at multiple time-
points during the TSST. The PET data presented here were pre-
viously reported in published studies (Parsey et al., 2006a, 2006b, 
2010; Miller et al., 2009b), but the cortisol data have never been 
published. Subject selection was based on the availability of us-
able [11C]WAY-100635 brain binding data and either plasma cor-
tisol or TSST saliva cortisol stress sample measurements.

Fourty-two depressed participants (25 female, 17 male) aged 
18 to 62  years who met DSM-IV criteria for MDD in a current 
major depressive episode (as assessed by doctoral- or masters’-
level psychologists and reviewed in a consensus conference of 
research psychologists and psychiatrists), a 17-item Hamilton 
Depression Rating Scale (HDRS) score REF ≥16, and capacity 
to provide informed consent were included in the analysis. 
Depression severity was assessed with the 24-item HDRS and 
the Beck Depression Inventory (BDI) REF. Thirty-one healthy vol-
unteers (19 female, 12 male) aged 18 to 65 years with no history 
of DSM-IV Axis I or Axis II psychiatric disorders, no psychotropic 
medication exposure, and no family history of a mood disorder 
or schizophrenia were included. Neither group had significant 
medical illness, nor were they taking medications that may 
affect the serotonin system at the time of neuroimaging. For 
all subjects, the Structured Clinical Interview for DSM-IV Axis 
I Disorders (First et al., 2012) as well as psychiatric and medi-
cal history, chart review, physical examination, routine blood 
tests, pregnancy test, urine toxicology, and electrocardiogram 
were performed to assess study eligibility. Exclusion criteria 
included presence of significant medical conditions, alcohol or 
other substance use disorder unless in complete remission for 
>6  months, dementia, neurological disease, head injury with 
loss of consciousness, pregnancy, first-degree family history of 
schizophrenia if subject was <33 years old (Sham et al., 1994), 
and >3 lifetime exposures to 3,4-methylenedioxymethampheta-
mine. For depressed participants specifically, exclusion criteria 
also included fluoxetine use within 6 weeks of PET scanning, 
or exposure to a 5-HT1A receptor agonist, such as buspirone, 
vortioxetine, vilazodone, or lysergic acid diethylamide, within 
6 months of scanning. At the time of the scan all participants 
were unmedicated. Depressed subjects who were on ineffective 
antidepressant treatment at the time of evaluation underwent 
a medication washout and were drug-free for at least 2 weeks 
prior to neuroimaging. The Institutional Review Board of the 
New York State Psychiatric Institute approved the protocol, and 
all subjects provided informed written consent after an expla-
nation of the study protocol and associated risks.

Radiochemistry and Input Function Measurement

Subjects were injected with [11C]WAY-100635 for quantification of 
5-HT1A binding. Details of radiotracer preparation have been previ-
ously described for [11C]WAY-100635 (Parsey et al., 2000). A metab-
olite-corrected arterial input function was obtained and plasma 
free fraction (fP) was assayed in triplicate (Parsey et al., 2006a).

Image Acquisition and Analysis

A T1-weighted magnetic resonance image (MRI) scan was 
acquired for each subject for registration with PET images using 
a 1.5-T Signa Advantage (General Electric Medical Systems, 
Milwaukee, WI) at a resolution of 1.5 × .9 × 1.0 mm.

PET images were acquired with an ECAT EXACT HR+ scanner 
(Siemens/CTI, Knoxville, TN) as previously detailed (Parsey et al., 
2000). Briefly, after a 15-minute transmission scan, an injection 
of [11C]-WAY-100635 was administered over 30 seconds and then 
an emission scan of 110 minutes, consisting of 20 frames of 
increasing duration (3 × 20 seconds, 3 × 1 minute, 3 × 2 minutes, 
2 × 5 minutes, 9 × 10 minutes), was obtained.

To correct for subject motion, each PET frame was registered 
to the eighth frame of the scan using the FMRIB linear image reg-
istration tool, version 5.0 (FMRIB Image Analysis Group, Oxford, 
UK). Brain regions of interest (ROIs) were chosen a priori based 
on areas of abundant [11C]-WAY-100635 binding (Hall et al., 1997) 
that included raphe nuclei (RN), anterior cingulate, cingulate, 
dorsal prefrontal cortex, hippocampus, insula, medial prefrontal 
cortex, parietal cortex, parahippocampal gyrus, occipital cortex, 
orbital cortex, temporal cortex, and amygdala. Cerebellar white 
matter was used as a reference region. All ROIs except for RN 
were identified on each individual’s T1-weighted MRI using a 
previously described automated algorithm (Milak et  al., 2010). 
Due to their small size, RN were labeled using a standard space 
mask of the average location of the RN in 52 healthy subjects, 
which was created using [11C]-WAY-100635 voxel binding maps 
as previously described (Delorenzo et al., 2013). MRI T1 images 
were transformed into standardized 3D space using Advanced 
Normalization Tools (7), and the reverse transform was applied 
to the RN mask.

PET images were co-registered to the MRI images using the 
FMRIB linear image registration tool, optimized as previously 
described (Delorenzo et al., 2009). The average activity meas-
ured over the voxels within each ROI over the specified time 
frames through the course of the acquisition generated time 
activity curves.

Outcome Measure Estimation

Distribution volumes (VT) of [11C]WAY-100635 were estimated for 
each ROI using kinetic analysis with an arterial input function 
and a 2-tissue compartment constrained model as previously 
described (Parsey et al., 2000). Time activity curves were fit with 
a 2-tissue compartment constrained model in which the K1/k2 
ratio was constrained to that of the reference region (cerebellar 
white matter) for each ROI. BPF was calculated as (VT(ROI) – VT(REF))/
fP, where VT(ROI) is the volume of distribution in a specific ROI, 
VT(REF) is the volume of distribution in the reference region, and fP 
is the free fraction in plasma.

Cortisol Measurement

Blood cortisol was measured in blood samples drawn from 34 
subjects immediately prior to PET scans and just after the arte-
rial line was inserted. Given the diurnal variation of cortisol, all 
these blood samples were drawn within a 2-hour time window 
between 12 pm and 2 pm. In addition, we adjusted statistically for 
time of day when samples were drawn. Blood cortisol levels were 
ascertained by radioimmunoassay (Vecsei, 1979) after denatura-
tion of the binding proteins by heat. Both blood and saliva cor-
tisol levels were measured by immunoassay with antibodies 
for cortisol-3-O-carboxymethyloxime-BSA (MP Biochemicals). 
This was compared to cortisol standards (Sigma Chemical). Free 
and bound fractions were separated using anti-rabbit globulin 
serum and polyethylene glycol. All samples and standards were 
analyzed in duplicate.

Subjects who underwent the TSST, which took place between 
2 pm and 6 pm, gave saliva samples approximately 10 minutes 
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prior to the start of the TSST (CortBL) and again at 15, 20, 30, 
and 40 minutes after completion of the TSST. Time of day was 
also statistically controlled for in this sample. Saliva samples 
were collected in the Sarstedt Salivette Synthetic Swab collec-
tion system (catalogue # 51.1534.500 Sarstedt, Newton, NC) and 
subsequently stored at −30°Celsius. Salivary cortisol values were 
log-transformed. Cortisol response during TSST for each subject 
was defined as the difference between the maximum (log-trans-
formed) value after the baseline and the (log-transformed) base-
line value. Baseline cortisol was also log-transformed.

TSST

Salivary cortisol response to social stress was measured in 
39 subjects not overlapping with the subjects with blood cor-
tisol measures during the PET scan: 29 MDD patients and 10 
healthy volunteers. The TSST was administered as previously 
described (Melhem et  al., 2016). In brief, subjects were asked 
to give a 5-minute personal introduction speech, followed by 9 
minutes of speeded mental arithmetic, while being watched by 
1 observer known to the subject and a staff member who was 
unknown to the subject.

Statistical Analysis

The associations between the cortisol responses to the 2 stress-
ors and 5-HT1A binding measured in our a priori ROIs were 
examined separately for each stressor, each analysis using 
linear mixed effects models with group (MDD vs control), cor-
tisol, brain region, and their interactions as fixed effects and 
subject as a random effect. To correct a slight skew in the data, 
stabilize the variance across regions, and allow for estimates 
of proportional effects that persist across regions, the ana-
lysis was performed on log-transformed estimates of 5-HT1A. 
Observations were weighted inversely proportionally to squared 
standard errors that were calculated based on variation in PET 
data, plasma data, and metabolite data (Ogden and Tarpey, 
2006). Because [11C]WAY-100635 binding has been shown to be 
dependent on sex (Parsey et al., 2002) and age (Tauscher et al., 
2001), these covariates were also included in the model initially, 
both as main effects and in the form of interaction with region, 
but interactions were dropped when not significant. When the 

3-way interaction between region, group, and cortisol measure 
was significant, brain region-wise analyses were performed to 
test the association between cortisol, subject group, and bind-
ing. Covariates that were not significant in any region were 
dropped from region-wise analyses.

Given that cortisol has a diurnal cycle (Wüst et  al., 2000), 
we adjusted blood cortisol measurements during the PET scan 
for time of day relative to 12:00 pm, even though the correlation 
between blood cortisol and time of day was not significant in 
this dataset (P =  .091). This adjustment, performed to remove the 
time trend, was based on fitting a linear regression model to the 
cortisol data with time as the only predictor. Log-transformed 
baseline cortisol before the TSST was similarly adjusted, 
although the time trend was not statistically significant. Cortisol 
response during the TSST was adjusted by a time trend that dif-
fered between males and females, using an ANCOVA model with 
time, sex, and their interaction as predictors. Cortisol measure-
ments were also compared between healthy volunteers and 
participants with MDD using an ANCOVA analysis, and, in MDD 
patients, were correlated with 24-item HDRS and BDI scores.

Results

Participant Characteristics

Demographic and clinical data are presented in Table 1 for all 
participants combined. Demographic and clinical data are pre-
sented for the separate samples of subjects with blood cortisol 
and those who underwent the TSST in Tables 2 and 3, respec-
tively. Of 42 MDD participants, 29 had previous exposure to anti-
depressants and 16 had previously attempted suicide, indicating 
high illness burden. For those with previous antidepressant 
exposure, the mean time off antidepressants was 49 + 74 weeks 
(range 2–312 weeks).

Cortisol Stress Response in Healthy Volunteer and 
Major Depression Groups

There was no statistically significant difference in blood cortisol 
levels measured following radial artery catheter placement be-
tween control and MDD groups when covarying for age, sex, 
and blood sample time of day (F = 3.70; df = 1,31; P = .064). Salivary 

Table 1. Demographic and Clinical Characteristics of Combined Study Sample

Healthy Volunteers MDD All subjects P value

 (n = 31) (n = 42) (n = 73)  

Age ± SD 35.3 ± 13.3 38.2 ± 12.6 37 ± 12.9 0.32
Hamilton Depression Rating Scale (24-item) 2.5 ± 3.2 18.9 ± 13.5  <.001
Beck Depression Inventory 1.9 ± 3.8 20.8 ± 16  <.001
Years of Education 15.7 ± 2.1 15.2 ± 2.5 15.45 ± 3.2  
 n (%) n (%) n (%) P value

Female 17 (54.8) 25 (59.5) 42 (57.5) .68
Tobacco users 3 (9.7) 5 (11.9) 8 (11) .76
Prior exposure to antidepressants N/A 29 (69) 29 (39.7)  
Suicide attempters N/A 16 (38.1) 16 (21.9)  
Past alcohol abuse N/A 7 (16.6) 7 (9.6)  
Comorbid anxiety disorder N/A 19 (45.2) 19 (26)  
Race/ethnicity    .09
Asian 5 (16.1) 2 (4.8) 7 (8.3) .10
African American 7 (22.6) 5 (11.9) 14 (16.7) .22
Caucasian 15 (48.3) 31 (73.8) 55 (65.5) .02
Hispanic 4 (12.9) 10 (23.8) 14 (16.7) .2 2
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baseline cortisol and cortisol response during the TSST also did not 
differ significantly between control and MDD groups when covary-
ing for age, sex, time of day, and the sex by time interaction (F = 0.91; 
df = 1,33; P = .348, baseline cortisol: F = 2.51; df = 1,34; P = .122).

Cortisol Stress Response and Depression Severity

Within the MDD sample, we did not find a relationship between 
PET scan blood cortisol levels and the BDI score (F = 0.485; df = 1,8; 
P = .506) or the 24-item HDRS score (F = 0.455; df = 1,8; P = .518), cova-
rying for age, sex, and time of day in each case. The salivary corti-
sol response to TSST, covarying for age, sex, time of day, and their 
interaction, was not correlated with either 24-item HDRS score 
(F = 0.56; df = 1,23; P = .462) or BDI score (F = 0.01; df = 1, 22; P = .936).

Cortisol Stress Response and Brain [11C]WAY-
100635 BPF

[11C]-WAY-100635 binding across the ROIs, selected a priori 
(Figure 1), was positively related with blood cortisol levels drawn 

immediately prior to the scan, after accounting for age, sex, and 
diagnosis (F = 6.40; df = 1,29; P = .017). The relationship between 
cortisol levels and [11C]WAY100635 binding was homogenous 
across a priori brain regions, as the interaction term for brain re-
gion was not significant (F = 0.67; df = 12,384; P = .777). For region-
wise results, see supplemental Table 1. There was no significant 
interaction between diagnosis and cortisol level on [11C]WAY-
100635 binding (F = 3.77; df = 1,28; P = .062).

Similarly, we found the time-adjusted salivary cortisol re-
sponse during TSST was positively related with [11 C]WAY100635 
binding after adjusting for sex and age (Figure 2; F = 7.34; 
df = 1,34; P = .011). This was also homogeneous across all a priori 
brain regions (region by cortisol response interaction: F = 0.93; 
df = 11,374; P = .516). For region-wise results, please see supple-
mental Table 2. There was no significant interaction between 
diagnosis and cortisol response on [11C]WAY-100635 binding 
(F = 0.21; df = 1,33; P = .649). There was also no main effect of diag-
nosis after removing the interaction (F = 0.01; df = 1,34; P = .988). 
There was a significant age by region interaction (F = 2.31; 
df = 11,396; P = .009) and a significant sex by region interaction 

Table 2. Demographic Information for Blood Cortisol Subjects Only

Healthy Volunteers MDD All subjects P value

 (n = 21) (n = 13) (n = 34)  

Age ± SD 34.3 ± 14.1 38.1 ± 13.6 35.8 ± 13.18 .44
Hamilton Depression Rating Scale (24-item) 1 ± 1.2 24.8 ± 8.2  <.001
Beck Depression Inventory 1.9 ± 3 28.5 ± 11.9  <.001
Years of education 15.9 ± 2.5 15.1 ± 3.3 15.6 ± 2.8 .41
 n (%) n (%) n (%) P value

Female 11 (52.4) 10 (76.9) 21 (61.8) .31
Tobacco users 2 (9.5) 1 (7.7) 3 (8.8) .8
Prior exposure to antidepressants N/A 9 (69.2) 9 (26.5)  
Suicide attempters N/A 8 (61.5) 8 (23.5)  
Past alcohol abuse N/A 4 (30.7) 4 (11.8)  
Comorbid anxiety disorder N/A 6 (46.2) 6 (17.6)  
Race/ethnicity    .88
Asian 4 (19) 1 (7.7) 5 (14.7) .36
African American 5 (23.8) 1 (7.7) 6 (17.6) .23
Caucasian 9 (42.9) 7 (53.8) 16 (47.1) .53
Hispanic 3 (14.3) 4 (30.8) 7 (20.6) .24

Table 3. Demographics of TSST Subjects

Healthy Volunteers MDD All subjects P value

 (n = 10) (n = 29) (n = 39)  

Age ± SD 38.2 ± 11.7 38.2 ± 12.6 38.8 ± 12 .85
Hamilton Depression Rating Scale (24-item) 2.6 ± 3 18.7 ± 10.7 14.6 ± 4.8 <.001
Beck Depression Inventory 1.9 ± 2.4 20.5 ± 10.8 15.6 ± 12.5 <.001
Years of education 15.2 ± 0.67 15.3 ± 2.1 15 ± 1.8 .94
 n (%) n (%) n (%) P value

Female 6 (60) 15 (51.7) 21 (53.8) .65
Tobacco users 1 (10) 2 6.9) 3 (7.7) .75
Prior exposure to antidepressants N/A 20 (69)   
Suicide attempters N/A 8 (27.6)   
Past alcohol abuse N/A 3 (10.3)   
Comorbid anxiety disorder N/A 13 (44.8)   
Race/ethnicity    .64
Asian 1 (10) 1 (3.4) 2 (5.1) .41
African American 2 (20) 4 (13.8) 6 (15.4) .63
Caucasian 6 (60) 24 (82.8) 30 (76.9) .14
Hispanic 1 (10) 6 (20.7) 7 (17.9) .44
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(F = 3.01;df = 11,396; P = .001), indicating differential effects of 
these demographic variables on binding across brain regions.

Baseline Cortisol and Brain [11C]WAY-100635 BPF

The association between baseline salivary cortisol measured 
before the TSST and [11C]WAY100635 binding differed by region 
and diagnostic group (baseline cortisol by region by group inter-
action: F = 2.41; df = 11,374; P = .007). To interpret the interaction, 

we ran posthoc region-wise analyses adjusted for age, sex, and 
diagnostic group. The effects of the interaction terms of diag-
nostic group with baseline cortisol on [11C]WAY100635 binding 
were not significant in any of the region-specific models and 
were removed. The main effect of diagnosis was not significant 
in any region. Baseline cortisol and [11C]WAY100635 binding 

Figure 2. Cortisol response during the Trier Social Stress Task (TSST) is positively 

correlated with [11C]WAY-100635 BPF. Shown here are the residual values for [11C]

WAY-100635 BPF in a single region of interest (ROI), the anterior cingulate (ACN), 

and corresponding residual values for cortisol response after controlling for age, 

sex, and diagnosis.

Figure 3. Baseline cortisol response during the Trier Social Stress Task (TSST) 

is inversely correlated with [11C]WAY-100635 BPF. Shown here are the residual 

values for [11C]WAY-100635 BPF in a single region of interest (ROI), the anterior 

cingulate (ACN), and corresponding residual values for cortisol response after 

controlling for age, sex, and diagnosis.

Figure 1. The post-stress cortisol is positively correlated with serotonin 1A (5-HT1A) receptor ligand binding across multiple brain regions. Top row shows [11C]WAY-

100635 BPf averaged across subjects. Bottom row highlights corresponding anatomical regions of interest (ROIs) for which a significant positive correlation between 

[11C]WAY-100635 binding and blood cortisol levels was observed, including the raphe nuclei, cingulate cortex, dorsal prefrontal cortex, hippocampus, insula, medial 

prefrontal cortex, parietal cortex, parahippocampal gyrus, occipital cortex, orbital cortex, and temporal cortex. Analyses were corrected for multiple comparisons using 

a threshold of P < .001.
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were negatively correlated in all regions (Figure 3; see supple-
mental Table 3 for coefficients by ROI) except in the RN (b = −0.18; 
SE = 0.11; t = −1.71; P = .098).

Discussion

Here we show a positive correlation between cortisol levels after 
two different types of stressors and 5-HT1A receptor binding on 
PET using [11C]WAY-100635. This effect was observed across mul-
tiple brain regions. The fact that this observation held under 2 
different stress paradigms speaks to the strength of this rela-
tionship. Conversely, a negative correlation was found between 
baseline salivary cortisol and [11C]WAY-100635 binding in all a 
priori regions, except RN. We previously reported that stress-
responsive disorders like MDD and PTSD are associated with 
higher 5-HT1A binding (Parsey et al., 2006a, 2010; Sullivan et al., 
2013), although other studies have found no difference or the 
opposite (Yates and Ferrier, 1990; Lowther et al., 1997; Sargent 
et al., 2000; Bonne et al., 2005; Sullivan et al., 2015; Mann et al., 
2017). In this study, the relationship of 5-HT1A binding to post-
stress cortisol in blood and salivary samples was independent 
of diagnosis, indicating a mechanism that operates compara-
bly in healthy volunteers and in patients with mood disorders. 
Consistent with this observation, within the MDD group the 
severity of current major depression was not correlated with 
either 5-HT1A binding or post-stress cortisol in either blood or 
salivary measures. Higher brain 5-HT1A receptor ligand binding 
is a biological trait observed in medication-free major depres-
sion during acute depression and during remission (Parsey et al., 
2006a, 2006b; Miller et al., 2009b; Parsey et al., 2010) and is trans-
mitted in families (Milak et al., 2018). What remains to be deter-
mined is whether there is a causal link between higher 5-HT1A 
binding and HPA axis overactivity or responsivity in depression.

A negative correlation was found between baseline salivary 
cortisol and [11C]WAY-100635 binding in all a priori regions, 
except RN. This is consistent with previous data in depression 
and social anxiety disorder (Lanzenberger et  al., 2010). That 
baseline cortisol has a weaker or no correlation with 5-HT1A 
binding in RN may be explained by RN being a small structure 
with noisier quantification. Moreover, because of this small size, 
RN is susceptible to partial volume effects and underestimation 
of binding. Alternatively, presynaptic 5-HT1A receptors (autore-
ceptors) in RN may be functionally distinct from post-synaptic 
5-HT1A receptors such that expression of the latter may be more 
strongly modulated by baseline cortisol levels. The latter expla-
nation is consistent with the observation that adrenalectomy 
has no effect on 5-HT1A receptor binding in RN (Le Corre et al., 
1997; van Gaalen et  al., 2002). Furthermore, animal work has 
shown that different types of stressors can lead to increased 
serotonin secretion within parts of the RN, which would then 
act on 5-HT1A autoreceptors and differentially affect serotonin 
release in terminal fields (Adell et al., 1997, 2002). This may also 
explain why [11C]WAY-100635 binding differs between the RN 
and terminal fields.

Previous animal work demonstrating an inverse relation-
ship between cortisol levels and 5-HT1A receptor expression in 
cortical and hippocampal regions are consistent with our find-
ings with basal salivary cortisol levels (Chalmers et  al., 1993; 
Meijer and de Kloet, 1994; Flügge, 1995; Zhong and Ciaranello, 
1995; Le Corre et al., 1997; Czyrak et al., 2002; Iyo et al., 2009). 
It is thought that cortisol-dependent transcriptional repression 
of 5-HT1A requires coactivation of both the glucocorticoid and 
mineralocorticoid receptors (Meijer et al., 2000; Ou et al., 2001). 

However, it is important to note that in addition to possible spe-
cies differences, the animal experiments differ markedly from 
our paradigm in that they were performed either in animals 
in the context of adrenalectomy, chronic steroid treatment, or 
chronic stress paradigms, or in cell culture. We did not meas-
ure baseline cortisol in our blood cortisol samples, which were 
taken after arterial line insertion prior to PET scan. Therefore, 
the post-stress blood cortisol measures represent a combination 
of the resting cortisol levels and the response to the stressor, 
and they cannot be disambiguated. We considered the potential 
contribution of circadian fluctuations in cortisol level by adjust-
ing TSST cortisol level for time of day in the model.

HPA axis dysfunction has been linked to depression and sui-
cide in many previous studies. Postmortem data from suicide 
completers shows that they tend to have heavier adrenal glands, 
higher tissue levels of CRF, which indicates oversecretion of 
CRF, and lower expression of CRF receptors in prefrontal cortex 
(Nemeroff et al., 1988; Arató et al., 1989; Szigethy et al., 1994). 
A subset of patients with depression, generally those with more 
severe illness, also demonstrate nonsuppression on dexametha-
sone suppression testing and are at higher risk of suicide (Caroff 
et al., 1983; Dratcu and Calil, 1989; Coryell and Schlesser, 2001; 
van Heeringen, 2003; Yerevanian et al., 2004; Pfennig et al., 2005; 
Kunugi et al., 2006). HPA axis dysfunction is also linked directly 
to serotonergic dysfunction and specifically to changes in 5-HT1A 
receptor levels. CRF directly affects the dorsal raphe, modulating 
serotonergic tone in the prefrontal cortex and nucleus accum-
bens (Lowry et al., 2000; Forster et al., 2008; Lukkes et al., 2008; 
Quadros et al., 2014). Several studies in animal models show that 
cortisol reduces 5-HT1A receptor expression in the hippocampus 
(Martire et al., 1989; Chalmers et al., 1993; Kuroda et al., 1994; 
Meijer and de Kloet, 1994; Zhong and Ciaranello, 1995). Our data 
add to this literature by demonstrating a functional relationship 
between 5-HT1A receptor binding levels and cortisol levels in 
response to an acute stressor in human subjects.

The study had several limitations. There were modest dif-
ferences in racial/ethnic composition between our healthy 
volunteers and MDD group. Subjects in this study were a con-
venience sample, included on the grounds of having undergone 
[11C]WAY-100635 imaging and having either a blood or salivary 
measure of cortisol available. We cannot determine whether 
these serotonin system relationships to baseline and post-
stress cortisol levels will extend to more severe MDD, which is 
characterized by cortisol hypersecretion and dexamethasone 
resistance. However, we saw no relationship between MDD 
severity across the range that was present in our sample and 
cortisol measures. Finally, this cross-sectional study cannot 
demonstrate causal relationships. This would be more feasible 
to study in mouse models where pharmacological and genetic 
manipulations of HPA axis responsiveness are possible and 
the time frame to determine the relationship of developmen-
tal effects on adult phenotypes much shorter. To more fully 
characterize the relationship of depression status to HPA axis 
reactivity, a longitudinal study with repeated measurements 
in individual subjects during and between episodes of major 
depression would be required and would complement mouse 
developmental studies.

In summary, despite limitations, we found a positive correla-
tion between 5-HT1A receptor and post-stress cortisol levels, inde-
pendent of diagnosis. This suggests an underlying mechanism 
that links 5-HT1A receptor overexpression with HPA axis feedback 
dysfunction. Conversely, binding and resting cortisol are negatively 
correlated as reported in several rodent studies and likely involve 
different mechanisms including the mineralocorticoid receptor. 
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Such mechanisms are a combination of genetic vulnerability and 
environmental risk factors, such as early-life stress, which leads to 
epigenetic changes generating this biological phenotype.
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