
OnPLS-Based Multi-Block Data Integration: A Multivariate Approach
to Interrogating Biological Interactions in Asthma
Stacey N. Reinke,*,†,‡ Beatriz Galindo-Prieto,§,∥,⊥ Tomas Skotare,§ David I. Broadhurst,‡

Akul Singhania,#,∇ Daniel Horowitz,○ Ratko Djukanovic,́#,◆ Timothy S.C. Hinks,#,◆,†† Paul Geladi,‡‡

Johan Trygg,§ and Craig E. Wheelock*,†,§§

†Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77
Stockholm, Sweden
‡Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth 6027, Australia
§Computational Life Science Cluster, Department of Chemistry (KBC) and ∥Industrial Doctoral School (IDS), Umea ̊ University,
SE-901 87 Umea,̊ Sweden
⊥Department of Engineering Cybernetics (ITK), Norwegian University of Science and Technology (NTNU), 7491 Trondheim,
Norway
#Clinical and Experimental Sciences, University of Southampton Faculty of Medicine and ◆NIHR Southampton Respiratory
Biomedical Research Unit, Southampton University Hospital, Southampton SO16 6YD, U.K.
∇Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London NW1 1AT, U.K.
○Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
††NIHR Oxford Biomedical Research Centre/Respiratory Medicine Unit, NDM Experimental Medicine, University of Oxford, Level
7, John Radcliffe Hospital, Oxford OX3 9DU, U.K.
‡‡Forest Biomass and Technology, Swedish University of Agricultural Sciences, SE 90183 Umea,̊ Sweden
§§Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8510, Japan

*S Supporting Information

ABSTRACT: Integration of multiomics data remains a key challenge
in fulfilling the potential of comprehensive systems biology. Multiple-
block orthogonal projections to latent structures (OnPLS) is a
projection method that simultaneously models multiple data matrices,
reducing feature space without relying on a priori biological
knowledge. In order to improve the interpretability of OnPLS
models, the associated multi-block variable influence on orthogonal
projections (MB-VIOP) method is used to identify variables with the
highest contribution to the model. This study combined OnPLS and
MB-VIOP with interactive visualization methods to interrogate an
exemplar multiomics study, using a subset of 22 individuals from an
asthma cohort. Joint data structure in six data blocks was assessed:
transcriptomics; metabolomics; targeted assays for sphingolipids,
oxylipins, and fatty acids; and a clinical block including lung function, immune cell differentials, and cytokines. The model
identified seven components, two of which had contributions from all blocks (globally joint structure) and five that had
contributions from two to five blocks (locally joint structure). Components 1 and 2 were the most informative, identifying
differences between healthy controls and asthmatics and a disease−sex interaction, respectively. The interactions between
features selected by MB-VIOP were visualized using chord plots, yielding putative novel insights into asthma disease
pathogenesis, the effects of asthma treatment, and biological roles of uncharacterized genes. For example, the gene ATP6 V1G1,
which has been implicated in osteoporosis, correlated with metabolites that are dysregulated by inhaled corticoid steroids (ICS),
providing insight into the mechanisms underlying bone density loss in asthma patients taking ICS. These results show the
potential for OnPLS, combined with MB-VIOP variable selection and interaction visualization techniques, to generate
hypotheses from multiomics studies and inform biology.

In the postgenomic era, data-driven science has become
increasingly necessary because of the vast array of

instrumentation that is capable of generating thousands of
data points for a single analytical observation.1,2 In addition to
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using classical univariate statistical methods, machine-learning
techniques have become routinely used to interrogate and
understand vast amounts of data.3,4 Two common character-
istics of -omics data are that the number of measured variables is
vastly greater than the number of observations5 and that there is
a degree of multicollinearity between variables.6 As such,
computational methods that project high dimensional data into
a smaller number of component variables have become
commonplace.7 Multivariate projection methods such as
principal components analysis (PCA),8 partial least squares
discriminant analysis (PLS-DA),9 and canonical variate analysis
(CVA),8 together with hierarchical cluster analysis (HCA),10

random forests,11 and support vector machines (SVM),12 are all
used to analyze -omics data.3,4 PLS-DA and its extension,
orthogonal projection to latent structures discriminant analysis
(OPLS-DA),13,14 have become popular projection methods in
the metabolomics community.15 As modeling methods become
increasingly complicated, they have also become concomitantly
difficult to interpret. Assignment of the variable importance
often becomes an a posteriori statistical process based on either
permutation testing or random resampling (e.g., confidence
intervals derived from bootstrap/jackknife statistics).16 For
methods based on a PLS algorithm, the direct statistical method
of variable influence on projection (VIP)17,18 is often used to
estimate variable contribution to the resulting models.
In recent years, as the -omics sciences have matured, it has

become common to acquire data frommultiple -omics platforms
in a single biological experiment. As such, each biological sample
is interrogated by multiple analytical platforms, which in turn
can be linked tomultiple sources of experimental metadata. Data
from each platform (or measurement context) can be
considered a discrete block, with multiple blocks making up
the complete data set of the experiment. Multivariate projection
methods such as OPLS-DA have proven successful in modeling
the underlying latent biological structure within a single high
dimensional data block; however, they are theoretically
unsuitable for modeling multiple data blocks simultaneously.
There are two reasons for this issue. First, if multiple data blocks
are concatenated into a single matrix, with no accounting for
measurement context, then the subsequent model can be
considered as a single projection model, where the weighting of
each variable is governed by the total sum of squares.19 This, in
principle, demands that each block is normalized to the same
size, to avoid a projectionmodel that is biased toward the impact
of the data set with the most variables. In practice, this can be
problematic, particularly when there are a mix of blocks of vastly
different sizes. For example, in a model concatenating 20 000
transcripts, 200 metabolites, and 20 clinical variables, the
transcripts would over-represent the global data structure and
thus have a larger contribution to the resulting model. In multi-
block modeling, this is not an issue, as each block is treated
independently. This approach leaves flexibility to scale
individual variables according to importance and also to keep
variables in their original unit. Second, each individual data set is
associated with its own underlying structure,19,20 describing the
true biological variance and also platform-specific measurement
error. Covariance of biological latent structure across multiple
data blocks is implicit; however, it is a fair assumption that the
measurement error across multiple blocks will be independent
and thus easily ignored at this block-interaction level.
Conversely, if multiple data blocks are concatenated into a
single data set before projection, the model will struggle to
effectively separate true biological structure from block-specific

noise and result in erroneous interpretation of the conglomerate
projection model.
To address the need for multivariate methods to simulta-

neously model multiple data matrices, a number of multi-block
data integration methods have been proposed.21−23 In 2011,
Löfstedt and Trygg24 proposed a novel multi-block multivariate
method called OnPLS, which utilizes the framework of OPLS to
decompose data from more than two input matrices. Multi-
blockmodels, such asOnPLS, are fully symmetric, meaning each
data block is weighted to allow an equal contribution to the
model, regardless of the number of variables or underlying data
structure within each block.25 Multi-block approaches offer
further advantages over single block or block concatenation in
biomarker discovery. First, the validity of any true biological
biomarker is significantly increased if there is a clear covariance
between data blocks, thus reducing the possibility of false
discovery.26 Second, contrary to block-concatenation modeling,
which is strongly biased toward the globally joint variation,
multi-block analysis decomposes the different levels of variation
(global, local, unique)27 such that relatively small but
informative trends are also identified. Recently, Galindo-Prieto
et al. adapted the VIP concept for multi-block data analysis
(multi-block variable influence on orthogonal projections
method,28 MB-VIOP) to identify the variables that contribute
to these different levels of joint structure.
The aim of this study was to combine OnPLS and MB-VIOP

with data visualization methods to create a workflow capable of
simultaneously modeling and investigating interactions between
multiple -omics data blocks. The study chosen for this purpose
was a subset from a previously reported asthma cohort, for which
multiple -omics data sets were acquired in isolation.29,30 These
analyses included untargeted metabolomics, targeted metabolite
assays, differential immune cell population analyses, and
cytokine arrays. Additionally, for the present study, tran-
scriptomics of peripheral blood T cells was performed. OnPLS
modeling and MB-VIOP were then used to integrate the
disparate data blocks into a single model, which was then
interrogated to identify novel interactions between the data
blocks and disease status as well as other clinical end points.

■ EXPERIMENTAL SECTION
Clinical Cohort. Briefly, 12 healthy controls and 10 severe

asthmatics were included from the original study.29 Tran-
scriptomics was subsequently performed on peripheral blood T
cells, and metabolomics/metabolic profiling assays were
performed on serum. All participants were enrolled from the
NIHR Southampton Respiratory Biomedical Research Unit and
University Hospital Southampton outpatient clinics; all
provided written informed consent. The National Research
Ethics Service Committee South CentralSouthampton B
ethics committee (UK; ref 10/H0504/2) approved this study.
Clinical classification and enrollment criteria were previously
described.29,31 Participant data were included in the present
study if they were classified as either healthy control or severe
asthmatic individuals in the existing cohort, and data from all
data blocks (described in the next section) were collected.

Sample Collection and Analyses. Details of sample
collection and transcriptomics analyses are available in the
Supporting Information. Details of analytics, quality control, and
data cleaning for metabolomics, targeted metabolic assays, and
clinical assays were performed as previously described.29,30

Data Blocks and Processing. Six data blocks were used for
modeling: Transcriptomics, Sphingolipids, Metabolomics, Fatty
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Acids, Oxylipins, and Clinical Data (Figure 1). A complete list of
all variables included for each data block is provided in Tables

S1−S6. The data blocks were defined by a priori knowledge
about both the system under observation and the measurement
technology.19 The primary consideration was that the under-
lying structure of the data could possibly confound the biological
interaction between blocks. To avoid bias in combining
information from different probes for one gene, all non-QC
probes were included for OnPLSmodeling; the Transcriptomics
block included 54 613 variables. This approach is commonly
used for analyzing transcriptomics data.32 Four data blocks
represented serum metabolites: Sphingolipids (28 variables,
targeted assay), Metabolomics (66 variables, untargeted assay
screened against an in-house chemical library), Fatty Acids (14
variables, targeted assay), and Oxylipins (38 variables, targeted
assay). A total of 23 clinical variables were combined into the
Clinical data block; these variables were derived from typical
clinical assays and measurements and included lung function
tests, bronchoalveolar lavage fluid and peripheral blood T cell
populations, serum cytokines, and serum vitamin D3. For
clinical data, values that were missing due to being below the
limit of detection (LOD) of the respective assay were imputed
with 1/10 of the lowest measured value, because the LOD was
not known for each assay, and OnPLS cannot process missing
values. Data that were missing for an entire subset array of the
clinical data (e.g., for individuals missing the cytokine assay)
were imputed using the median value of the corresponding
clinical group (control or asthma). Remaining missing values
were replaced using PCA imputation. Prior to OnPLS model
calculation, all data (except for transcriptomics) were log-
transformed. All data were then scaled to unit variance.
OnPLS Model Calculation and Visualization. The

OnPLS model simultaneously analyzed the data matrices,
returning output matrices of shared information (components),
as described.27 These output matrices reveal shared data
structure on three levels for each data matrix, which can be
summarized as

Globally joint components reveal structure that is shared by
all input datamatrices. Locally joint components reveal structure
shared by two or more, but not all, of the input matrices. Finally,
unique components identify latent structure that is present in
only one input matrix. The OnPLS model returned separate

score vectors for each data block in each component. To identify
the sources of biological variance explained by the OnPLS
components, the component scores for each block were
correlated with metadata variables not included in the clinical
data block: clinical class (control vs asthma), sex, age, BMI, dose
of inhaled and oral corticosteroids, and smoking (current/
former smoker vs never smoked). The resulting Pearson
correlation coefficients were presented as a metadata correlation
plot.33 To visualize the overall OnPLS model, hierarchical
principal component analysis (PCA)34 was used to summarize
the 30 OnPLS score vectors, resulting in 2 PCA components
describing the relationships in the OnPLS model. Prior to
calculating the PCA model, the score vectors were scaled to unit
variance. The PCA score plot showed individual participants,
and the loadings plot displayed the score vectors from the
OnPLS model, labeled by block type and OnPLS model
component number.

MB-VIOP Concept, Motivation, and Calculation.Multi-
block variable influence on orthogonal projections (MB-VIOP)
is a feature selection method that (i) sorts the input variables by
importance for data interpretation in OnPLS models, either for
the total model (all variation types together) or per component
(global, local, or unique variations separately), and (ii) explores
the connections between the variables (either in the same or a
different data matrix) that contribute to explain the same
component (latent variable) in the multi-block system. Multi-
block-VIOP is amodel-based variable selectionmethod, because
it uses the n preprocessed data matrices, the score vectors, and
the normalized loading vectors from an OnPLS model. OnPLS
regression can relate the data matrices according to the model
component; however, it must be emphasized that not all input
variables of these related matrices will connect among
themselves to explain the variation contained in a specific
model component. TheMB-VIOP algorithm is necessary to sort
the input variables according to their connections for
interpreting the variation contained in one or more specific
components. Furthermore, MB-VIOP finds the degree of
importance of each variable in the correct proportion for a
multi-block system, which cannot be achieved by the OnPLS
normalized loadings plot.35

The calculation of theMB-VIOP values can be summarized as
the Hadamard products of the normalized loadings multiplied
by the ratio of the variation explained by a model component
and the cumulated variation. After a block- and component-wise
iterative algorithm with all input variables from the six data
matrices involved, the resulting MB-VIOP vectors were
normalized by Euclidean norm and by the number of original
(input) variables raised to the 1/2 power. The variables of
interest that were identified by MB-VIOP were selected as a
subset for further multivariate analysis as shown below. For
additional details about the MB-VIOP fundamentals and
algorithm, readers are referred to the original reference.28

Data Visualization. The between-block covariance of the
subset of variables contributing to Components 1 and 2 of the
OnPLS model were visualized using chord plots.36 Using the
variables reaching a defined MB-VIOP threshold, a chord plot
was constructed by first calculating the Spearman rank
correlation coefficient (r) for each pairwise combination of
variables with MB-VIOP values above a threshold. Those
variables where a significant (p < 0.001) between-block
correlation existed were presented as nodes in a circle (grouped
by block), and the correlation represented as a colored arc
(yellow being a positive correlation and purple a negative

Figure 1. Schematic of potential shared structure between data blocks.
The six data blocks used in this study are shown with their respective
numbers of variables. The diagram shows all possible shared structure
connections between the data blocks.
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correlation). The number of arcs associated with a given node is
recorded in parentheses next to the name of the variable. Each
chord plot was constrained such that within-block correlations
were ignored.
Data modeling (OnPLS), variable selection (MB-VIOP), a

posteriori analyses, and creation of plots were performed using
MATLAB 2018a (Mathworks, Natick, MA, USA). Correlation
coefficients for the metadata correlation plots were calculated
using functions from SciPy (http://www.scipy.org/), and the
plot was created using the Matplotlib library.37 SIMCA v15
(Umetrics, Umea,̊ Sweden) was used to perform OPLS-DA
analysis.

■ RESULTS AND DISCUSSION
Study Population. A total of 22 participants from a

previously described cohort29,30 were included in this study (12
healthy control individuals and 10 individuals with severe
asthma). Clinical information is presented in Table 1. Age and

BMI were significantly higher in the severe asthmatic group and
thus represented confounders in the study. Furthermore, all
individuals in the severe asthmatic group were treated with
inhaled and/or oral corticosteroids (ICS/OCS). Although the
sex ratio and proportion of smokers were also different, they
were not significantly altered between the two groups.
OnPLS Model. The OnPLS model calculated seven

components that shared joint structure between at least two of
the data blocks (Table 2). Two components (1 and 4) had
globally joint structure, with contributions from all six blocks.
The remaining components had locally joint structure, with
between 2 and 5 data blocks contributing to the joint structure.
The model did not identify any unique components.
The amount of variance explained in each component, for

each data block, as well as cumulative variance explained by the

model is reported in Table 2. Only 37% of the total variance in
the Transcriptomics data block was explained, indicating that
the majority of the information contained in this block is not
descriptive for describing asthma. This could be due to the
global and unbiased nature of the platform and/or the fact that
the transcriptomics data were derived from the entire peripheral
blood CD3+ T cell population. It would be of more clinical
relevance to target specific cell subpopulations in a single-cell
transcriptomics approach.38 The clinical data described only
55% of the variance in the Clinical block; however, 16 of the 22
variables were either differential immune cell counts/subpopu-
lation frequencies or cytokines produced by immune cells. Given
the pathophysiological heterogeneity of asthma, traditional cell
population and cytokine measures alone are insufficient to
describe the disease.39

The OnPLS model explained >70% of the variance in each
metabolic profiling data block (Sphingolipids, Fatty Acids, and
Oxylipins) and 56% of the Metabolomics block. This higher
degree of explained variance can be attributed to the selective
association between these variables and asthma. These targeted
assays were performed to confirm findings from the initial
metabolomics screen.30 While not all targeted metabolites were
originally detected using metabolomics, they represent bio-
logical processes known to be involved in inflammation. This
point is of particular relevance in that it is not the number of
variables in a given data block that is the primary driver but
rather the inherent biological content.4,9 This facet makes it
meaningful to combine disparate -omics blocks of varying
structure into a single OnPLS model and demonstrates the
utility of this approach for data modeling. However, there is the
expected caveat that data blocks that contain higher levels of
biological structure will have a concomitant increase in
contribution to the overall OnPLS model.
To determine the biological factors associated with each

OnPLS component and data block, model score vectors were
correlated with a number of known biological factors (Figure 2).
Component 1 scores from all blocks positively and significantly
(p < 0.05) correlated with disease status (healthy vs asthma),
age, and BMI. All blocks, except Fatty Acids, positively and
significantly (p < 0.05) correlated with ICS and OCS dose.
Transcriptomics, Fatty Acids, and Clinical scores correlated with
smoking status (nonsmoker vs has ever smoked). As expected,
age, BMI, and corticosteroid treatment were all confounded
with disease status (Table 1); thus, explained variation in the
model because of these factors was not distinguished from that
of disease. The Component 2 scores for the Transcriptomics,
Oxylipins, and Clinical blocks significantly (p < 0.05) and
positively correlated with sex. While sex was not a significant
confounder in this study, the distribution between the two
classes was different. This highlights the utility for OnPLS to

Table 1. Clinical Data

healthy control
(N = 12)

severe asthma
(N = 10)

age (years) 26.5 (24.8, 30.8) 63 (43.5, 63)
sex (M/F) 9/3 4/6
BMI (kg/m2) 24.1 (22.6, 43.2) 34.0 (27.4, 43.2)
smoking status
never smoker (#) 11 6
current/former smoker (#) 1 4
treatment
inhaled corticosteroids
(#, median doseb)

0 10 (1280)

oral corticosteroids (#) 0 3
aValues are medians (interquartile range) or numbers. bBeclometha-
sone dipropionate equivalent μg.

Table 2. OnPLS Model Summary

component connection Transcriptomics Sphingolipids Metabolomics Fatty Acids Oxylipins Clinical

1 global 8% 33% 16% 25% 8% 17%
2 local 7% 11% 7% - 40% 15%
3 local - 14% - - 7% -
4 global 8% 9% 10% 39% 7% 14%
5 local 6% 6% 9% - - -
6 local 4% 13% 7% - - -
7 local 5% - 7% 10% 9% 9%

sum 37% 86% 56% 74% 71% 55%
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identify biological sources for variation in -omics data. The
scores for Components 3−6 did not correlate significantly with
any of the listed biological factors and likely describe either a
combination of recorded biological factors or biological factors
that were either not observed or not recorded in this study. As
such, this highlights the importance of strict experimental design
measures and extensive record keeping in data-driven sciences.
Despite being a confounder in the study, age negatively
correlated with Component 7 Fatty Acid scores and highlights
the potential for OnPLS to identify underlying biology
associated with data blocks.
PCA of OnPLS Score Vectors. To visualize the entire

OnPLS model, principal components analysis (PCA) was
performed on the scaled OnPLS score vectors (hierarchical
PCA, Figure 3). The first principal component (PC1) showed a
separation between healthy controls and asthmatic individuals in
the score plot (Figure 3A). Aligning with the results of the
correlation analysis, this separation was driven by the OnPLS
Component 1 score vectors (Figure 3B). It was then expected

that PC2 would solely describe a sex difference, as OnPLS
Component 2 score vectors drove the separation. Interestingly,
PC2 actually described an interaction between disease and sex
(Figure 3A). While there was a sex difference among asthmatics,
this was not observed in the controls. Investigating the
interaction between sex and disease was not an aim of the
original cohort study; however, this interaction was identified by
simultaneously modeling all the data in combination with
integrative visualization. In addition, the hierarchical PCA
model corroborates the correlation analysis, showing that
OnPLS Components 1 and 2 contain the most structural
information. Therefore, these components were selected for
further exploration with MB-VIOP analysis.

Multi-block Variable Influence on Orthogonal Projec-
tions (MB-VIOP). To further investigate the variables and their
interactions underlying the shared structure of OnPLS
components 1 and 2, MB-VIOP variable selection and
subsequent correlation analysis were applied. A MB-VIOP
threshold of >1.0 was used to select the variables of interest from

Figure 2. Correlation between model scores and metadata. Circle size
and color intensity are proportional to strength of correlation (larger
and darker indicates strong correlation). Red, positive correlation; blue,
negative correlation. Thick outline around box, significant correlation
(p < 0.05). The amount of variance that is explained by each data block,
in each component, is shown in parentheses. Components are listed as
C1−C7 on the left side of the figure.

Figure 3. PCA visualization of OnPLS model score vectors. Score
vectors from the OnPLS model were scaled to unit variance before
performing H-PCA. (A) Score plot. Green squares, control females;
blue circles, control males; purple diamonds, severe females; orange
inverted triangles, severe males. Bar graphs on axes show distribution of
each group along the respective axis. (B) Loadings plot. Red,
Transcriptomics; blue, Sphingolipids; yellow, Metabolomics; green,
Fatty Acids; purple, Oxylipins; tan, Clinical. Numbers representOnPLS
components, from which score vectors originate. Shaded boxes are for
visualization purposes only.
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each component. For Component 1, 22 297 transcripts, 31
metabolites, 15 sphingolipids, 7 fatty acids, 16 oxylipins, and 9
clinical variables contributed to explaining the shared structure
describing disease separation (Figure 4A). For visualization
purposes, the MB-VIOP threshold was increased to 2.0 for the
Transcriptomics data block, leaving 151 variables. For
Component 2, 14 618 transcripts, 28 metabolites, 9 sphingoli-
pids, 20 oxylipins, and 12 clinical variables contributed to
explaining the shared structure describing the interaction
between sex and disease (Figure 4B). The Transcriptomics
block appeared to have a strong influence on the disease−sex
interaction, with 1487 transcripts passing the higher MB-VIOP
threshold of 2.0; thus, the threshold was further increased to
>2.5 to identify only the strongest contributions, leaving 203
transcripts. The complete list of all MB-VIOP values calculated
for Components 1 and 2 is presented in Tables S1−S6.
In order to identify between-block biological interactions in

Components 1 and 2, chord plots were used to visualize
correlations of variables passing the specified MB-VIOP
thresholds (Figure 5). This approach revealed a number of

interesting interactions, of which a selected few are discussed as
examples of the application of the proposed workflow. Five
metabolites that correlated with ICS dose30 (cortisol; cortisone;
dehydroepiandrosterone sulfate, DHEA-S; N-palmitoyltaurine,
pipecolate) passed the MB-VIOP threshold criteria for
Component 1. These metabolites correlated with the transcripts
of 21 unique genes (Figure 5A), of which ATP6 V1G1 was
particularly interesting. ATP6 V1G1 has been implicated in
osteoporosis and specifically osteoclast function,40 which is a
known side-effect of ICS treatment.41 This novel link may
provide insights to the mechanisms underlying bone density loss
in asthma patients taking ICS. In addition, NPAS2, a
transcription factor involved in mediating circadian rhythm,42

correlated with five metabolites, four of which were ceramides
(Figure 5A). Evidence suggests that ceramide levels fluctuate
diurnally;43,44 however, to our knowledge, this is the first time an
association has been made between NPAS2 and ceramides.
More importantly, as all samples were collected at the same time
of day (between 09:00 and 11:00), this supports emerging
evidence of dysregulated circadian rhythm gene expression in

Figure 4.MB-VIOP variable selection for OnPLS Components 1 and 2. TheMB-VIOP values are shown for each block in Components 1 and 2. Gray
bars, variables with MB-VIOP≤ 1.0; red bars, variables with MB-VIOP > 1.0. Vertical lines are drawn to showMB-VIOP > 1.0 threshold for all blocks
in addition to the increased MB-VIOP thresholds of >2.0 and >2.5 for Transcriptomics in Components 1 and 2, respectively. Percentages reflect the
amount of variance described by each component, for each data block. (A) Component 1. (B) Component 2.
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Figure 5.Chord plots showing between-block correlations. (A) Component 1. (B) Component 2. Chord plots were made by calculating the Spearman
rank correlations for each pairwise comparison of variables meeting the MB-VIOP thresholds. Variables with a significant (p < 0.01) between-block
correlation were presented in the chord plots. Nodes represent variables. Text color is associated with block: gray, Transcriptomics; green,
Metabolomics; yellow, Sphingolipids; blue, Fatty Acids; orange, Oxylipins; red, Clinical. The number of correlations associated with a given node is
noted in parentheses next to the name of the variable. Node color represents direction of change. Component 1: blue, increased in asthma; red,
decreased in asthma. Component 2: white, increased in females; black, increased in males. Chords represent correlations: yellow, positive correlation;
purple, negative correlation. Each chord plot was constrained such that within-block correlations were ignored. (---) denotes noncoding gene
transcripts.
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asthma.45 Indeed, experiencing nocturnal symptoms more than
once per week was a classification criterion of severe asthma.29

The disease−sex interaction identified by Component 2 was
largely driven by differential bronchoalveolar lavage cell profiles
(eosinophils, macrophages) and oxylipins (Figure 5B). It also
identified a high degree of correlation between the oxylipins and
both PCDH10 and the uncharacterized gene locus LOC284219,
suggesting that these genes may play a previously unidentified
role in oxylipin metabolism. Together, these examples highlight
the value of this method for interrogating biology and generating
hypotheses from multiomics data.
By combining OnPLS multi-block modeling with MB-VIOP

variable selection and various visualization methods, the
composite of data derived from this study could be interrogated.
Where methods such as OPLS are useful for identifying
covariance in isolated data blocks, OnPLS offers the advantage
of identifying combined covariance, thus offering a more
complete understanding of the whole system. For example,
when OPLS was applied to the Metabolomics data block in
isolation, 21 variables had a VIPOPLS > 1.0 with dehydro-
epiandrosterone-sulfate (DHEA-S) being the strongest driver of
the control−asthma difference (Supplemental Tables). Compo-
nent 1 of OnPLS had 31 variables with a MB-VIOP > 1.0, 15 of
which were unique to OnPLS modeling. Whereas DHEA-S was
a major driver in the covariance in the single-block analysis, it
was less important in the combined covariance of the OnPLS
model. The Transcriptomics, Oxylipin, and Clinical data blocks
showed similar trends, with OPLS and OnPLS revealing
different biological insights (data not shown).
While the present study shows the potential for OnPLS-based

modeling to be useful for simultaneously modeling multiple data
blocks and generating hypotheses, it is limited by sample size
and study power. Furthermore, OnPLS is currently unable to
derive a block weighting such that MB-VIOP values can be
scaled and directly compared across all blocks. Accordingly,MB-
VIOP values can only be directly compared within a given data
block and not between blocks. In interpreting the results, one
must consider the overall contribution, not only of the block per
se but also of the individual variables, to the respective
component.

■ CONCLUSIONS
The multi-block OnPLS method combined with MB-VIOP
variable selection and interaction visualization techniques
yielded putative novel insights into asthma disease pathogenesis,
the effects of asthma treatment, and biological roles of genes.
The current study was performed in a worst-case scenario
approach using a small sample set, with unbalanced groups and
multiple study confounders. While these issues limit the ability
of the different components of the OnPLS model to identify
unique biological sources of variation, it demonstrates the
potential for this method for identifying key structure in -omics
data integration. It is likely that in large well-designed studies,
the different components would be able to identify and explain
other sources of biological and/or experimental variability (e.g.,
therapeutics, center bias, diet). It is also possible that this
approach would be useful in identifying subphenotypes of
disease, with different subgroups and/or mechanisms described
by different components. We therefore propose that OnPLS
modeling can be incorporated into large-scale molecular
phenotyping studies for stratified medicine. Given that the
-omics technologies detect molecules that function in a highly
interdependent and dynamic manner within a living system,

multi-block methods such as OnPLS, together with MB-VIOP
and interaction visualization, provide a logical approach to
investigating systems biology.
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