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A B S T R A C T   

Breast cancer is a multifaceted and diverse illness that impacts millions of people globally. 
Identifying the underlying causes of BRCA and creating efficient treatment plans are urgent. 
Necroptosis is widely involved in cancer development. However, the specific roles of necroptosis 
in cancer immunotherapy of breast cancer have not been explored. In this study, we aim to 
establish the connection between necroptosis and immunotherapy in BRCA. TCGA, METABRIC, 
GSE103091, GSE159956, and GSE96058 were included for bioinformatics analysis. NMF and 
CoxBoost algorithms were used to develop the necroptosis-related patterns and model, respec-
tively. A necroptosis-related model was developed and determined KLRB1 as a critical tumor 
suppressor by in vitro validation. The mutation characteristics, immune characteristics, and 
molecular functions of KLRB1 were explored. We further examined how necroptosis-related 
KLRB1 functions in BRCA as a powerful tumor suppressor and regulates the activity of macro-
phages by in vitro validation, including CCK8, EdU, and Transwell assays. KLRB1 was also 
revealed to be an immunotherapy determinant.   

1. Introduction 

Breast cancer (BRCA) is a multifaceted and diverse illness that impacts millions of people globally. It is the most prevalent type of 
cancer in women and is responsible for a large number of cancer-related fatalities. Many genetic, environmental, and lifestyle factors 
have a role in the onset and spread of BRCA [1]. Much research has been done over the years to identify the underlying causes of BRCA 
and to create efficient treatment plans [ [2,3]]. 

Using the body’s immune system to combat cancer cells, immunotherapy is a state-of-the-art treatment option for BRCA [4]. It 
entails using various methods and drugs to boost the immune system and kill cancer cells. Immunotherapy has shown much promise in 
treating BRCA, giving patients fresh hope and possibly leading to better results [5]. 

A type of planned cell death different from necrosis and apoptosis is called necroptosis [ [6,7]]. It is a tightly controlled process 
important in many clinical and physiological situations. Receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein 
kinase 3 (RIPK3), and mixed lineage kinase domain-like protein (MLKL) are among the signaling pathways that are activated during 
necroptosis. These signaling molecules plan actions that eventually result in the demise of cells. Numerous illnesses, such as cancer, 
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neurological conditions, and inflammatory diseases, have been linked to necroptosis [ [8,9]]. Necroptosis has become a promising 
therapeutic target and a predictor of immunotherapy success in the setting of BRCA [10]. Knowing the basic processes behind nec-
roptosis and how it contributes to BRCA may help create new treatment approaches and the identification of biomarkers for 
personalized medicine. 

In this study paper, we aim to establish the connection between necroptosis and immunotherapy in BRCA. A necroptosis-related 
model was developed and determined KLRB1 as a critical tumor suppressor. We further examined how necroptosis-related KLRB1 
functions in BRCA as a powerful tumor suppressor and immunotherapy determinant. We will investigate KLRB1 expression patterns in 
BRCA tissues and assess the importance of these expression patterns for prognosis. Furthermore, we will investigate the functional 
implications of KLRB1 in animal models and BRCA cell lines, providing insight into its potential utility as a therapeutic target. Our 
study intends to contribute to the expanding body of information on the genetic mechanisms behind this tragic disease by clarifying the 
role of necroptosis-related KLRB1 in BRCA. Ultimately, our research could open the door for creating cutting-edge therapeutic ap-
proaches that target necroptosis pathways, enhancing patient outcomes and transforming how BRCA is treated. 

2. Materials and methods 

2.1. Data collection 

TCGA [11], METABRIC [12], GSE103091 [13], GSE159956, and GSE96058 [14] datasets were collected for the subsequent 
analysis. TCGA is a comprehensive and publicly available resource that contains genomic, transcriptomic, and clinical data from 
various cancer types. METABRIC is a large-scale database that aims to classify breast cancer based on molecular subtypes and provides 
valuable genomic and clinical information. GSE103091, GSE159956, and GSE96058 were collected from GEO. GEO contains many 
high-throughput gene expression data sets, including microarray and next-generation sequencing data. Researchers can access and 
analyze these data sets to gain insights into gene expression patterns and regulatory mechanisms across different biological conditions 
and diseases. The GEO database is a valuable resource for studying the molecular basis of diseases, identifying potential biomarkers, 
and discovering new therapeutic targets. 

2.2. Development of necroptosis-related patterns 

The necroptosis-related genes were collected from the previous publication [15]. NMF algorithm was applied to determine 
necroptosis-related patterns [16]. The NMF algorithm, short for Non-negative Matrix Factorization, is a popular unsupervised learning 
technique used for dimensionality reduction and feature extraction [17]. It is particularly useful for analyzing non-negative data, such 
as images, text, and gene expression data. The NMF algorithm decomposes a non-negative matrix into two lower-rank non-negative 
matrices, which can be interpreted as basis vectors and coefficients. These basis vectors and coefficients can then be used to reconstruct 
the original matrix or extract meaningful features. NMF has applications in various fields, including image processing, text mining, and 
bioinformatics. The R package survival generates the survival curves of necroptosis-related patterns. The R packages pheatmap and 
ComplexHeatmap generate the expression pattern of necroptosis-related genes in necroptosis-related patterns [18]. 

2.3. Annotation of the necroptosis-related pattern 

The R package EnhancedVolcano generates the volcano plot illustrating DEGs of necroptosis-related patterns. GSEA (Gene Set 
Enrichment Analysis) was performed on DEGs of necroptosis-related patterns [19,20]. GSEA is a computational method used to 
determine whether a predefined set of genes shows statistically significant differences between two biological states. GSEA can be used 
to analyze gene expression data and identify biological pathways or gene sets that are associated with a particular phenotype or 
condition. It is a powerful tool for understanding the underlying biological mechanisms and pathways involved in a given disease or 
experimental condition. 

2.4. Identification of KLRB1 

CoxBoost was performed for the dimension reduction of DEGs [21]. The CoxBoost algorithm is a machine learning algorithm used 
for survival analysis. It is an extension of the Cox proportional hazards model, which is a widely used statistical model for analyzing 
survival data. CoxBoost combines boosting, a technique for creating an ensemble of weak learners, with the Cox proportional hazards 
model to improve its predictive performance. It is particularly useful when dealing with high-dimensional data or when there are 
complex relationships between the predictors and the survival outcome. The algorithm iteratively fits a series of weak learners to the 
data, with each learner focusing on the residuals of the previous learners. This allows CoxBoost to capture non-linear relationships and 
interactions between the predictors and the survival outcome. Overall, CoxBoost is a powerful tool for survival analysis and has been 
widely used in various fields such as medical research and finance. The R package survival generates the survival curves of 
KLRB1-related groups. 

2.5. Mutation characteristics of KLRB1 

Mutation characteristics of KLRB1 were explored using the R package maftools [22]. The maftools is an R package that provides a 
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Fig. 1. Development of necroptosis-related patterns. A. HR of necroptosis-related genes. B. Cophenetic coefficient of different patterns. C. PCA of 
necroptosis-related patterns. D. Survival curves of necroptosis-related patterns. E. The expression pattern of necroptosis-related genes in necroptosis- 
related patterns. 
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Fig. 2. Annotation of the necroptosis-related pattern. A. DEGs of the necroptosis-related pattern. B. HR of DEGs. C. GSEA of DEGs.  
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Fig. 3. Identification of KLRB1. A. CoxBoost for dimension reduction of DEGs. B. Survival curves of KLRB1-related groups in TCGA. C. Survival 
curves of KLRB1-related groups in METABRIC. D. Survival curves of KLRB1-related groups in GSE103091. E. Survival curves of KLRB1-related 
groups in GSE159956. F. Survival curves of KLRB1-related groups in GSE96058. 
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set of functions for analyzing and visualizing somatic mutation data from cancer genomic studies. It allows users to perform various 
tasks such as mutation annotation, visualization of mutation landscapes, identification of significantly mutated genes, and exploration 
of mutation signatures. The maftools is widely used in cancer genomics research to gain insights into the genetic alterations driving 
cancer development and progression. 

2.6. Immune characteristics of KLRB1 

The R packages pheatmap and ComplexHeatmap [23] generate the correlation between KLRB1 and immune modulators [18]. The 
R package estimate was used to calculate the ESTIMATE scores [24]. The R package “estimate" is a tool used for estimating tumor 
purity, stromal score, and immune score in tumor samples using gene expression data [25]. It provides a quantitative assessment of the 
tumor microenvironment and can be used to study the tumor-immune interactions and their impact on cancer progression and 
response to therapy. The TIMER algorithm was applied to calculate the abundance of immune cells [26]. The TIMER algorithm is a 
computational tool used for analyzing tumor immune interactions. It provides an estimation of the abundance of immune infiltrates in 
tumor samples based on gene expression data. The algorithm can be used to study the tumor microenvironment and its impact on 
cancer progression and response to immunotherapy. 

2.7. Annotation of KLRB1 

GSEA was performed on DEGs of KLRB1-related groups. 

2.8. Experimental validation on KLRB1 

The cell lines AU565 and THP-1 were obtained from iCell (http://www.icellbioscience.com/search) in Shanghai, China. They were 
cultivated in DMEM media and 1640 media with 10% FBS and 1% double-antibody, respectively. Following a 6-h exposure to 320 nM 
of phorbol 12-myristate 13-acetate (PMA) at 37 ◦C, THP-1 cells were polarized into M0 macrophages. SiRNA sequences of KLRB1: 
Forward CCAACAAGCAATATATGCTGAGTTA; Forward ACCTTGGCATCAATTTGCCCTGAAA; Forward TGGCATCAATTTGCCCT-
GAAACTTA. The detailed methods are provided in the supplementary materials. 

2.9. Statistical analysis 

The Pearson correlation test was used to conduct the correlation analysis. Students’ t-tests and wilcoxon rank sum tests were used 
for continuous variables. 

3. Results 

3.1. Development of necroptosis-related patterns 

Following a univariate Cox regression analysis, the HR of necroptosis-related genes showed that nine genes were hazardous while 
five were favorable (Fig. 1A). Using the NMF algorithm, BRCA patients were clustered into different patterns (Fig. 1B), with a 
cophenetic coefficient of 2 reaching the highest clustering ability. PCA of necroptosis-related patterns showed that BRCA patients were 
separated (Fig. 1C). Survival curves of necroptosis-related patterns showed that BRCA patients in pattern 1 had significantly reduced 
survival time (Fig. 1D). The expression pattern of necroptosis-related genes in necroptosis-related patterns is shown in Fig. 1E. 

3.2. Annotation of the necroptosis-related pattern 

The volcano plot in Fig. 2A illustrates DEGs of necroptosis-related patterns. All significantly upregulated DEGs were favorable 
(Fig. 2B). The GSEA of DEGs revealed that the immune and inflammatory responses were inactivated (Fig. 2C). 

3.3. Identification of KLRB1 

CoxBoost was performed for the dimension reduction of DEGs (Fig. 3A), which came to 11 potent genes. KLRB1 was the most potent 
one. Survival curves of KLRB1-related groups in TCGA showed that BRCA patients in the KLRB1-high group had significantly pro-
longed survival time (Fig. 3B). Survival curves of KLRB1-related groups in METABRIC showed that BRCA patients in the KLRB1-high 
group had significantly prolonged survival time (Fig. 3C). Survival curves of KLRB1-related groups in GSE103091 showed that BRCA 
patients in the KLRB1-high group had significantly prolonged survival time (Fig. 3D). Survival curves of KLRB1-related groups in 
GSE159956 showed that BRCA patients in the KLRB1-high group had significantly prolonged survival time (Fig. 3E). Survival curves of 
KLRB1-related groups in GSE96058 showed that BRCA patients in the KLRB1-high group had significantly prolonged survival time 
(Fig. 3F). The correlation between KLRB1 and non-apoptotic cell death showed that KLRB1 was negatively associated with pyroptosis, 
ferroptosis, autophagy, and necroptosis, while positively associated with cuproptosis and parthanatos (Fig. S1). 
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Fig. 4. Mutation characteristics of KLRB1. A. Gain and Loss of chromosomes of KLRB1-related groups. B. Mutation probabilities of mutation sites of 
KLRB1-related groups. C. G-Scores of mutation sites of KLRB1-related groups. 
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Fig. 5. Immune characteristics of KLRB1. A. The correlation between KLRB1 and immune modulators. B. The correlation between KLRB1 and 
ESTIMATE scores. C. The relative activities of immune cells of KLRB1-related groups. 
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3.4. Mutation characteristics of KLRB1 

Gain and Loss of chromosomes of KLRB1-related groups are shown in Fig. 4A. We observed the significantly gained cytobands 
(17q12, 8p11.23, and 11q13.3) and significantly lost cytobands (17q12, 1p36.13, and 11q23.2) in the high KLRB1-related group. 
Meanwhile, in the low KLRB1-related group, 17q12, 11q14.1, 8p11.23, and 11q13.3 were significantly gained and 1p36.21 was 
significantly lost. (Fig. 4B). G-Scores of mutation sites of KLRB1-related groups showed the overall alteration patterns (Fig. 4C). 

3.5. Immune characteristics of KLRB1 

KLRB1 correlated with multiple immune modulators, such as BTN3A2, VTCN1, CD276, VEGFB, and CXCL9 (Fig. 5A). KLRB1 
significantly correlated with ESTIMATE scores (Fig. 5B). The relative activities of immune cells of KLRB1-related groups showed that T 
cells, B cells, NK cells, and neutrophils were more activated in the KLRB1-high group (Fig. 5C). 

3.6. Annotation of KLRB1 

GSEA of KLRB1 showed that nine immunogenic pathways were more active in the KLRB1-high group (Fig. 6A). 

Fig. 6. Annotation of KLRB1. A. GSEA of KLRB1.  
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Fig. 7. Experimental validation on KLRB1. A. qPCR assay for optimal siRNA targets. B. CCK8 assay for KLRB1. C. EdU assay for KLRB1. D. Statistical 
analysis of EdU assay for KLRB1. E. Transwell assay for KLRB1. F. Statistical analysis of Transwell assay for KLRB1. G. Co-culture Transwell assay for 
KLRB1. H. Statistical analysis of Co-culture Transwell assay for KLRB1. 
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3.7. Experimental validation on KLRB1 

qPCR assay was conducted for optimal siRNA targets (Fig. 7A). CCK8 assay for KLRB1 showed that BRCA cells in two siRNA groups 
had enhanced proliferation ability (Fig. 7B). EdU assay for KLRB1 showed that BRCA cells in two siRNA groups had enhanced pro-
liferation ability (Fig. 7C and D). Transwell assay for KLRB1 showed that BRCA cells in two siRNA groups had enhanced migration 
ability (Fig. 7E and F). Co-culture Transwell assay for KLRB1 showed that macrophages in two siRNA groups had enhanced prolif-
eration ability (Fig. 7G and H). 

4. Discussion 

Necroptosis in breast cancer can be beneficial or detrimental [27,28]. Necroptosis can, on the one hand, aid in removing cancer 
cells and stopping tumor growth. However, it can also exacerbate inflammation and cause tissue damage, which can aid in the spread 
and metastasis of tumors. Numerous investigations have demonstrated that breast cancer may result in dysregulation of necroptosis. 
For instance, RIPK3 expression or activity may be downregulated in some breast cancer cells, hindering necroptosis induction. 
Furthermore, breast cancer necroptosis may be influenced by the tumor microenvironment [29]. Stem cell invasion, cytokine 
signaling, and hypoxia are examples of factors that can alter the necroptotic pathway in breast cancer cells. It is critical to comprehend 
necroptosis’s significance in breast cancer to create novel treatment approaches [30]. One intriguing strategy to minimize harm to 
healthy organs while selectively inducing cell death in breast cancer cells may be to target the necroptotic pathway [31]. To completely 
understand the intricate interactions between necroptosis and the advancement of breast cancer, more study is necessary. 

Machine learning has numerous advantages in cancer research. One major advantage is its ability to analyze large amounts of data 
quickly and accurately. This is crucial in cancer research, as there is a vast amount of data to be analyzed, including genetic infor-
mation, medical records, and imaging data. Machine learning algorithms can process this data and identify patterns and correlations 
that may take time to be apparent to human researchers. In our study, necroptosis-related patterns could effectively discriminate BRCA 
patients’ survival time. Besides, KLRB1, based on machine learning, CoxBoost, was found to be the most powerful gene related to 
necroptosis-related patterns. 

The KLRB1 gene codes for a protein known as KLRB1 or CD161. It is a C-type lectin-like receptor family member and a type II 
transmembrane protein. Natural killer (NK) cells, T cells, and certain subsets of dendritic cells are the main immune cells that express 
KLRB1 [32]. It participates in immunological modulation and cell activation by functioning as a receptor for the lectin-like transcript 1 
(LLT1) ligand. Numerous immune-related functions, such as controlling T cell activation, NK cell cytotoxicity, and cytokine genera-
tion, have been linked to KLRB1 [33]. It has also been linked to the onset and advancement of several illnesses, such as cancer and 
autoimmune diseases. KLRB1 expression has been seen in a variety of cancerous tumor forms, including breast cancer. Research has 
demonstrated that KLRB1 expression in NK and T cells within the tumor microenvironment may impact the anti-tumor immune 
response [34]. According to certain theories, KLRB1 may regulate the ratio of immune evasion to immunological surveillance in cancer 
[32,35]. 

In our study, KLRB1 was associated with a better survival time in BRCA patients. KLRB1 could predict the alteration status of 17q12 
(DEL17Q12), 8p11.23 (FGFR1), 11q13.3 (EPAS1), 1p36.13 (EPHA2), and 11q23.2 (DRD2). DEL17Q12, FGFR1 [36], EPAS1 [37], 
EPHA2 [38], and DRD2 [39] are all genes that have been found to be mutated in various types of cancer. The mutation status of these 
genes can have implications for cancer development, progression, and response to treatment. For example, mutations in FGFR1 have 
been associated with lung cancer and breast cancer, while mutations in EPAS1 have been linked to renal cell carcinoma. Understanding 
the specific mutations in these genes can provide valuable insights into the underlying biology of cancer and potentially guide 
personalized treatment approaches. This means that by analyzing the expression of KLRB1, we can determine whether these specific 
gene mutations are present in BRCA patients. Besides, KLRB1 was involved in a more immune-active microenvironment. Our findings 
were in accordance with the previous studies. The close connection between KLRB1 and immune modulators further proved the 
immunotherapy predictive value of KLRB1. 

It has been discovered that necroptosis affects immunotherapy [40]. Certain immunotherapeutic drugs can cause cancer cells to 
undergo necroptosis, which ultimately results in their death [40]. Eliminating cancer cells that could be resistant to other forms of cell 
death can help increase the efficacy of immunotherapy. Necroptosis can also trigger an immunological response, further strengthening 
the anti-tumor immune response by activating immune cells and producing cytokines [41]. Necroptosis’s role in immunotherapy 
underscores its potential as a therapeutic target for cancer management [42]. Our research on KLRB1 may offer fresh perspectives on 
necroptosis’s role in immunotherapy. 

Our in vitro validation laid a solid foundation for the tumor suppressive role of KLRB1. KLRB1 could inhibit the proliferation and 
migration of BRCA. In addition, KLRB1 could inhibit the recruitment of macrophages. It is possible that KLRB1 may interact with other 
molecules or signaling pathways involved in macrophage activation or function. Further research would be needed to understand how 
KLRB1 fully regulates macrophage activity [43]. 

In sum, our study developed an effective clustering system, necroptosis-related patterns. Necroptosis-related KLRB1 was a potent 
tumor suppressor and indicated an immune-active microenvironment. Our study is expected to provide some guidance on exploring 
necroptosis and cancer immunotherapy. 
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