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Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are
among the most important and abundant players of the tumor microenvironment. CAFs
as well as TAMs are known to play pivotal supportive roles in tumor growth and
progression. The number of CAF or TAM cells is mostly correlated with poor prognosis.
Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor
milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and
reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering
each other’s functions. Here, the current understanding of the distinct mechanisms about
the complex interplay between CAFs and TAMs are summarized. In addition, the
consequences of such a mutual relationship especially for tumor progression and
tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects.
CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may
prove to be potential therapeutic targets. A better understanding of the tri-directional
interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the
way for the identification of novel theranostic cues in order to better target the crucial
mechanisms of carcinogenesis.

Keywords: cancer associated fibroblasts, monocytes, tumor associated macrophages, tumor biology, tumor
immunology, tumor microenvironment, macrophage polarization, M1/M2 cells
INTRODUCTION

It is known that the tumor microenvironment consists of several different types of cells in addition
to cancer cells such as immune cells, fibroblasts as well as capillaries, basement membrane and
extracellular matrix (ECM) (1–4). The dynamic and complex stroma interactions provide the
conditions for tumor cell survival, growth and invasiveness. In addition to inflammatory cells, pro-
inflammatory cytokines secreted from those cells are among the basic components of the tumor
microenvironment (5). It is widely accepted that most neoplastic cells can only proliferate in a
suitable microenvironment. Cancer cells recruit numerous cells to the tumor microenvironment
and most of those cells become the cat’s-paw for the cancer cells; culminating in tumor survival,
growth, invasion and metastasis. Cancer associated fibroblasts (CAFs) are one of the most crucial
cells in the tumor milieu. CAFs in fact represent a heterogeneous population. The heterogeneity of
CAFs might stem from their multiple origins. Similarly, tumor associated macrophages (TAMs) can
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also support tumor progression and increased number of TAMs
is usually associated with poor outcome.

In this review; the origins, heterogeneity, activation and
tumor-promoting effects of CAFs as well as tumor-supporting
effects of TAMs are first outlined. Then, the interplay between
CAFs and TAMs as well as their reciprocal interactions are
discussed with accentuating their concerted effects on tumor
progression and immune escape.
CANCER ASSOCIATED FIBROBLASTS

Fibroblast cells, which are one the most common cells found in
connective tissues, display a branched cytoplasm that surrounds
an elliptical nucleus and they express vimentin (an intermediate
filament protein). They are able to produce various constituents
of the ECM. Fibroblasts become activated in the tumor milieu
and activated fibroblasts found specifically in the tumor
microenvironment are defined as CAFs (6). It can be proposed
that fibroblasts are among the most abundant cell types found in
tumor stroma (7, 8). In fact, desmoplasia (growth of rich stroma)
has long been known to be associated with tumors (9–11). Since
tumors were previously depicted as “wounds that never heal”
(12), CAFs resemble myofibroblasts, which are spindle shaped
activated fibroblasts (13). Although CAFs can be defined as the
“cells that surround cancer epithelia”, they can also be regarded
as those fibroblasts which are capable of promoting
tumorigenesis (8). In line with this perspective, CAF derived
factors can induce a tumor supportive microenvironment as well
as facilitating cancer cell metastasis (14). CAFs also play key roles
in sculpturing the tumor microenvironment (15, 16). Indeed,
such a role of CAFs in promoting tumor progression might also
be considered to be in agreement with the original “seed and soil”
hypothesis that was proposed in 1889 by Stephen Paget, who
suggested that the interactions between tumor cells (seed) and
their microenvironment (soil) are crucial (17, 18).

Origin of CAFs
Fibroblasts were initially described in the mid-1800s by Virchow
and Duval as the most common cell type embedded in
connective tissue in animals, demonstrating a fusiform shape
(19–22). In adult tissues, Virchow described cells that produced
collagen and were resistant to apoptosis (19, 23). Fibroblasts have
been identified in various tissue types; however, quiescent
fibroblasts do not exist in embryonic tissue (24). Thus, it
remains uncertain whether the activated fibroblasts originate
from mesenchymal stem cells (MSCs) or fibrocytes in adults
(24). In spite of the vast literature about the features and
functions of CAFs, the debate about the multiple origins for
CAFs is still ongoing (Figure 1). The origin of CAFs can even
vary depending on their location even in a single tumor and it is
likely mixed (25). Most of the CAFs probably originate from
mesoderm-derived precursor cells. During the tumorigenesis
process, residing fibroblasts in the tissue also expand in
response to injury caused by the tumor (24). In addition, CAFs
can also be recruited from the bone marrow (24). Bone marrow
Frontiers in Oncology | www.frontiersin.org 2
derived MSCs can differentiate into CAFs and express a-smooth
muscle actin (a-SMA) as well as fibroblast activation protein
(FAP) (26). Furthermore, trans-differentiation of other cells of
the tumor microenvironment may also give rise to CAF-like cells
(25, 27–29). Conversion of adipocytes into CAFs has been
reported in several studies (30–34). In addition, endothelial
cells can also give rise to CAFs through endothelial to
mesenchymal transition (EndMT) (27, 35–37). Zeisberg et al.
demonstrated that transforming growth factor-b (TGF-b) 1
might promote proliferating endothelial cells to undergo
phenotypic conversion into fibroblast-like cells (35). TGF-b is
able to induce expressions of mesenchymal markers such as
fibroblast-specific protein 1 (FSP1) and SMA; cause loss of
endothelial markers such as CD31; resulting in EndMT (35).
Another possible source of CAFs is pericytes (38–40).
Furthermore, Wikström et al. suggested that smooth muscle
cells could also give rise to CAFs (41). An interesting study by
Kurashige et al. investigated the origin of CAFs in humans after
sex-mismatched bone marrow transplantation (42). They
reported that majority of a-SMA+ CAFs in liver, mammary
gland and oral mucosa obtained 3–19 years after bone marrow
transplantation were recipient derived cells; whereas, the
peritumoral a-SMA-

fibroblast-like cells were mostly bone
marrow derived human leukocyte antigen (HLA)-DR+ myeloid
cells (42).

CAFs can originate via induction of tissue fibroblasts by
tumor derived factors; in a way similar to the mechanism seen
in myofibroblasts at wound healing (29). Tumor cell derived
TGF-b, platelet-derived growth factor (PDGF) and fibroblast
growth factor (FGF) can activate tissue fibroblasts. The
mesenchymal–mesenchymal transition (MMT) results in the
expression of CAF specific genes in fibroblasts such as a-SMA
(43–46). Toullec et al. reported that stromal derived factor 1
(SDF-1) is an effective factor for the activation of resident
fibroblasts in tumors (47). In a very recent study, Helms et al.
investigated the differentiation of pancreatic stellate cells during
tumor progression in vivo and reported that pancreatic stellate
cells could give rise to a minor subset of pancreatic ductal
adenocarcinoma CAFs (48). It was also suggested that miRNAs
have regulatory roles in the transformation of normal fibroblasts
to CAFs (49). Moreover, cells of epithelial origin are among the
possible sources of CAFs and carcinomas may also contribute to
the CAF population. Epithelial cells can obtain mesenchymal
features and give rise to fibroblasts via epithelial-mesenchymal
transition (EMT) (8, 50, 51), which can be induced by various
factors such as PDGF, TGF-b, epidermal growth factor (EGF);
resulting in the loss of E-cadherin expression (28, 52).

Finally, studies that utilize lineage tracing have also shed some
light on the origin of CAFs (53, 54). Raz et al. investigated the
origin of stromal subtypes. They reported that bone marrow
derived mesenchymal stromal cells were recruited to primary
breast tumors and lung metastases, and differentiated into CAF-
like cells (55). Moreover, the expression profile of such bone
marrow derived CAF-like cells was different from that of resident
fibroblasts (55). In another study, Null et al. utilized in vivo
genetic labelling of periostin+ subpopulations and their progeny
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in order to investigate their expansion/function during
mammary tumor growth and metastasis (56). They proposed
that highly metastatic cancer cells mobilized periostin expressing
CAFs in the tumor microenvironment. Eventually, the dearth of
specific markers for fibroblasts limits to some extent the broader
application of the lineage tracing technique. Although we
currently have a substantial understanding about the origins of
CAF, the controversy concerning the importance of these
mechanisms in terms of constituting the CAF population in a
given tumor has not been resolved yet.

Heterogeneity of CAFs
CAFs as well as activated fibroblasts are known to be very
heterogeneous, displaying different expression patterns
(Figure 2) (24, 57). Kalluri suggested that fibroblasts can be
regarded as resting mesenchymal cells with the potential to be
activated to give rise to MSCs (24). In line with this notion, it
should be kept in mind that fibroblasts represent the most
frequently used cell type as a source of induced pluripotent
stem cells (iPSCs). In addition, fibroblast cells demonstrate a
high level of plasticity and multipotency (58–61). Thus, various
origins of precursor fibroblasts may explain the reason for the
heterogeneity of fibroblasts. As discussed vide supra, activated
fibroblasts can originate from various cell types (2, 8, 14, 62–66).
Understanding the relative importance of each group of
fibroblasts originating from different cell types will be crucial
in deciphering the effects of activated fibroblasts in the disease
Frontiers in Oncology | www.frontiersin.org 3
setting. Furthermore, even the normal fibroblasts in various
anatomic locations of the body can be classified as distinct cell
types in light of differential gene expressions (57). As one can
expect, such a heterogeneity persists also in terms of CAFs.
Indeed, novel approaches such as single-cell RNA sequencing
revealed significant transcriptional heterogeneity in CAF
populations in murine and human studies (67–69).

In fact, CAFs are at present widely accepted to be a
heterogeneous population. A recent seminal Consensus
Statement on the basis of a meeting of experts in the field,
underlined the degree of specialization among these cells (70).
Sucha specializationmay explain thedistinct functional sub-groups
of CAFs identified by various markers (71). Our current
understanding of these cells include the fact that most markers do
not represent the whole CAF population. Several markers may be
utilized to define CAFs such as a-SMA, FSP1, vimentin, desmin,
FAP and platelet-derived growth factor receptor (PDGFR) (72). It
should be kept inmind that thesemarkers are not specific either for
CAFs or for fibroblasts. Markers like FSP1 and a-SMA define
diverse populations of CAFs (73). Due to the variation in terms of
expressions of thesemarkers, Sugimoto et al. describedCAFs rather
as aheterogeneous groupof cells (7).Hence, it seems clear thatmore
thorough classification of these cells as well as extensive analyses of
functions of CAF subclasses are required in order to develop
effective treatment options that target CAFs (74).

Currently, there are no markers that specifically define CAFs.
The high heterogeneity and the lack of specific markers for these
FIGURE 1 | Cellular Origins of CAFs. CAFs can originate from various cell types such as stellate cells, smooth muscle cells, endothelial cells, adipocytes, MSCs,
pericytes, epithelial cells as well as normal fibroblasts. CAF, cancer associated fibroblast; EMT, epithelial-mesenchymal transition; EndMT, endothelial to
mesenchymal transition; MSC, mesenchymal stem cell.
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cells result in poorly understanding of this population of cells in
respect to their biology and subtypes (75). Nevertheless, a-SMA is
generally utilized as a CAF marker (73); since the signature
expression profile of these cells is still vague. The critical
problem is the fact that many of the proposed markers are either
not expressed by all CAF cells or not specific solely to fibroblast
cells. Even though FSP1 was suggested as a specific marker for
fibroblasts (76), several activated fibroblasts were reported not to
express FSP1 (73). In fact, there exists a unique FSP1 expressing
CAF subpopulation in the tumor microenvironment, which is
distinct form a-SMA+ myofibroblasts (7). The role of such FSP1+

CAFs should be further investigated. Several other markers such as
vimentin and PDGFRb can detect both fibroblasts and
myofibroblasts in the tumor microenvironment. In fact, Orimo
and Weinberg proposed that CAFs include populations of both
myofibroblasts and fibroblasts present within tumor (73).
Although tumor stromal fibroblasts in general may express a-
SMA, FAP, vimentin, neuron-glial antigen-2 (NG2) chondroitin
sulfate proteoglycan, PDGFRb, prolyl 4-hydroxylase and FSP1;
Frontiers in Oncology | www.frontiersin.org 4
a-SMA and FAP can be used to discriminate myofibroblasts form
fibroblasts in the tumor tissue (Figure 3) (73).

Activation of Fibroblasts
Resting fibroblast cells in tissues are spindle shaped single cells.
In case of tissue injury, they become reversibly activated in order
to take part in tissue repair (77). Activated fibroblasts turn into
myofibroblasts; since they acquire contractile stress fibers,
express a-SMA (78). When the wound healing process is
completed, the activation of fibroblasts is reversed by either
reprogramming or removal from the granulation tissue by a
specific type of programmed cell death called nemosis (24, 79,
80). Activated fibroblasts are known to gain secretory functions
such as production of higher amounts of ECM and also
demonstrate increased proliferation (81). Such an increased
bioactivity is called as fibroblast activation (81). In situations of
prolonged injurious stimuli, such as fibrosis or cancer, they gain
further proliferative and secretory functions (Figure 4). Kalluri
suggested that such fibrosis and cancer associated fibroblasts,
FIGURE 2 | The comparison of activated fibroblast and resting fibroblast cells. Resting fibroblast cells are morphologically spindle shaped in contrast to activated
fibroblast cells which are stellate shaped. Activated fibroblast cells express a-SMA, FAP and PDGFRb. FAP, fibroblast activation protein; FSP1, fibroblast-specific
protein 1; PDGFRb, platelet-derived growth factor receptor-b; a-SMA, a-smooth muscle actin.
July 2021 | Volume 11 | Article 668349
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respectively, bear epigenetic regulations which may result in
irreversible activation (24, 82). For instance, resident
fibroblasts become activated and myofibroblasts are generated
from bone marrow derived cells, pericytes and endothelial cells
Frontiers in Oncology | www.frontiersin.org 5
in obstructive nephropathy (83). CAFs are similar to normal
activated fibroblasts in terms of expressing a-SMA, but
demonstrate higher proliferative capacity and secretory
phenotype. On the other hand, the perspective proposing that
FIGURE 3 | Commonly Used Markers for CAFs. Selected markers used to study CAF cells are demonstrated. FAP, fibroblast activation protein; FSP1, fibroblast-
specific protein 1; PDGFR, platelet-derived growth factor receptor; a-SMA, a-smooth muscle actin.
FIGURE 4 | Activation of Fibroblasts. Normal fibroblasts are spindle shaped cells. During wound healing, fibroblasts become reversibly activated and express a-SMA.
CAFs also express a-SMA, but display higher proliferative capacity and secretory phenotype. CAF, cancer associated fibroblast; a-SMA, a-smooth muscle actin.
July 2021 | Volume 11 | Article 668349
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CAFs include populations of both myofibroblasts and fibroblasts
should also be kept in mind (73).

The Role of CAFs on Tumor Progression
Several aspects of multi-step carcinogenesis have been
thoroughly investigated over the last decades. Identification of
key oncogenes and tumor suppressor genes have led to the
establishment of carcinogenesis models that incorporate gain
or loss of various gene functions. Although such information is
truly priceless, this seed-centric model does not sufficiently
underline the importance of the microenvironment, “soil”,
which the tumor cells reside in. Cancer cells cannot be
regarded as isolated entities. They actively interact with their
milieu, which contains several different types of cells including
fibroblasts (84). The highly complex tumor microenvironment
greatly affects tumor progression (85). Given the fact that Paget
proposed the “Seed and Soil” hypothesis more than a century ago
(17), this concept is in fact cannot be regarded as new.

The normal histological organization of most epithelial cells
provides a way of separation from the stroma by a basement
membrane, which contains stromal cells such as normal
fibroblasts. In fact, tumor stroma seems to exert a bimodal
influence on cancer development. It inhibits tumor growth in
normal tissue, whereas it may facilitate tumor growth and
migration during tumor progression (86). During the transition
from normal to neoplastic epithelial cells, there exists a reciprocal
and paracrine crosstalk between the epithelium and the stroma,
which results in activation of members of the stroma such as
fibroblasts and maturation of blood vessels. This, in turn,
potentiates the development of cancer (86). In line with this
reciprocal interaction, tumor progression is characterized with
further epithelial proliferation and activation of stromal cells. In
fact, CAFs may also be regarded as components of the host’s
response to injury caused by the growing tumor (24, 87). Thus,
CAFs may demonstrate anti-tumor responses during the early
stages of neoplasia (24, 88). It is likely that fibroblasts become
activated at early stages of carcinogenesis and give rise to CAFs,
which take active part in tissue remodeling (89). The anti-tumor
effects of CAFs at initial stages of neoplasia may be replaced by
pro-tumoral effects as the tumor grows. CAF derived molecules
can be implicated in cancer cell survival and proliferation under
such circumstances. LeBleu and Kalluri suggested that pro-
tumoral effects of CAFs might evolve gradually (89). In
addition to several inherent changes in tumor cells, they also
alter their microenvironment via secretory molecules such as
growth factors, interleukins, colony stimulating factors. As a
result, several mechanisms including the induction of
angiogenesis (90, 91), inflammatory cell recruitment (92),
immune modulation (93, 94) and ECM remodeling (95)
facilitate tumor progression. In addition, CAF derived factors
can promote therapy resistance and immune exclusion (96, 97).
In an autochthonous model, Feig et al. demonstrated that
immune control of pancreatic ductal adenocarcinoma growth
could be achieved via depleting FAP+ CAFs (98). This depletion
uncovered the anti-tumor effects of immunological checkpoint
antagonists [a-cytotoxic T-lymphocyte associated protein 4
Frontiers in Oncology | www.frontiersin.org 6
(CTLA-4) and a-programmed cell death 1 ligand 1 (PD-L1)].
The researchers also suggested that CXCL12 (SDF-1) might
account for the overriding immunosuppression by the FAP+

cells (98).
Activated fibroblasts may even directly facilitate metastasis

(86, 99, 100). Peña et al. reported that stanniocalcin-1 expression
by CAFs could drive metastasis of colorectal cancer (101).
Furthermore, tumors formed in the presence of stanniocalcin-1
deficient fibroblasts demonstrated fewer and smaller distant
metastases in an orthotopic mouse model of colorectal cancer
(101). In an interesting study, Pelon et al. described four CAF
subpopulations in metastatic lymph nodes from breast cancer
samples. They reported that CAF heterogeneity in axillary lymph
nodes promotes metastases in breast cancer via complementary
mechanisms (102). Studies utilizing single-cell RNA sequencing
can provide important data about CAF functions in early,
advanced and metastatic tumors (103–105). Our current
knowledge concerning the CAFs at metastatic sites is very
limited. Shani et al. recently investigated the transcriptional co-
evolution of lung fibroblasts isolated from transgenic mice at
defined stage-specific time points of metastases formation. They
suggested that fibroblasts in lung metastases were
transcriptionally plastic, showing stage-specific gene signatures
(106). Indeed, it has long been known that cancer cells can
migrate from the primary site with CAFs (107). In a mouse
model, Duda et al. demonstrated that the viability of circulating
metastatic cancer cells was higher if they were incorporated in
tumor-stroma cell fragments (107). A seminal study by Kalluri et al.
demonstrated the important role of local fibroblasts in providing
the suitable microenvironment for metastatic colonization (108).
VEGF-A and Tenascin-C produced by specific stromal cells
were found to be important for metastatic colonization (108).
In another study, Benedicto et al. reported that disruption of
CXCR4/CXCL12 axis by CXCR4 antagonist AMD3100 inhibited
the contribution of cancer and stromal cells to the metastatic
cascade in the liver (109).

Our current understanding of the effects of tumor stroma on
tumor progression and the course of metastatic events is rapidly
expanding (110, 111). Cancer cells recruit different cell types
which in turn help support tumor growth and progression (110).
CAFs exert a myriad of effects on tumor progression. They were
shown to directly facilitate tumor growth in several studies. In an
important study, Weinberg et al. demonstrated that CAFs
facilitated breast cancer progression more potently in a co-
implantation tumor xenograft model, when compared with
their normal counterparts (112). CAFs are also able to affect
cancer cell invasion as well as metastasis (113). In an interesting
study, Shapcott et al. utilized a deep learning cell identification
algorithm on colon cancer diagnostic images in TCGA. They
reported that increased fibroblast numbers were associated with
invasion, metastasis and residual tumor (114). In a study by
Gaggioli et al., fibroblast cells were shown to act as leading cells
triggering proteolytic and structural modifications of the ECM to
create tracks which carcinoma cells move within behind the
fibroblasts, in order to achieve cell invasion into ECM (115). In a
recent study, Wei et al. reported that periostin+ CAFs promoted
July 2021 | Volume 11 | Article 668349
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lymph node metastasis (116). Periostin is an ECM protein
produced by fibroblasts (117). It was previously shown to
increase the proliferation and invasiveness of tumor cells (118).
Wei et al. demonstrated that periostin+ CAFs affected lymphatic
endothelial barriers in cervical squamous cell carcinoma via
activating the integrin-FAK/Src-VE-cadherin signaling
pathway in lymphatic endothelial cells, resulting in increased
metastatic dissemination (116).

Tumor cells are well known to utilize exosomes to change the
functions of other cells in the tumor microenvironment (119). In
recent years, CAFs were also shown to take part in exosome
mediated communications (120). CAF derived vesicles are able
to promote the migration and invasion of cancer cells (121, 122).
Qin et al. demonstrated that CAF derived exosomal miR-196a
contributes to cisplatin resistance in head and neck cancer by
targeting CDKN1B and ING5 (123). In another study, Wang et
al. showed that CAF derived exosomes contain decreased miR-
3188 levels compared to NFs. They also reported that loss of
miR-3188 in exosomes contributed to malignant phenotypes of
head and neck cancer cells (124). Such findings are not limited to
head and neck cancer.

Various tumor derived factors can be responsible from the
activation of CAFs, which may in turn support tumor growth.
Cirri and Chiarugi proposed a model for the interaction of CAFs
with tumor cells, which suggests that there exists a positive and
reciprocal feedback between CAFs and cancer cells (82). Cancer
cells induce fibroblast activation via factors like TGF-b; which in
turn causes tumor survival, ECM remodeling, angiogenesis and
EMT by secreting cytokines and growth factors (125–127).
Tumor microenvironment also plays a crucial role in inducing
drug resistance (128, 129). CAFs may support cancer cells in
surviving from cancer drugs (130). Wang et al. reported that
fibroblasts play an important role in lung cancer resistance to
epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors via hepatocyte growth factor (HGF) (131). In
another study, it was found that fibroblasts might cause
resistance of cancer cells to gemcitabine (132). Nakasone et al.
demonstrated that the microenvironment could be implicated in
drug resistance by regulating vascular permeability and immune
cell infiltration (133). Such studies showing the role of CAFs in
terms of drug resistance underline the importance of therapeutic
approaches that will also incorporate strategies to target the
tumor microenvironment in order to overcome drug resistance.
Therefore, therapeutic approaches that incorporate anti-CAF
strategies have been extensively studied over the recent years
(134–136). Such strategies may involve depletion of CAFs,
blocking CAF functions, altering CAF activation status and
targeting ECM (Figure 5) (134, 137). In fact, several anti-CAF
strategies have been investigated in the clinical setting (70).

It should also be taken into consideration that organ
specificity might play a major role in terms of the effects
of CAFs on tumor progression. The stromal content of solid
tumors can considerably differ and it may constitute 60–90%
of the total tumor mass in several tumor types (e.g. breast, colon,
stomach, pancreatic cancer) (1, 12, 138, 139). Moreover,
CAFs are extremely influential in desmoplastic reactions and
Frontiers in Oncology | www.frontiersin.org 7
they may help to create a desmoplastic tumor microenvironment
(140, 141). Desmoplasia is a prominent feature of the pancreatic
ductal adenocarcinoma (142). Indeed, pancreatic ductal
adenocarcinoma is characterized by an extensive deposition of
ECM, which is probably more than any other type of malignancy
(96). Both primary tumors and metastases of pancreatic ductal
adenocarcinoma are characterized by increased levels of
desmoplasia (143). Desmoplasia can be regarded to promote
tumor invasion in pancreas, breast, lung, esophagus, stomach
and prostate (144–150). On the other hand, the effect of
desmoplasia in colorectal carcinoma progression is not very
clear (151). Nonetheless, desmoplastic reaction seems to be an
independent prognostic factor also for colorectal cancer
(152–154). Maturity of CAFs and desmoplastic reactions were
reported to be associated with cancer invasion in patients with
colorectal cancer (155). Given the differences in various tissues
concerning the presence and/or extent of desmoplasia, CAFs
may also demonstrate tissue/organ and tumor type specific
alterations. Indeed, it is very difficult to determine markers in
order to label CAF subpopulations that take part in tumor
progression in different organs (88), and to cap it off, it is
currently unclear whether specific CAF populations are
preserved across tissues (70). CAF subpopulations may also
demonstrate differences in early or late stage primary tumors
(156). Friedman et al. reported that CAF repertoire changes over
time in breast cancer progression (157). As one might expect, it is
not readily possible to investigate the alterations in CAF
populations in human tissue samples during disease progression,
since longitudinal analyses of the same lesion is verydifficult. Future
studies in murine models with temporal resolution may provide
priceless information concerning the alterations in CAFs during
tumor progression. Furthermore, there is very little information
concerning the CAF composition in metastasis sites. Novel studies
suggest the presence of resembling CAF populations in different
malignancy types (96). Ikenaga et al. had previously reported that
CD10+ pancreatic stellate cells enhanced the progression of
pancreatic cancer cells (158). In a more recent study, CD10 and
GPR77 were also reported to define a CAF population correlated
with poor survival and chemoresistance in multiple cohorts of
breast and lung cancer patients (159). Numerous studies showed
that different types of malignancies contain both myofibroblasts
and non-myofibroblasts (38, 160–162). In contrast, several other
studies have demonstrated the existence of distinct CAF
populations in various cancer types (96). The kinetics of CAF
functions can vary in different malignancy types, since resident
fibroblasts display different organ specific transcriptomic profiles
(163). Rinn et al. investigated genomewide gene expression profiles
of primary fibroblasts from distinct anatomical sites and
demonstrated that differences in gene expression programs were
related with anatomic divisions (i.e. anterior-posterior, proximal-
distal, dermal-nondermal) (163). In fact, even different tumor
subtypes may contain diverse fibroblast populations. Tchou et al.
reported that gene expression in human breast CAFs significantly
varied between breast cancer subtypes (ER+, Her2+ and triple-
negative breast cancer) (164). Different subpopulations of CAFs
maydemonstrate distinct functions evenwithin a tumor type (165).
July 2021 | Volume 11 | Article 668349
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In light of thesefindings, investigationofdifferences and similarities
between CAF subpopulations in different malignancy types may
pave the way for innovative strategies to precisely target CAFs.
TUMOR ASSOCIATED MACROPHAGES

Macrophages were first discovered by Ilya Mechnikov late in the
19th century (166). Mechnikov, who was awarded the 1908
Nobel Prize in Physiology or Medicine jointly with Paul
Ehrlich in recognition of their work on immunity (167),
championed the theory of phagocytes and described mobile
cells battling invading pathogens (168). Indeed, macrophages
are among the most important and abundant players of the
tumor microenvironment. They are capable of affecting tumor
progression, angiogenesis and therapy resistance (169–171).
TAMs display a wide diversity and plasticity. TAMs were
originally considered to originate from circulating monocyte
precursors released from the bone marrow (172). It has also
been demonstrated that many tissues contain embryonic derived
populations of resident macrophages (173, 174). The exact
causes of the diversity of TAMs are not clear; however,
plasticity of TAMs and/or independent specific lineages
generating multiple populations might account for such a
heterogeneity (175). Indeed, deciphering the origin of TAMs
might improve cancer immunotherapy strategies (176).

TAMs can demonstrate supportive and inhibitory effects on
cancer, depending on several factors such as stage and
microbiota (177). TAMs may also function as a barrier for
Frontiers in Oncology | www.frontiersin.org 8
anti-tumor immunity (178). More than 70% of human breast
cancers express colony stimulating factor 1 (CSF-1), which is a
key regulator of mononuclear phagocytic lineage; and expression
of CSF-1 is correlated with poor prognosis (179). Macrophages
are known to be highly plastic cells. They can be classically or
alternatively activated. Classically activated anti-tumor
macrophages (M1) and alternatively activated tumor
promoting macrophages (M2) reflect the nomenclature of
polarized immune responses (180, 181). In a seminal study,
Hill et al. suggested that M1 or M2 dominant macrophage
responses might influence the types of immune responses
(182). In fact, Mantovani et al. suggested that M1 and M2
macrophages represent the extremes of a continuum of
activation states. Therefore, the adaptability of macrophages in
response to various conditions goes beyond such a
dichotomy (181).

Polarization of Macrophages
Monocytes from blood differentiate to M1 or M2 subtype
macrophages, depending on their interactions with other cells
present in tissues (Figures 6 and 7). Such differentiation is
dependent on the environmental stimuli these cells are subject
to (183–190). The first type of antimicrobial macrophage
activation became known as M1 macrophages (191). In an
important study in 1992, Stein et al. reported that expression
of macrophage mannose receptor was inhibited by interferon
gamma (IFNg); whereas, recombinant murine IL-4 significantly
enhanced macrophage mannose receptor surface expression and
activity (192). IL-4 caused inflammatory macrophages to show
FIGURE 5 | Therapeutic Strategies to Target CAFs in Tumors. Schematic illustrations of the CAF-targeting approaches including depletion of CAFs ①, blocking CAF
functions ②, altering CAF activation status ③ and targeting ECM ④ are shown. CAF, cancer associated fibroblast; ECM, extracellular matrix; NF, normal fibroblast.
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an alternative activation phenotype, unlike that induced by IFNg
(192). Such findings paved the way for the concept of
alternatively activated macrophages (M2). High IFNg levels
result in M1 differentiation, whereas high levels of interleukin
(IL)-4 and IL-13 polarize macrophages into M2 subtype (180).
M1 macrophages produce several pro-inflammatory mediators
such as tumor necrosis factor (TNF)-a, IL-1, IL-6; as well as
microbicidal and tumoricidal molecules such as reactive
nitrogen/oxygen intermediates (191). On the contrary, M2
macrophages express molecules which can be involved in
parasite infestation, tissue remodeling and tumor progression
such as resistin-like-a, Arginase 1, chitinase-like molecules,
IL-10 and mannose receptor C-type 1 (Mrc1) (193). Human
M1 macrophages show high expressions of CD14, CD16, CD64,
CD86, and HLA-DRa. On the other hand, M2 macrophages
express CD163 and CD206 (also known as Mrc1) (183, 194–
196). Nevertheless, recent studies suggest that classification of
macrophages is not dichotomous and different macrophage
subtypes might demonstrate shared features (197). Indeed,
macrophages can constitute nearly half of the tumor mass in
breast cancer. In addition, it has been shown that there is a
Frontiers in Oncology | www.frontiersin.org 9
correlation between the number of TAMs and poor prognosis
(198, 199).

The Role of TAMs on Tumor Progression
Macrophages may assume roles in all stages of tumor
progression (Figure 8) (200, 201). For instance, macrophages
are able to induce angiogenesis and help tumor invasion in
primary tumor. Subsequently, they may alter the pre-metastatic
site, facilitate the dissemination and growth of tumor cells (202).
Macrophages mostly favor tumor growth and are associated with
poor outcome in various cancers (203). TAMs with an M2
phenotype can promote tumor metastasis and get involved in
immune suppression as well as causing failure of radiation or
checkpoint inhibitor therapy (204). M2-like TAMs that infiltrate
metastatic sites can limit immune responses against high-grade
serous carcinomas (205). Metastasis associated macrophages
(MAMs) include bone marrow derived macrophages as well as
tissue resident macrophages. MAMs can promote metastasis in
secondary site (206). Thus, strategies that aim to target
macrophages for cancer treatment has been explored over the
last decades (Figure 9) (203, 207–210). Current strategies to
FIGURE 6 | Polarization of Macrophages. Monocytes from blood differentiate into functionally distinct populations. M1 macrophages are induced by various stimuli
such as IFNg. They demonstrate pro-inflammatory and microbicidal effects. M2 macrophages are induced by stimuli such as IL-4, IL-13 and they show anti-
inflammatory effects. M2 macrophages may be further divided into subpopulations such as M2a, M2b and M2c. IFNg, interferon gamma; IL, interleukin; LPS,
lipopolysaccharide.
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FIGURE 7 | Commonly Used Markers for Macrophages. Selected markers used to distinguish macrophage phenotypes are demonstrated. HLA, human leukocyte antigen.
FIGURE 8 | Role of TAMs on Tumor Progression. Selected effects of TAMs in tumorigenesis are demonstrated. NK, natural killer; TAM, tumor associated macrophage.
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target TAMs for anti-cancer therapy usually involve inhibition/
depletion of TAMs by various approaches or reprogramming
them to assume an anti-tumor role instead of showing pro-
tumoral effects (211–213). M2 macrophages secrete TGF-b,
vascular endothelial growth factor (VEGF), IL-6, IL-10 as well
as chemokines which facilitate angiogenesis and ECM
remodeling. As a result, they can promote tumor invasion and
metastasis (214). In addition, macrophages are very effective in
creating an immunosuppressive microenvironment. For
instance, TAMs may limit the activity of tumor infiltrating
lymphocytes (203). Macrophages can stimulate regulatory T
cell (Treg) development and expansion as well as disrupting
natural killer (NK) and T cell functions (200, 210). TAMs may
also overexpress inhibitory ligands for T cells such as PD-L1 and
programmed cell death 1 ligand 2 (PD-L2) (210). High
expression of PD‐L1 by TAMs was reported in hepatocellular
carcinoma, glioblastoma and pancreatic cancer (215–218). PD-
L1 expressed by antigen-presenting cells (e.g. macrophages) is
widely regarded as an important regulatory molecule for
T cells (219).

Indeed, TAMs constitute a major portion of the tumor
microenvironment. Clinical studies suggest that cytokines in
the tumor milieu influence TAMs, which are inherently plastic
cells, to assume an immunosuppressive role (220). It is known
that TAMs are usually similar to M2 macrophages (221).
Tumor-infiltrating M1 polarized macrophages are usually
identified by an IL-12hi IL-10lo phenotype. During tumor
Frontiers in Oncology | www.frontiersin.org 11
development, these macrophages can enhance anti-tumor
immune reactions. However, TAMs generally lean towards an
M2-like phenotype, which is characterized by an IL-12lo IL-10hi

phenotype, at later stages of tumor. Such macrophages
demonstrate decreased tumoricidal activity (222). In an
interesting study, Pinto et al. profiled macrophages in 150
colorectal cancer cases by immunohistochemistry; utilizing
CD68 [as a marker of macrophage lineage (CD68 is one of
good markers of TAMs (223))], CD80 (as a pro-inflammatory
macrophage marker) and CD163 (as an anti-inflammatory
macrophage marker). They found that CD163+ macrophages
were predominantly found at the tumor invasive front, while
CD80+ ones were almost exclusively located in the adjacent
normal mucosa (224). Such findings suggested a chiefly anti-
inflammatory polarization of TAMs. Given these findings, it is
crucial to identify molecules that affect macrophage plasticity in
the tumor milieu in order to design macrophage-oriented
treatment and diagnosis strategies (225). Although FDA
approved cancer immunotherapies primarily target the
adaptive immunity, the importance of innate immunity in
terms of anti-tumor strategies started to attract a great deal of
attention (226). Various approaches have been explored over
the recent years in order to target TAMs (227, 228). In line with
such strategies, macrophages which express a chimeric antigen
receptor (CAR) may prove to be useful in order to target solid
tumors (229). In a recent inspiring study, Klichinsky et al.
reported transducing human macrophages with an adenovirus
FIGURE 9 | Therapeutic Strategies to Target TAMs in Tumors. Schematic illustrations of the TAM-targeting approaches including inhibition of monocyte/
macrophage recruitment (e.g. CXCR4, CCR2 inhibitors) ①, inhibition/elimination of macrophages in the tumor microenvironment (e.g. bisphosphonates) ② and
reprogramming of TAMs into immune supportive macrophages (e.g. TLR7/8 agonist) ③ are demonstrated. TAM, tumor associated macrophage; TLR, toll-like receptor.
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vector carrying a CAR (230). They showed that a single infusion
of human CAR macrophages decreased tumor burden and
prolonged overall survival in two solid tumor xenograft
mouse models (230). In another exciting study, Mitragotri et
al. recently reported an engineered particle (called as
“backpack”) which can adhere to the surfaces of macrophage
and regulate cellular phenotypes in vivo. The “backpacks”
released cytokines to guide the polarization of macrophages
toward anti-tumor phenotypes, slowed tumor growth and
improved overall survival in a murine breast cancer model
(231). These findings will most likely open new avenues for
next-generation CAR applications and adoptive cell transfer
strategies in cancer therapy.
THE INTERPLAY BETWEEN CAFs
AND TAMs

In addition to playing important tumor-promoting roles in
tumor initiation and progression, CAFs were also shown to
sculpt the tumor microenvironment (93, 232). It has been
known for some time that CAFs interact with tumor cells by
cell-cell contact or via release of soluble factors. In addition to
such interactions, CAFs also take active part in the crosstalk
with other members of the tumor microenvironment. They
secrete a plethora of soluble mediators (e.g. cytokines,
chemokines); which affect various types of leukocytes
including macrophages, thereby taking part in immune
regulation (70, 197, 233). Moreover, various recent studies
have demonstrated that CAFs function as regulators of
immune cell recruitment and function (197).

In line with these findings, the effects of stromal fibroblasts
on monocytes/macrophages have been investigated by several
groups. CAFs may increase monocyte recruitment and
differentiation into TAMs (234). CAFs can also promote skin
tumor development by maintaining monocyte chemotactic
protein-1 (MCP-1) mediated macrophage infiltration and
chronic inflammation (235). Podoplanin+ CAFs were recently
reported to be associated with CD204+ TAM infiltration in lung
squamous cell carcinoma (236). Moreover, podoplanin+ CAFs
were also found to be associated with monocyte recruitment and
differentiation into CD204+ TAMs in lung adenocarcinoma
(237). Yavuz et al. demonstrated that CAFs isolated from
human invas ive breast cancer could fac i l i ta te the
differentiation of monocytes into M2-like pro-tumoral
macrophages, in contrast to normal breast-derived fibroblasts.
Such a differentiation was evident in terms of function as well as
phenotypic features (15). Furthermore, these CAFs were
demonstrated to be puissant in terms of recruiting monocytes.
MCP-1 and SDF-1 were shown to be pivotal monocyte
chemotactic cytokines which were secreted from stromal cells
(15). Human CAFs and M2 macrophages were demonstrated to
cooperate during prostate cancer progression (238). Similarly,
CAFs and TAMs represent important partakers of tumorigenic
processes also in head and neck cancer (239). The interplay
between CAFs and TAMs seems to be very complex, as these
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two groups of cells are also able to alter each other’s
functions (23).

Reciprocal Interactions
It has long been known that tumor cells interact with immune
cells in the tumor milieu. On the other hand, relatively recent
studies have discovered the key effects of the communication
of immune cells and stromal cel ls (e.g. CAFs) on
tumorigenesis. Stromal cells are able to recruit immune cells
in addition to altering their functions. A specific example of
such an influence exists in terms of CAFs, which are able
to affect monocyte recruitment and polarization. Indeed,
CAFs and TAMs are the main components of stromal cells
(240–243). Tumor associated macrophages display high
level of plasticity. Their activation status in the tumor
microenvironment rather has an ephemeral nature (244).
There exists a close relation between TAMs and CAFs, as
TAMs constitute the most abundant innate immune cell type
in the vicinity of CAF populated areas (134). Macrophage
derived factors may promote the activation of resident hepatic
stellate cells into myofibroblasts, resulting in a fibrotic
environment in liver metastases of pancreatic ductal
adenocarcinoma (245). Recently, Tokuda et al. showed the
significance of osteopontin mediated cancer-TAM-CAF
interactions in hepatocellular carcinoma (246).

M2 type TAMs can activate CAFs and thus help tumor
progression (247). In addition, M2 macrophages can influence
the MMT of fibroblasts, resulting in enhanced reactivity (238).
Reciprocally, CAFs are also able to change M1 macrophages in
the tumor microenvironment into M2-like macrophages (248).
In neuroblastoma, bone marrow-derived MSCs (which become
activated into CAFs at tumor site) were found to increase the
invasiveness of macrophages; which in turn, induced the
proliferation and invasion of CAFs (249). In addition to
metabolically supporting the tumor growth, reciprocal
interactions of CAFs with M2 macrophages result in a
significant pro-tumoral effect (250). Stairs et al. reported that
tumor cells recruited immature myeloid cells, which
demonstrated immunosuppressive properties and facilitated
desmoplasia by activating fibroblasts (251). It should be borne
in mind that the reciprocal interactions of CAFs and TAMs in
the tumor milieu have not been fully discovered, despite the fact
that these two cell types are critical constituents of the tumor
microenvironment. Thus, novel studies are required to decipher
bilateral interactions between CAFs and TAMs as well as to
understand the effects of such interactions on diverse functions
of both CAFs and TAMs.

In addition to providing mechanistic insights, CAFs and
CD163+ macrophages (M2) may also prove to be potential
prognostic predictors; since expressions of CAF and M2
macrophage markers are correlated with poor prognosis in
colorectal cancer and oral squamous cell carcinoma (252, 253).
Given the effects of macrophage polarization in terms of anti-
tumor immune responses, one can easily foresee that such a
trans-differentiation of macrophages from anti-tumoral M1-like
to pro-tumoral M2-like macrophages is a pivotal incident in the
constitution of the tumor permissive microenvironment.
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Recruitment and Polarization of TAMs
by CAFs
It has been demonstrated that most of the macrophages located
in tissues originated from yolk sac precursor cells (254, 255).
Hence, the notion about adult tissue macrophages being only
derived from bone marrow precursor cells has become obsolete.
That being said, it should be kept in mind that macrophages
found in pathogen associated inflammation chiefly originate
from bone marrow monocytes (256). When TAM sub-
populations were investigated, most of them were recently
demonstrated to emerge from the Ly6C+ population of
circulating mouse monocytes in grafted tumors, primary
mouse mammary tumors and in lung metastases (176, 257, 258).

CAFs have been demonstrated to recruit macrophages to the
tumor microenvironment in various studies with many mouse
models, e.g. breast, prostate and squamous cell carcinomas
(Figure 10) (259–261). CAFs release high amounts of SDF-1,
which was demonstrated to be implicated in monocyte
recruitment (15). In addition to SDF-1, CAFs are also able to
secrete CXCL14, which may promote monocyte recruitment and
polarization into M2 macrophages in prostate cancer together
with SDF-1 (238, 260). Such findings, in fact, accentuate the
pivotal role of SDF-1/CXCR4 axis for the progression of various
cancers (262). It is known that MCP-1 can facilitate the
infiltration of blood monocytes into CAF spheroids and
Ksiazkiewicz et al. demonstrated that MCP-1 is important for
the recruitment of blood monocytes to tumor fibroblastic areas
(263). Thus, MCP-1 as well as SDF-1 plays a key role in CAF-
induced monocyte chemotaxis (Figure 11) (15). CAF derived
Frontiers in Oncology | www.frontiersin.org 13
CXCL16 is also able to attract monocytes to promote stroma
activation in triple negative breast cancer (264). Mace et al.
demonstrated that pancreatic stellate cells, which represent a
subset of pancreatic CAFs, produce macrophage colony-
stimulating factor (M-CSF), IL-6, VEGF, SDF-1 and MCP-1;
which may promote monocyte recruitment and macrophage
differentiation as well as potentially facilitating M2 polarization
(265, 266). Adenosine generated by CAFs in the tumor
microenvironment can induce the expansion and/or
differentiation of M2-like macrophages (267–270). Hegab et al.
also reported that CAFs increased the conversion of TAMs to the
M2 phenotype in a mouse model of lung adenocarcinoma (271).
CAF derived IL-6, IL-8, TGF-b, and IL-10 also promote
monocyte recruitment and differentiat ion into M2
macrophages (272, 273). In the human colorectal cancer
microenvironment, CAF derived IL-6 and IL-8 were suggested
to promote the differentiation of tumor infiltrating myeloid cells
into M2 macrophages (274). In an interesting study, Nakamura
et al. investigated the significance of expression of carbonic
anhydrase IX, which is a marker of hypoxia, by CAFs. They
reported that the numbers of CD204+ TAMs and podoplanin+

CAFs were significantly higher in the carbonic anhydrase IX+

CAFs group than in the carbonic anhydrase IX- CAFs
group (275).

Higashino et al. reported that human FAP+ mesenchymal
stem cells (CAF-like cells) helped the growth and migration of
peripheral blood mononuclear cell derived macrophage-like cells
(276). CAF-like cells promoted M2 polarization of macrophage-
like cells. The CAF-like cells secreted CCL2, IL-6, CXCL8; which
FIGURE 10 | Effects of CAFs on Macrophages. Various chemokines and cytokines secreted by CAFs may promote macrophage recruitment and M2 polarization.
CAF, cancer associated fibroblast; Chi3L1, chitinase 3-like 1.
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facilitated the migration of macrophage-like cells. Such effects
were found to be associated with FAP expression, since FAP
silencing decreased cytokine secretion in CAF-like cells (276).
Yang et al. reported that FAP induced inflammatory CAFs by
activating STAT3 via the uPAR–FAK–c-Src–JAK2 pathway.
FAP+CAFs were the main source of CCL2, which facilitated
the recruitment of myeloid-derived suppressor cells (MDSCs) to
Frontiers in Oncology | www.frontiersin.org 14
the tumor and promoted immunosuppression in a CCR2
dependent manner (277). Indeed, CAFs have a significant
effect on polymorphonuclear MDSC infiltration of tumors
(278). In another study, Borriello et al. reported isolating a
population of aFAP- and FSP-1–expressing CAFs that share
functional/phenotypic features with bone marrow derived
mesenchymal stromal cells from primary human neuroblastoma
FIGURE 11 | The schematic demonstration of potential tri-directional interactions of cancer cells, CAFs and monocytes. Cancer cells can take part in the activation
of CAFs via several factors. CAFs may in turn recruit monocytes via MCP-1 and SDF-1. In addition, CAFs promote a pro-tumoral phenotype in monocytes/
macrophages, which enhance cancer cell proliferation and motility as well as suppressing immune responses. CAF, cancer associated fibroblast; MCP-1, monocyte
chemotactic protein-1; NF, normal fibroblast; SDF-1, stromal derived factor 1.
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tumors (279). In addition, they reported that the presence of
aFAP- and FSP-1–positive cells in human neuroblastoma tumor
stroma correlated with that of M2 TAMs (279). Similarly, CAFs
were also found to be associated with infiltration of CD163+

macrophages in triple negative breast cancer and nasopharyngeal
carcinoma patients (280, 281). Such studies might provide
evidence for the association between CAFs and TAMs as well
as their cooperation in generating a pro-tumorigenic milieu.
Experiments with 3-D cultures of human breast cancer cells
and fibroblasts revealed the CCL2-mediated recruitment of
monocytes by CAFs (263). CAF derived CXCL12 and CXCL14
were also implicated in macrophage recruitment and M2
polarization (134). In hepatocellular carcinoma, human CAFs
can attract monocytes by the SDF-1a/CXCR4 pathway and
facilitate their differentiation into MDSCs via IL-6-mediated
STAT3 activation (282). Zhang et al. reported that human
CAFs could promote M2 polarization in pancreatic ductal
adenocarcinoma partly via M-CSF (283).

In addition to their direct effects on macrophages, CAFs may
also indirectly affect macrophage polarization. Pancreatic stellate
cells (CAF-like cells) in pancreatic ductal adenocarcinoma were
shown to stimulate mast cell activation (284). Mast cells, in turn,
produce IL-13 which promotes M2 macrophage polarization
(285). Furthermore, human CAF mediated ECM remodeling can
increase the infiltration of TAMs, which may show pro-
tumorigenic effects (286). Moreover, CAF derived ECM
components may modulate macrophage polarization to M2-
like (287). Kobayashi et al. demonstrated the impact of stroma
derived hyaluronan mediated ECM remodeling on macrophage
mobilization. Hyaluronan served as a signal for the recruitment
of TAMs and its deficiency impaired macrophage recruitment
(288). An interesting study investigated whether radiotherapy
influences CAF mediated immunoregulatory effects on
macrophages . Ionizing radiat ion did not al ter the
immunoregulatory effects of CAFs on macrophages (289). In
line with this finding, Gorchs et al. reported that the strong
immunosuppressive effect of CAFs on activated T cells remained
unchanged after radiotherapy (290). On the other hand,
radiotherapy was proposed to increase paracrine signaling
between fibroblasts and tumor cells via insulin-like growth
factor (IGF) and TGF-b pathways (291, 292). Chemotherapy
can also modulate the tumor microenvironment (293). CAF
derived growth arrest-specific protein 6, which is a ligand of
TAM receptors, was reported to increase during cisplatin based
chemotherapy (294). Peiris-Pagès et al. reported that tumor cells
in contact with fibroblasts could elicit interferon mediated
signaling in response to chemotherapy (295). Indeed,
chemotherapy may promote the recruitment of monocytic cells
and macrophages to tumors in vivo (133, 295, 296). In light of
these findings, the trilateral crosstalk among TAMs, CAFs and
tumor cells merits further investigation in patients treated with
radiotherapy or chemotherapy.

Cheng et al. have shown that CAFs may recruit neutrophils
and induce PD-L1+ neutrophils through the IL-6 - STAT3
pathway which facilitates immune suppression in hepatocellular
carcinoma (297). STAT3 is known to affect tumor growth and
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invasion and the JAK/STAT3 pathway is activated in various
cancer types (298–300). CAFs were recently shown to be able
to induce the differentiation of recruited monocytes into
programmed cell death protein 1 (PD-1) expressing M2-like
macrophages, instead of M1 macrophages; in addition to
recruiting those monocytes (15). Pathological evaluations of
human mammary cancer tissues revealed that the number of
CAFs is positively correlated with the numbers of both CD163+

and CD206+ macrophages. CD206 was demonstrated to be more
correlated with M2a-like macrophages, whereas CD163 is noted
on the surface of M2c-like macrophages (301, 302). Furthermore,
M2a macrophages are known to be related with TH2 type
immune responses and elimination of parasites. On the other
hand, M2c macrophages rather take part in immune regulation
and tissue remodeling (303). In light of the current literature,
CAFs appear to be inducing the polarization of M1 macrophages
more into the M2c phenotype than the M2a. Given the fact that
M2c phenotype is associated with immune suppression, such a
mechanism would best serve the interests of the tumor instead of
anti-tumor immune responses. Moreover, the tissue remodeling
roles of M2c macrophages also seem to be cut out for helping
tumor progression since tumors are known as wounds which do
not heal and; therefore, constitute a chronic wound healing or
tissue remodeling process instead of an allergic response or a
reaction for elimination of parasites.

In addition to tumor cell and T lymphocyte derived IL-4
(304), CSF-1 and granulocyte-macrophage colony-stimulating
factor (GM-CSF), which are secreted from tumor cells (179, 305),
were demonstrated to promote pro-tumoral differentiation of
macrophages. In congruence with those studies, CAFs are also
able to take active part in this re-polarization process. It was
reported that the number of TAMs in breast carcinoma is
significantly correlated with the presence of CAFs (15). A
recent study showed that CAF derived Chitinase 3-like 1,
which is implicated in inflammatory disorders, facilitated
tumor growth in breast cancer. This effect was also associated
with high infiltration of M2 polarized macrophages and TH2 type
immune responses (261). Enhanced infiltration of breast tumors
with TAMs may be caused by the presence of high number of
CAFs in such tumor tissues; as CAFs are able to recruit
monocytes and promote M2 macrophage polarization.

The Effects on Tumor Progression
Myriad of studies reported that CAFs and TAMs interact to
promote cancer progression (306). In addition, various studies
demonstrated that TAMs facilitate breast cancer invasion and
metastasis via secreting numerous cytokines (307–309). 3-D
cultures of human lung adenocarcinoma cells, human lung
fibroblast cells and macrophages showed that macrophages and
fibroblast cells can facilitate invasion and metastasis (310). CAFs
were shown to play key roles in inducing the pro-tumoral
phenotype of TAMs (248). Clinicopathological evaluations of
oral squamous cell carcinoma tissue samples revealed that both
high grade (0: negative, 1: scanty, 2: focal, 3: abundant) of CAFs
and high number of CD68+ macrophages were correlated with
the TNM stage. In addition, high numbers of CD68+ or CD163+
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macrophages were correlated with Ki-67 labeling index.
Furthermore, the number of CD68+ macrophages influenced
progression free survival. Last but not least, the number of M2-
polarized macrophages was associated with vascular invasion
(248). Miyake et al. demonstrated that high expression of CXCL1
in urothelial cancer of the bladder was associated with increased
recruitment of TAMs/CAFs and poor prognosis (311).

The interplay between CAFs and M2 macrophages,
collectively promotes cancer cell motility, tumor invasion and
metastasis. This collaboration may also activate endothelial cells
and result in angiogenesis (238). Furthermore, collaboration of
MAMs and CAFs increases the metastatic potential of arriving
tumor cells in the secondary site (206). In addition to affecting
the behavior of tumor cells and modifying the tumor
microenvironment at primary/metastatic sites (125, 312, 313),
CAFs can escort tumor cells in the bloodstream and help the
tumor cells survive during the migration to metastatic sites (107).
Podoplanin+ S100A4+ PDGF-Ra+

fibroblasts were shown to be
present in bone metastasis sites of human breast cancer patients,
while PDGFRb+ fibroblasts were present in lung metastasis sites
(314). Similarly, macrophages were shown to play an important
role in tumor recurrence and metastatic outgrowth in murine
models (206, 315–319). During the metastatic cascade, CAFs and
M2 macrophages can collaborate in altering the functions of
other stromal cells as well as the tumor cells (250, 320). Nielsen et al.
reported that early recruitment of granulin secreting inflammatory
monocytes to the liver is very important for pancreatic ductal
adenocarcinoma liver metastasis. Granulin secretion by MAMs
activated resident hepatic stellate cells into myofibroblasts that
produced periostin, causing a fibrotic milieu that supports
metastatic tumor growth (245).

The existence of a crosstalk among colon cancer derived
exosomes, fibroblast-derived exosomes and macrophage
phenotypes in colon cancer metastasis was also proposed
(321). In addition, cancer derived exosomes were also shown
to be taken up by liver resident Kupffer cells in a mouse model of
pancreatic cancer metastasis. The exosomes bore macrophage
inhibitory factor that promoted TGF-b generation from Kupffer
cells, which activated resident hepatic stellate cells into
myofibroblasts. In turn, myofibroblasts prepared the liver for
metastatic disseminated tumor cells via production offibronectin
to recruit monocytes/macrophages (322–325). In addition, it was
also reported that the primary tumor promoted fibroblast
secretion of fibronectin, which took part in the recruitment of
bone marrow derived macrophages to the secondary site in liver
and lung metastases (322, 324, 326, 327). In a recent study, CAFs
and TAMs were reported to interact in generating a perlecan (a
heparan sulfate proteoglycan that stores and stabilizes growth
factors implicated in regulation of prostate cancer cell growth)
rich desmoplastic stroma at sites of prostate cancer bone
metastasis (328). Indeed, the complex trilateral crosstalk
among cancer cells, CAFs and M2 macrophages may activate
endothelial cells and their bone marrow derived precursors to
induce de novo angiogenesis and promote metastatic spread of
tumor cells (238). CAFs can actively recruit endothelial
progenitor cells to the tumor site. Endothelial progenitor cells
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synergize with CAFs to promote epigenetic modifications of
tumor cells via mesenchymal-to-amoeboid transition, which
provides an advantage to metastatic cells (329). In fact, Duda
et al. demonstrated that metastatic cells can bring stromal
components (e.g. activated fibroblasts) from the primary site to
the lungs (107). The viability of circulating metastatic cancer cells
was found to be higher if they were incorporated in heterotypic
tumor stroma cell fragments. In addition, those stromal cells
could provide a growth advantage to the metastatic tumor cells.
Indeed, circulating tumor cells (CTCs) do not act independently
and they are assisted by stromal and immune cells, which alter
their metastatic potential. CAFs, which were reported to be
associated with CTCs in heterotypic CTC clusters, seem to
increase the metastatic efficiency (330). Interestingly, CAFs
were found to be present in the brain metastases from lung
carcinoma and other carcinomas, in contrast to primary brain
tumors or normal brain tissue (107). Such findings may prove
the direct involvement of primary tumor stroma in metastasis.

M2 macrophages which were induced by CAFs were
demonstrated to promote pancreatic tumor cell growth,
migration and invasion (283). In another study, CCR2-dependent
recruitment of monocytes/macrophages by tumor resident
mesenchymal stromal cells was reported to facilitate tumor
growth (331). A recent study showed that endosialin-positive
CAFs recruited macrophages and promoted the M2 polarization;
thus, promoting the progression of hepatocellular cancer (332).
Hashimoto et al. suggested that TAMs and CAFs collectively
faci l i tate the development of neuroblastoma (249).
Myofibroblasts are known to secrete VEGF, which induces the
accumulation of immune cells such as macrophages at sites of
fibrosis (333). In turn, VEGF mediated activation of macrophages
promotes skin cancer carcinogenesis, angiogenesis and
invasion (334).

CAF-educated monocytes were demonstrated to enhance
breast cancer cell invasion; to significantly increase the
expressions of EMT-related genes and vimentin protein; while
decreasing the expression of E-cadherin protein; in contrast to
their normal counterparts (15). In addition, CAF-educated
monocytes increased the motility of breast cancer cells. Linde
et al. recently reported that CD206+ macrophages downregulated
E-cadherin junctions in breast cancer cells (335), which in turn
may promote EMT. In light of these findings, CAFs seem to
facilitate EMT, invasion and metastasis (100); through
promoting M2-polarized macrophages. It was also reported
that CAF-educated monocytes increased breast cancer cell
proliferation in vitro (15). Furthermore, the infiltration of
CD163+ TAMs seemed to be associated with specific molecular
subtypes of breast cancer; since their numbers were found to be
the highest in triple negative, and the lowest in ER+PR+ breast
cancer samples. Recent findings suggest that the tumor stroma
also participates in the tumor resistance to therapy (23, 336).
Ireland et al. demonstrated that TAMs and CAFs are major
sources of IGF-1 and IGF-2 in breast and pancreatic tumors; and
IGF signaling is implicated in the breast and pancreatic
tumor resistance to paclitaxel and gemcitabine, respectively
(337, 338).
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The Effects on Immune Evasion
CAFs may be implicated in the establishment of an
immunosuppressive milieu via inducing immunosuppressive
macrophages. Takahashi et al. analyzed the effects of CAFs on
functional polarization of TAMs in oral squamous cell carcinoma
and found that infiltrationofCAFswasassociatedwith thenumbers
of CD68+ CD163+ macrophages. In addition, they demonstrated
that CAFs promoted the accumulation of pro-tumoral
macrophages, resulting in an immunosuppressive milieu (248).
CAF-supernatant-treated CD14+ cells (CAF-educated cells)
resembled pro-tumoral macrophages and these CAF-educated
cells significantly suppressed both CD4+ and CD8+ T cell
proliferations. Moreover, the suppression of T cell proliferation
was mediated via the production of TGF-b, IL-10, and arginase I
(248). CAF derived IL-33 was reported to cause TAMs to undergo
the M1 to M2 transition (339). Genomic profiling of metastasis
related genes revealed that these IL-33 stimulated TAMs
demonstrated a significant increase in MMP9 expression.
Moreover, genetic deletion of IL-33 or MMP9 blocked metastasis
in mouse and human fibroblast rich pancreatic cancers (339).
Indeed, these results may shed light on the TAM-CAF committed
cancermetastasis as well as underlining the importance of targeting
the TAM-CAF axis in terms of a potential cancer treatment. In a
recent article, Shani et al. demonstrated that IL-33 was upregulated
inmetastasis associatedfibroblasts inmousemodels of spontaneous
breast cancer metastasis and in patients with breast cancer with
lung metastasis (340). IL-33 upregulation promoted type 2
inflammation in the metastatic microenvironment and took part
in the recruitment of various cells including inflammatory
monocytes to lung metastases. in vivo IL-33 targeting caused
inhibition of lung metastasis and significant reduction of immune
cell recruitment (340). In a recent study, Sun et al. reported that
CXCL3 was highly upregulated in IL-33-stimulated macrophages
and the receptor ofCXCL3 (CXCR2)wasmostly expressedbyCAFs
(341). In addition, CXCL3-CXCR2 signaling upregulated a-SMA
and activation of CXCR2 by CXCL3 caused CAF-to-myoCAF
transition (341). These findings underline the importance of the
interaction between CAFs and immune cells in terms of generating
a favorable inflammatory niche in breast cancer lung metastasis.

Adenosine, which is an immunosuppressive metabolite
produced at high levels in the tumor microenvironment, is
implicated in immune escape as well as in tumor growth and
metastasis (342). Various cell types can generate adenosine in the
tumormicroenvironment such as CAFs as well as tumor cells (267,
268, 343–345). Adenosine can exert immunosuppressive effects on/
via several immune cells including T cells, NK cells, dendritic cells
(DCs) and MDSCs as well as macrophages (268, 346). In the
extracel lular space , adenosine exerts a plethora of
immunomodulatory effects. It alters mononuclear phagocyte
functions via 4 G-protein coupled cell membrane receptors (A1,
A2A, A2B, and A3) (347). Adenosine downregulates classical
macrophage activation majorly via A2A receptors, while
upregulating alternative macrophage activation via A2B receptors
(347). Hence, adenosine affects the process of tumorigenesis by
regulating mononuclear phagocyte functions and extracellular
adenosine generation is one of various immunosuppressive
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mechanisms that hinder anti-tumor immune responses in part
due to the interactions between CAFs and TAMs (268).

Moreover, the interplay between these two cells types may
also demonstrate critical effects on adaptive immune responses at
various levels. One of such immunomodulatory effects on
adaptive immunity is associated with the disruption of antigen
presentation. CAF derived TGF-b, IL-6, tryptophan 2,3-
dioxygenase (TDO2), indoleamine-2,3-dioxygenase (IDO) and
VEGF can impede the function and maturation of DCs; resulting
in the inhibition of T cell activation and causing T cell anergy
(134, 234, 348–352). IL-6 signaling may also redirect monocyte
differentiation into macrophages rather than DCs (24, 134, 353).
In addition, Yavuz et al. demonstrated that CAF-educated
monocytes significantly suppressed T cell proliferation in
contrast to control monocytes (15). CAFs were previously
reported to directly inhibit T lymphocyte proliferation (232,
354). In addition to their direct effects, CAFs also indirectly
suppress immune responses via polarizing the monocytes to M2-
like TAMs. Furthermore, CAF-educated M1 macrophages were
also demonstrated to increase secretion of IL-10 and decrease
secretion of IL-12 in addition to increasing the expression of
M2 markers (15). Moreover, CAFs can induce a PD-1+ TAM
phenotype by themselves, even without the presence of
cancer cells (15). Nearly all PD-1+ TAMs express an M2-like
surface profile (355). Thus, PD-1 axis may be pivotal in CAF
mediated immune suppression in vivo in various types of
cancer. Furthermore, CAF-educated monocytes demonstrated
enhanced expressions of CD206 and CD163 (15). Given the fact
that CD206 has anti-inflammatory effects, CAF mediated
induction of higher expression of CD206 on monocytes might
also represent another indirect mechanism of immune
suppression by CAFs. Moreover, CAFs were shown to induce
down regulation of major histocompatibility complex (MHC)
class II expression on monocytes. This finding might
demonstrate a mechanism of immune escape through
decreased antigen presentation, in addition to confirming that
CAFs are not implicated in any types of “good inflammatory
response” (356).

CAFs and TAMs were also reported to localize in colorectal
carcinomas where they promote the progression of tumor and
suppress immune responses. Zhang et al. demonstrated that the
recruitment of TAMs was associated with vascular cell adhesion
molecule 1 (VCAM-1) expression (272). CAFs are able to induce
monocyte adhesion by up-regulating VCAM-1 expression in
cancer cells. In addition, CAFs are also able to promote the
polarization to M2 macrophages, which take part in suppression
of NK cell functions. Thus, CAF-TAM interplay in the tumor
microenvironment seems to also have the potential to regulate NK
cell functions (272).
DISCUSSION AND CONCLUDING
REMARKS

Several issues still persist in terms of the effects of CAFs on tumor
progression. One of the most important problems that needs to
July 2021 | Volume 11 | Article 668349

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gunaydin CAFs Directly/Indirectly Sculpt Tumor Microenvironment
be solved is indeed the origins of CAFs in different cancer types.
Given the heterogeneity of CAFs, subpopulations of these cells
should also be thoroughly investigated in terms of their specific
effects on tumor progression, immune suppression and tumor
microenvironment organization. In fact, presence of different
fibroblast subpopulations and the effect of the cancer type
probably influence the net outcome (135). A solution for the
issues concerning the origins and heterogeneity of CAFs could be
profiling CAF populations at the single cell level in different
cancer settings as well as utilizing multiplex immunofluorescence
or brightfield immunohistochemistry (357–360). Indeed, Muhl
et al. compared single-cell transcriptional profiles of fibroblasts
among murine organs (i.e. heart, skeletal muscle, intestine and
bladder) in a recent study in order to investigate the
heterogeneity of fibroblasts within and between organs (21). As
one would expect, they reported significant inter- and intra-
organ heterogeneity amongst fibroblasts. In another study,
Bartoschek et al. reported functionally and spatially distinct
subclasses of CAFs by single cell RNA sequencing in a
genetically engineered mouse model (38). They proposed that
spatial separation of the CAF subclasses could be attributed to
different origins. Such studies will help us understand the
relevance of fibroblast heterogeneity in different organs and
tissues. Novel studies which will focus on CAFs in addition to
fibroblasts, especially in human tissues, will most likely shed new
light on the importance of these quirky cells. Moreover,
longitudinal studies are required in order to decipher the
functions and heterogeneity of CAFs over time, yielding
spatiotemporal resolution. Moreover, investigation of primary
and metastatic tumors at single cell resolution could help in
understanding the role of local and recruited stromal cell
populations in carcinogenesis.

The current literature suggests that the collaboration of CAFs
with TAMs plays a crucial role in tumor progression. It seems
clear that CAFs and TAMs are pivotal components of the tumor
microenvironment and they may prove to be potential valuable
therapeutic targets. Given the reciprocal relationship of CAFs
with TAMs in the tumor microenvironment in terms of
promoting tumor growth, therapeutic strategies aimed at
altering polarization of TAMs or reeducating M2 macrophages
should also take into account the synergistic effects of CAFs in
order to stimulate effective anti-tumor immune responses.
Hence, combined targeting of CAFs and TAMs can be
regarded as an option to consider. A better understanding of
the mechanisms as well as signaling pathways implicated in the
tripartite interplay of CAFs, TAMs and tumor cells will help
Frontiers in Oncology | www.frontiersin.org 18
decipher key concepts of tumor immunology. The fact that there
are significant differences among monocytes/macrophages from
distinct tumors and the existence of diverse TAM subsets should
also be borne in mind (361). Utilization of novel techniques (e.g.
multiplexed immunohistochemistry, mass cytometry by time-of-
flight, single-cell RNA-seq, spatial transcriptomics and systems
biology approaches) may indeed assist in better understanding
the diversity of TAMs (228, 361).

Future in vivo studies will further provide us with novel
mechanistic insights and distinct implications. Developing
model systems which better simulate all the elements of the
tumor microenvironment is crucial in order to reach such
goals. These systems will potential ly allow for the
demonstration of the effects of cell-to-cell contact in addition to
the cross-talk mediated though soluble factors. An approach
utilizing a severe combined immunodeficiency (SCID) mice
setting might help to better determine whether human
monocytes co-injected s.c. with cancer cells display a potent
pro-tumoral effect if preconditioned with CAFs in comparison
to their normal counterparts. Given the recent exciting findings
concerning the utilization of TAMs for cancer therapy (362–364),
harnessing the power of innate immune cells (e.g. via CAR
macrophages) holds great promise for the development of novel
and attractive immunotherapeutic modalities. It is evident that
CAFs are able to sculpt the tumor microenvironment via TAMs.
Therefore, therapeutic strategies which antagonize the CAF-
mediated immunosuppressive microenvironment may prove to
be efficient in terms of increasing the effectiveness of conventional
therapies and immunotherapies against cancer. In addition, a
more thorough understanding of the tri-directional interactions
of CAFs, TAMs and cancer cells in terms of tumor progression
will pave the way for the identification of novel theranostic cues in
order to better target the crucial mechanisms of carcinogenesis.
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GLOSSARY

CAF Cancer associated fibroblast
CAR Chimeric antigen receptor
CCL C-C motif chemokine ligand
CCR C-C motif chemokine receptor
CD Cluster of differentiation
CDKN1B Cyclin dependent kinase inhibitor 1B
Chi3L1 Chitinase 3-like 1
CSF-1 Colony stimulating factor 1
CTCs Circulating tumor cells
CTLA-4 Cytotoxic T-lymphocyte associated protein 4
CXCL C-X-C motif chemokine ligand
CXCR C-X-C motif chemokine receptor
DC Dendritic cell
ECM Extracellular matrix
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
EndMT Endothelial to mesenchymal transition
ER Estrogen receptor
FAP Fibroblast activation protein
FGF Fibroblast growth factor
FSP1 Fibroblast-specific protein 1
GM-CSF Granulocyte-macrophage colony-stimulating factor
GPR77 G protein-coupled receptor 77
HGF Hepatocyte growth factor
HLA Human leukocyte antigen
IDO Indoleamine-2,3-dioxygenase
IFNg Interferon gamma
IGF Insulin-like growth factor
IL Interleukin
ING5 Inhibitor of growth family member 5

(Continued)
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iPSCs Induced pluripotent stem cells
LPS Lipopolysaccharide
MAM Metastasis associated macrophage
MCP-1 Monocyte chemotactic protein-1
M-CSF Macrophage colony-stimulating factor
MDSC Myeloid-derived suppressor cell
MHC Major histocompatibility complex
MMT Mesenchymal–mesenchymal transition
Mrc1 Mannose receptor C-type 1
MSC Mesenchymal stem cell
NF Normal fibroblast
NG2 Neuron-glial antigen-2
NK Natural killer
PD-1 Programmed cell death protein 1
PDGF Platelet-derived growth factor
PDGFR Platelet-derived growth factor receptor
PD-L1 Programmed cell death 1 ligand 1
PD-L2 Programmed cell death 1 ligand 2
PR Progesterone receptor
SCID Severe combined immunodeficiency
SDF-1 Stromal derived factor 1
SMA Smooth muscle actin
STAT3 Signal transducer and activator of transcription 3
TAMs Tumor associated macrophage
TCGA The Cancer Genome Atlas
TDO2 Tryptophan 2,3-dioxygenase
TGF-b Transforming growth factor-b;
TH T helper cell
TLR Toll-like receptor
TNF Tumor necrosis factor
Treg Regulatory T cell
VCAM-1 Vascular cell adhesion molecule 1
VEGF Vascular endothelial growth factor
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