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A B S T R A C T   

Introduction: Slow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas 
Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the 
Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time elec-
tronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer 
clinical trial accrual performance. 
Methods: The Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual 
cancer clinical trials and a hierarchical component to describe the variation in performance across studies. 
Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior prob-
abilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target 
accrual rate. 
Results: Posterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 
0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 
2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic 
(2019) is 0.935. 
Conclusions: This study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, 
revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two 
sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across 
clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly 
recommended for monitoring clinical trial accrual.   

1. Introduction 

Patient accrual in cancer clinical trials is challenging. According to 
recent research, only about 5% of adult cancer patients participate in 
clinical trials [1,2]. Slow accrual may lead to multiple negative out-
comes, including longer study completion times, lower statistical power, 
and early study termination. In 2010, the National Cancer Institute 
(NCI) and the American Society of Clinical Oncology (ASCO) hosted a 
Cancer Trial Accrual Symposium, where new interventions to facilitate 

clinical trial enrollment were identified [3]. Three new interventions 
highlighted after the symposium include using available site data for 
patient recruitment, developing clinical trial management tools to 
evaluate site progress, and implementing site and clinical trialist per-
formance standards that qualify clinical investigators based in part on 
their accrual performance. 

The University of Kansas Comprehensive Cancer Center (KUCC) is 
one of the fifty-three NCI-designated comprehensive cancer centers. The 
KUCC Biostatistics and Informatics Shared Resource (BISR) Core 
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develops innovative tools to support and enhance patient accrual, 
echoing the suggestions of the 2010 NCI-ASCO Cancer Trial Accrual 
Symposium. In 2018, the BISR Core published a Curated Cancer Clinical 
Outcomes Database (C3OD) to accelerate eligibility screening [4]. The 
C3OD centralizes real-time data from multiple sources and platforms, 
including electronic medical records, tumor registry, bio-specimen re-
pository, and other data sources, allowing researchers to screen and 
recruit potential clinical trial participants more rapidly. In 2020, the 
BISR Core standardized monitoring tools and processes to improve the 
efficiency and reliability of investigator-initiated trials (IITs) sponsored 
by internal or external funding agencies [5]. Starting in 2021, the KUCC 
Executive Resourcing Committee made C3OD feasibility analysis a 
requirement for all KUCC trials. 

Patient accrual monitoring is essential for cancer studies due to 
potentially small patient populations and prolonged recruitment time. 
The BISR Core has developed multiple innovative Bayesian models for 
patient accrual monitoring. Gajewski et al. [6] introduced the idea of 
predicting accrual using the Bayesian framework. Jiang et al. extended 
the model using adaptive priors [7] and developed an R package and a 
smartphone application to apply the Bayesian accrual model for interim 
reviews of clinical studies [8]. Liu et al. developed a Bayesian accrual 
model with the web-based KUCC Accrual Application, which provides 
accrual information such as the predicted completion date and proba-
bility of achieving accrual targets for all active cancer studies at the 
KUCC [9]. Liu et al. also proposed a Bayesian multicenter accrual model 
by combining a subject accrual model and a varying center activation 
time model [10]. 

Although the KUCC Accrual Application provides daily updates on 
patient accrual for each active study, there is an increasing need to 
evaluate overall accrual performance across studies by year. A 2021 
study assessed the accrual sufficiency of Phase 2 and 3 genitourinary 
cancer clinical trials marked completed or terminated on ClinicalTrials. 
gov [11]. Accrual sufficiency was defined as the ratio of actual accrual to 
the pre-specified targeted number of patients (anticipated accrual). A 
binary outcome of sufficient accrual was calculated using a cutoff of 
85% [11,12]. However, while this method can suggest sufficient accrual 
of an individual cancer clinical trial, it cannot quantify individual trial 
accrual performance or compare accrual performance between trials. In 
a 2016 study, the Ohio State University Comprehensive Cancer Center 
(OSUCCC) evaluated the enhancement of patient enrollment using an 
annual accrual rate [13]. This annual accrual rate was calculated as the 
number of patients accrued to clinical studies in a given calendar year 
divided by the number of new analytical cases seen at the cancer center 
for that same year, as determined by the tumor registry. Although this 
method could estimate annual accrual performance, it does not show 
cumulative accrual performance since study activation. 

In 2020, the U.S. Clinical and Translational Science Award (CTSA) 
Consortium developed a standard metric called Median Accrual Ratio 
(MAR) to assess the performance of clinical trial recruitment. MAR is 
defined as the median across a set of clinical trials of the following 
within-trial ratio [14]: 

(
Number of participants accrued
Number of participants targeted

)

× 100
(

Number of days elapsed since open to enrollment
Number of days trial will be open to enrollment

)

× 100
.

A similar metric was developed by Corregano et al. called Accrual 
Index [15]. However, the MAR equals 0 when the number of participants 
accrued at the time of evaluation is 0. Hence, it may not accurately 
evaluate the accrual performance of cancer clinical trials considering 
their longer recruitment period. 

The remaining manuscript is structured as follows: In Section 2, we 
present the motivating data collected at the KUCC and detail both the 
primary and sensitivity analyses. Given the primary interest of the KUCC 
Clinical Trials Office in assessing a cancer center’s annual performance 

for subject accrual, we first propose a Bayesian hierarchical model with 
noninformative priors and no covariate adjustment, outlined in Section 
2.1. This primary model combines the accrual performance of individual 
studies and the variation in performance across studies given a specific 
timeframe. In addition, recognizing the speed of subject accrual may 
vary among study types and acknowledging the value of Bayesian 
informative priors, we propose two additional models for sensitivity 
analyses, discussed in Section 2.2. In Section 3, we present all analysis 
results. The discussion and conclusions are presented in Section 4. We 
conclude that our proposed primary model is a robust and effective tool 
for evaluating the annual accrual performance of cancer clinical trials at 
a cancer center. This model allows us to evaluate accrual performance 
during the COVID-19 pandemic and the impact of the C3OD at the 
KUCC. 

2. Methods 

2.1. Data and primary analysis 

We extract the data of all active cancer clinical trials hosted on the 
KUCC Accrual App on December 31st of the following years: 2018, 2019, 
2020, 2021, 2022, and 2023. Consider that the accrual target of a cancer 
clinical trial at KUCC is to recruit n participants within T months, and at 
the time of observation, m patients have been recruited within tm 
months. If a trial is completed prior to the date of data extraction, tm is 
reduced to the actual trial operation time. 

We assume that for each clinical trial, the number of enrolled par-
ticipants (m) after tm months of enrollment follows a Poisson distribu-
tion, m ∼ Poisson(λ), where λ represents the expected accrual target 
number given that fixed period. We denote nadj as the adjusted accrual 
target given tm months. Hence, nadj is proportional to the accrual time at 
the targeted accrual speed, so we calculate it as nadj = (n /T) • tm. In 
addition, a non-negative parameter P is introduced as the accrual per-
formance of this trial. Therefore, we set E(m) = λ = P • nadj. Further-
more, the observed accrual performance of a single clinical trial Pobs 
could be reorganized as the ratio of observed accrual rate to target 
accrual rate, which is exactly the within-trial accrual ratio calculated in 
the CTSA Consortium paper: 

Pobs =
m

nadj
=

m
(n/T) • tm

=
m/tm

n/T
=

Observed accrual rate
Target accrual rate  

=
m/n
tm/T

=

(
Number of participants accrued
Number of participants targeted

)

× 100
(

Number of days elapsed since open to enrollment
Number of days trial will be open to enrollment

)

× 100
.

The accrual performance of a single clinical trial would be equal to or 
greater than 1 if the accrual is on target or outperforms the target. 

Since study startup is typically time consuming, we give each study 
at least a year as a “burn-in” period before evaluating the annual per-
formance. For example, for the 2018 evaluation, we evaluate only 
studies that started in 2017 and use the dataset created on December 
31st, 2018. Moreover, for the i th study record (i = 1, 2, …, 532), we 
calculate a year index j[i] = Yeari − 2017, i.e., j[i] ∈ {1,2,3,4,5,6}, where 
Yeari represents the year of evaluation. 

The primary Bayesian hierarchical model of performance evaluation 
is given by mi ∼ Poisson(λi), where λi = Pi • nadji, and 

log(Pi) ∼ N
(

log
(

μj[i]

)
, σ2

)
.

The hyper-prior distributions are 

log
(
μj
)
∼ N(0, 1000), and  

1
σ2 ∼ Unif (0, 10).
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As is described, Pi is the accrual performance of an individual cancer 
clinical trial. The major inferential parameter μj represents the annual 
accrual performance across all active cancer clinical trials at the KUCC 
evaluated in the j th year. This primary Bayesian hierarchical model 
accounts for within- and across-trial variation using the Poisson and 
hierarchical components, respectively. 

To further assess the impact of C3OD on patient accrual following its 
implementation in 2021, we construct five distributions representing 
the differences in annual accrual performance across different years: 
between 2023 (minimally affected by the COVID-19 pandemic and the 
third year with C3OD) and 2022 (slightly affected by the COVID-19 
pandemic and the second year with C3OD), between 2023 and 2021 
(affected by the COVID-19 pandemic and the first year with C3OD), 
between 2023 and 2019, between 2022 and 2021, and between 2022 
and 2019 (prior to the COVID-19 outbreak). We then analyze the density 
curves of these distributions and calculate the area under the density 
curve from 0 to infinity to determine the posterior probability that one 
year’s performance is superior to the other. 

The posterior distributions of the model parameters are analytically 
intractable, so we use Metropolis-Hastings updates to estimate them. To 
be specific, in the statistical software R, we use the package R2Open-
BUGS [16] to call OpenBUGS (version 3.2.3 rev 2012) to run 50,000 
Markov-chain Monte Carlo iterations (after discarding 10,000 iterations 
as burn-in) and report the posterior medians, standard deviations (SDs), 
and 95% Bayesian credible intervals (CIs). 

2.2. Sensitivity analyses 

2.2.1. Sensitivity analysis by adjusting for a suspension period 
Patient recruitment at the KUCC was suspended from April 2 to May 

7, 2021, because the informed consent process was under evaluation. 
Hence, we perform two analyses by adjusting and not adjusting for the 
suspension period. The adjustment rule is that for studies that ended 
later than April 2nd and activated prior to May 7th, the days that overlap 
with the suspension period are subtracted off; otherwise, no adjustment 
is needed. Lastly, if there is no substantial difference in the results be-
tween the two analyses, we pick the analysis with adjustment; other-
wise, we report both results and compare them. 

2.2.2. Sensitivity analysis by adjusting for study type 
To account for potential variations in accrual speed across different 

study types, we add one more hierarchy for study type, derived from the 
study title, into the Bayesian hierarchical model: 

mi ∼ Poisson(λi),where λi =Pi • nadji,

log(Pi) ∼ N
(

log
(

μj[i]k[i]

)
, σ2

)
, and  

log
(
μjk

)
= βj0 + βjk.

The hyper-prior distributions are 

βj0 ∼ N(0, 1000),

βjk ∼ N(0, 1000), and  

1
σ2 ∼ Unif (0, 10).

Note that i is the study record index (i = 1,2,…,532), j[i] is the year 
index (j[i] ∈ {1, 2, 3, 4, 5, 6}), and k[i] is the study type index (k[i] ∈
{1,2, 3} for Phase 1,2,3 studies and k[i] = 4 for other studies, e.g., 
ancillary studies, βj4 ≡ 0). Seamless Phase 1/2 and 2/3 studies are coded 
as Phase 2 and Phase 3 studies, respectively. Therefore, eβj0+ eβjk and eβj0 

represent the expected annual accrual performance for Phase k and 
other studies in the j th year, respectively. 

By replacing βjk with βk, we construct a more parsimonious model 

that reduces the number of parameters to be estimated by 15. In this 
model, eβk ’s are the annual accrual performance of other studies. Its 
trend is expected to be consistent with the trend in the unadjusted 
annual accrual performance observed in the primary model. eβk repre-
sents the difference in the annual accrual performance between the 
Phase k studies and other studies within the same year. To conclude this 
section, we leverage the Bayesian Deviance Information Criterion (DIC) 
to compare the two models and select the one incorporating study type 
as an adjustment. 

2.2.3. Sensitivity analysis by incorporating previous year’s result as a prior 
In the primary Bayesian hierarchical model, we assume that the 

accrual performance for each year to be independent of the others, with 
each year assigned an independent normal prior. To explore the po-
tential influence of past performance and leverage the flexibility of the 
Bayesian framework, we propose a sensitivity analysis utilizing a 
Bayesian hierarchical Normal Dynamic Linear Model (NDLM). This 
model is specified as follows. 

mi ∼ Poisson(λi),where λi =Pi • nadji,

log(Pi) ∼ N
(

log
(

μj[i]

)
, σ2

)
,where j[i] ∈

{
1, 2, 3, 4, 5, 6},

log
(
μj
)
∼ N

(
log

(
μj− 1

)
, 1000

)
, if j ≥ 2,

log (μ1) ∼ N(0, 1000).

The hyper-prior distribution is 

1
/

σ2 ∼ Unif (0, 10).

3. Results 

We adjusted for the suspension period at the KUCC for analysis since 
these results do not show a substantial difference in statistical inference 
compared to the analysis results without adjustment. 

Table 1 summarizes the observed accrual performance of cancer 
clinical trials at the KUCC by evaluation year. The scattered boxplots in 
Fig. 1 visualize the observed performance. Note that in a scattered 
boxplot, any data points more than 1.5 times the interquartile range 
(IQR) below the first quartile or more than 1.5 times the IQR above the 
third quartile are considered outliers and are removed from the figure 
for a better illustration of the data distribution. 

Fig. 2 shows the posterior and observed accrual performance of all 
active cancer clinical trials at the KUCC in 2023. Figures S1-S5 in the 
supplemental files shows the posterior and observed accrual perfor-
mance evaluated in previous years. In those figures, the observed 
accrual performance and posterior results of individual cancer clinical 
trials are plotted using cross and bullet points and ranked in ascending 
order. The vertical lines represent the posterior 95% CIs: a wider CI 
suggests more posterior uncertainty in accrual performance. In Fig. 2, 
we can also observe higher uncertainty in a trial’s accrual performance 
when it is much higher or lower than the average accrual performance 
across trials estimated in that evaluation year. Although the accrual 

Table 1 
Summary of observed accrual performance of cancer clinical trials at the KUCC 
by evaluation year.  

Evaluation 
Year 

Number of Clinical 
Trials 

Observed Accrual Performance: Median 
(Min, Max) 

2018 76 0.204 (0, 2.502) 
2019 91 0.230 (0, 6.471) 
2020 107 0.177 (0, 8.177) 
2021 104 0.077 (0, 8.156) 
2022 75 0.276 (0, 2.227) 
2023 79 0.326 (0, 11.102)  
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performance of some trials appears high and outlying, they have been 
validated by the KUCC Clinical Trials Office, so we refrain from 
removing them. 

Table 2 summarizes the posterior distributions of annual accrual 
performance of all cancer clinical trials at the KUCC by evaluation year, 
and Fig. 3 visualizes the posterior medians and 95% CIs in line plots. 
Based on the results, the median annual accrual performance at KUCC 
increased from 0.233 in 2018 to 0.246 in 2019. It decreased to 0.197 in 
2020 and 0.150 in 2021 but rebounded to 0.254 in 2022 and 0.340 in 
2023. The COVID-19 pandemic started in 2020 has negatively affected 
patient care and staff turnover, resulting in low accrual to clinical trials 
in the U.S [17]. This impact was especially pronounced before 2022, 
prior to the widespread availability of COVID-19 vaccines and antiviral 
treatment under the FDA’s Emergency Use Authorizations. The trend 
observed in our results reflects the negative impact of the COVID-19. 

The KUCC C3OD has contributed to the Executive Resourcing 
Committee’s review of clinical trials and patient enrollment since 2021. 

Fig. 4 displays the posterior distributions of the differences in annual 
accrual performance across different years, before and after the imple-
mentation of C3OD. First, the posterior probabilities indicating superior 
annual accrual performance in 2023 compared to both 2022 and 2021 
are 0.903 and greater than 0.999, respectively. The posterior probability 
that the annual accrual performance in 2022 is better than in 2021 is 
0.990. Second, the posterior probabilities suggesting better performance 
in 2023 and 2022 compared to 2019 are 0.935 and 0.564, respectively. 
This implies a return to pre-pandemic accrual levels in 2022 and an 
enhancement in accrual in 2023, facilitated by C3OD. The above find-
ings suggest continuous enhancements in subject accrual with the uti-
lization of C3OD. However, a significant surge is not immediately 
observed following C3OD’s implementation. This delay may be attrib-
uted to the time required for screening and consenting after potential 
participants are identified by C3OD. Consequently, we should consider a 
more prolonged assessment of C3OD’s influence and allow for a more 
extended “burn-in” period for annual accrual evaluation in future 
analyses. 

The sensitivity analysis of study type adjustment favored the parsi-
monious model because of its efficiency, indicated by fewer estimators, 
and a slightly lower Deviance Information Criterion (1971 vs. 1972). 
Table 3 details the estimated annual accrual performance for each study 
type and evaluation year based on this model. Fig. 5 further visualizes 
this information through line plots representing posterior medians and 
95% confidence intervals. Fig. 5’s trends in the estimated accrual per-
formance align with those observed in Fig. 2’s unadjusted annual 
accrual performance, with Phase 1 studies exhibiting the highest accrual 
performance, followed by other and Phase 3 studies. Adjusting for study 
type reveals an improvement in accrual for 2023 compared to 2022 
(pp > 0.999), 2021 (pp > 0.999) and 2019 (pp = 0.938). 

The NDLM posterior distributions of annual accrual performance 
show discrepancies from the primary model only in the third decimal 
place (see Table S1 in supplemental files). 

4. Discussion and conclusions 

In this paper, we proposed three Bayesian hierarchical models to 
assess the annual clinical trial accrual performance of a cancer center. 
These models were applied to accrual data from 532 trials at the KUCC 
from 2018 to 2023. This primary model considers both within- and 
between-trial variation at a cancer center, using a Poisson model and a 
hierarchical component. The other two models were used in the sensi-
tivity analyses: one incorporating study type as a covariate in the pro-
posed primary model, and another utilizing a different NDLM with an 
informative prior based on the previous year’s performance evaluation. 

We conclude that the primary model serves as a robust and 

Fig. 1. Scattered boxplots of observed accrual performance of cancer clinical 
trials at the KUCC by evaluation year. Data points are jittered horizontally to 
reduce overlap. 

Fig. 2. Posterior and observed accrual performance of all active cancer clinical 
trials at the KUCC in 2023. 

Table 2 
Summary of posterior distributions of annual accrual performance of all cancer 
clinical trials at the KUCC by evaluation year.  

Evaluation Year Number of Clinical Trials Annual Accrual Performance 

Median SD 95% CI 

2018 76 0.233 0.041 (0.165, 0.324) 
2019 91 0.246 0.039 (0.180, 0.331) 
2020 107 0.197 0.030 (0.146, 0.263) 
2021 104 0.150 0.025 (0.109, 0.206) 
2022 75 0.254 0.043 (0.184, 0.351) 
2023 79 0.340 0.053 (0.251, 0.459)  

Fig. 3. Posterior distributions of annual accrual performance of cancer clinical 
trials at the KUCC by evaluation year. 
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satisfactory tool for assessing the annual accrual performance of cancer 
clinical trials at a cancer center, underscoring a key strength of this 
paper. This conclusion is supported by the sensitivity analyses with the 
KUCC accrual data, which reveal consistent trends and only minor de-
viations from the primary model’s results. Moreover, the primary model 
is favored over the NDLM since the primary model’s priors are non-
informative and independent of the data. Another strength of the pri-
mary model is its capability to construct posterior probabilities to 
examine potential effects of policy changes or unforeseen events over 
time. 

Through our application at the KUCC, we investigated accrual per-
formance from 2018 to 2023 and identified a negative impact of COVID- 
19 pandemic and a beneficial impact of C3OD, a tool designed to 
expedite eligibility screening at the KUCC. Despite the KUCC main-
taining only 79 active studies in 2023, roughly 75% its pre-pandemic 
peak, the median observed accrual performance reached a new peak 
at 0.326. This suggests that accrual performance evaluation and closure 
of underperforming studies are essential for a research institute’s 
development. These steps also agree with the suggestions from the 2010 
NCI-ASCO Cancer Trial Accrual Symposium. 

One limitation of this study is that the estimated performance of 
cancer clinical trial accrual may potentially be confounded by other 
factors, such as sponsor type, cancer type, and stage of investigation. For 
example, in the analysis of the KUCC accrual data, the current C3OD 
workflow does not consider the clustering that may occur among similar 
types of cancers with overlapping inclusion and exclusion criteria. 
Consequently, the impact of C3OD on accrual performance could be 
confounded by cancer type. 

In summarizing the strengths and limitations of this study, we first 
highlight the strength of a robust and effective tool for evaluating the 
annual accrual performance of cancer clinical trials at a cancer center. 
The Bayesian tool provides important posterior calculations such as the 
posterior distribution of study performance as well as institutional 
accrual performance. Another strength of this tool is it can accommo-
date the assessment of temporal changes, e.g., policy changes (C3OD) 
and uncontrollable events (pandemic). However, a notable limitation is 
the potential influence of additional factors on performance evaluation, 
e.g. trials that compete for the same patient pool. Hence, for future 
studies, we recommend the adoption of our proposed primary model 
and the incorporation of potential covariates, such as competing trials, 
for sensitivity analyses. Incorporating more important covariates may 

give more accurate performance estimations. 
When talking about the success of a cancer clinical trial, we often 

focus on its clinical outcome. However, achievement of patient accrual is 
the stepstone of trial success. Evaluating annual accrual performance 
across clinical trials is essential to building a successful clinical research 
portfolio for a cancer center. The performance evaluation tools 
described in this paper are applicable and extentable, so they are highly 
recommended for use by institutions conducting clinical trials. 
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Table 3 
Summary of posterior distributions of annual accrual performance of all cancer 
clinical trials at the KUCC by study type and evaluation year.  

Evaluation 
Year 

Study 
Type 

Number of 
Studies (%) 

Annual Accrual Performance 

Median SD 95% CI 

2018 Phase 1 12 (15.8%) 0.277 0.063 (0.181, 
0.424) 

Phase 2 28 (36.8%) 0.204 0.041 (0.138, 
0.297) 

Phase 3 22 (28.9%) 0.241 0.049 (0.161, 
0.354) 

Other 14 (18.4%) 0.233 0.052 (0.151, 
0.354) 

2019 Phase 1 22 (24.2%) 0.291 0.058 (0.196, 
0.424) 

Phase 2 35 (38.5%) 0.213 0.039 (0.149, 
0.300) 

Phase 3 22 (24.2%) 0.252 0.049 (0.173, 
0.364) 

Other 12 (13.2%) 0.243 0.051 (0.162, 
0.363) 

2020 Phase 1 19 (17.8%) 0.233 0.048 (0.155, 
0.343) 

Phase 2 31 (29.0%) 0.170 0.032 (0.118, 
0.242) 

Phase 3 39 (36.4%) 0.202 0.035 (0.143, 
0.281) 

Other 18 (16.8%) 0.195 0.040 (0.131, 
0.287) 

2021 Phase 1 15 (14.4%) 0.182 0.041 (0.118, 
0.278) 

Phase 2 43 (41.3%) 0.134 0.025 (0.092, 
0.190) 

Phase 3 22 (21.2%) 0.158 0.032 (0.106, 
0.233) 

Other 24 (23.1%) 0.153 0.031 (0.103, 
0.224) 

2022 Phase 1 16 (21.3%) 0.303 0.065 (0.200, 
0.456) 

Phase 2 25 (33.3%) 0.222 0.043 (0.152, 
0.321) 

Phase 3 18 (24.0%) 0.263 0.054 (0.177, 
0.388) 

Other 16 (21.3%) 0.253 0.055 (0.168, 
0.381) 

2023 Phase 1 15 (19.0%) 0.405 0.085 (0.268, 
0.601) 

Phase 2 25 (31.6%) 0.297 0.055 (0.206, 
0.423) 

Phase 3 20 (25.3%) 0.352 0.067 (0.241, 
0.504) 

Other 19 (24.1%) 0.339 0.069 (0.228, 
0.497)  

Fig. 5. Posterior distributions of annual accrual performance of cancer clinical 
trials at the KUCC by study type and evaluation year. 
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