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Abstract: Cardiorenal syndrome (CRS) is defined as progressive, combined cardiac and renal dys-
function. In this mini review, a historical note on CRS is presented, the pathomechanisms and
clinical hallmarks of both chronic heart failure and chronic kidney disease are discussed, and an
updated classification of CRS is proposed. The current consensus classification relies on the assumed
etiology and the course of the disease, i.e., acute or chronic CRS. Five types are described: type-I
CRS presenting as acute cardiac failure leading to acute renal failure; type-II CRS presenting as
chronic cardiac failure leading to chronic renal failure; type-III CRS presenting as acute kidney
injury aggravating heart failure; type-IV CRS presenting as chronic kidney failure aggravating heart
failure; and type-V CRS presenting as concurrent, chronic cardiac and renal failure. For an updated
classification, information on the presence or absence of valvular heart disease and on the presence of
hyper- or hypovolemia is added. Thus, CRS is specified as “acute” (type-I, type-III or type-V CRS) or
“chronic” (type-II, type-IV or type-V) CRS, as “valvular” or “nonvalvular” CRS, and as “hyper-” or
“hypovolemia-associated” CRS if euvolemia is absent. To enable the use of this updated classification,
validation studies are mandated.

Keywords: cardiorenal syndrome; chronic heart failure; chronic kidney disease; acute kidney injury;
acute heart failure

1. Introduction

From a physiological perspective, the definition of cardiorenal syndrome (CRS) is
viewed as combined cardiac and renal dysfunction aggravating the failure of both organs
progressively. Currently, the consensus classification of cardiorenal syndrome (CRS) is
based on the assumed etiology and the course of disease, i.e., an acute or chronic course of
CRS. Five CRS types are described: type-I CRS presenting as acute cardiac failure leading
to acute renal failure; type-II CRS presenting as chronic cardiac failure leading to chronic
renal failure; type-III CRS presenting as acute kidney injury aggravating heart failure;
type-IV CRS presenting as chronic kidney failure aggravating heart failure; and type-V CRS
presenting as concurrent acute or chronic cardiac and renal failure or injury [1]. CRS type-V
represents its own category, as non-cardiac and non-renal conditions such as diabetes
mellitus or sepsis are the offending causes. The bidirectional relationship of CRS has been
highlighted in this consensus classification on CRS [2]. In type-I [3] and type-III [4] CRS,
multiple pathomechanisms, including the activation of the immune and neuroendocrine
systems, may cause renal (in type-1 CRS) or cardiac (in type-III CRS) sequelae. However,
information on the etiology and the course of CRS (whether or not the CRS occurred in an
acute or chronic fashion) may be lacking. When serial laboratory tests on serum creatinine,
cystatin C, brain natriuretic peptide, and N-terminal pro-brain natriuretic peptide and/or
echocardiographic exam results are not available, assumptions need to be made regarding
the acuity or chronicity of CRS. Specifically, without these laboratory and clinical exam
results, the clinician cannot prove whether the disease process started in the heart (CRS
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type I and II) or in the kidneys (CRS type III and IV), or whether the disease process
affected both organs concurrently (CRS type V). In order to support therapeutic decisions,
the consensus definition needs to be revised. In addition, an updated CRS classification
needs to be validated, as controversy about the validity and applicability of the current
consensus classification of CRS still exists [5]. Here, a historical note on CRS is provided,
and an updated classification of CRS is proposed.

2. Cardiorenal Syndrome: A Historical Note

In 1842, Carl F. W. Ludwig (Figure 1) proposed the hypothesis that urine is the result
of a filtration process by the glomeruli promoted by the force of blood pressure [6]. Thus,
the interplay of cardiac function (blood pressure) and renal function (urine production) was
described for the first time. He further postulated that the final composition of the urine is
the result of resorption processes taking place in the renal tubuli located downstream of
the renal glomeruli. His work was published at a time when the physiological role of the
kidneys was still being debated. At that time, a natural force (rather than blood pressure)
was thought to be the driving force for urine production. The observation that blood
pressure drives glomerular filtration was the starting point for a better understanding of the
interplay between the heart and the kidneys. As a result of either a drop in blood pressure
or bradycardia, the renal glomerular filtration capacity decreases. Likewise, as a result
of less glomerular filtration, the ensuing hypervolemia may lead to acute heart failure or
aggravate a chronic heart failure (CHF) condition. Thus, both the heart and kidneys are
functionally dependent on each other. It is to Carl Ludwig’s credit that afferent autonomic
innervation such as the aortic depressor nerve is seen in the context of circulatory control.
In fact, Ludwig proved that the aortic depressor nerve enters the brain stem, affecting blood-
pressure regulation. Thus, Carl Ludwig’s work laid the basis for further research on the
autonomic control of circulation. Additionally, Ludwig greatly improved the methodology
for physiology experiments by inventing an aortic blood-velocity meter. In summary, he
greatly influenced the understanding of cardiorenal physiology as he stimulated physiology
research both in Germany and internationally [7]. In 1931, Frank R. Winton demonstrated
experimentally that an increase in renal-venous pressure by 24 mmHg is accompanied by a
marked decrease in renal blood flow and a decrease in urine output. His research tested a
hypothesis put forward by Carl Ludwig (1861) and by Rudolf P. H. Heidenhain (1881) that
distal urine tubules are compressed by congested renal venules [8]. One hundred years
after the groundbreaking work by Ludwig, Arthur C. Guyton described CRS as a combined
cardiac and renal dysfunction aggravating the failure of both organs progressively [9].
Guyton contributed physiological research on the role of the peripheral circulation to blood-
pressure regulation, which, in turn, affects renal function. During the last five decades,
neurohumoral stimulation including sympathoactivation [10,11], oxidative stress [12], and
microinflammation [13] have been proposed as pathomechanisms in CHF.

Figure 1. Title: Carl Ludwig (1816–1895), a pioneer of physiology, presented a new concept of renal
function and cardiorenal interaction. Legend: Picture downloaded from https://research.uni-leipzig.
de/agintern/UNIGESCH/ug175.htm (accessed on 17 May 2022).

3. Clinical and Physiological Hallmarks of Cardiorenal Syndrome

Besides CHF, the activation of the sympathetic nervous system (SNS) [14] and chron-
ically elevated inflammatory serum parameters [15] have been identified as clinical hall-
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marks of chronic kidney disease (CKD). Both sympathoactivation [3,4] and systemic in-
flammation [16] are considered to be key pathomechanisms in CRS as well. Hemodynamic
abnormalities in CRS include venous congestion due to increased right ventricular filling
pressure accompanied by a tricuspid annular dilatation with ensuing regurgitation [17].
In the latter pathomechanism, the centrally venous congestion impedes the renal venous
blood flow and favors an intrarenal edema, which may further impede the intrarenal
arterial perfusion. As proof, kidney sonography may demonstrate an attenuated arterial
intrarenal perfusion being absent in the periphery of the kidneys. Clearly, in CRS, an arterial
underfilling mechanism due to renal hypoperfusion, e.g., in heart failure with reduced
ejection fraction and/or during hypotension, may represent an alternative explanation
as to why renal function may cease in CRS. In fact, venous congestion due to increased
right ventricular filling pressures, e.g., in diastolic left ventricular hypertrophy with left
ventricular diastolic dysfunction, and renal hypoperfusion during hypotension or during
periods of cardiac decompensation may lead to acute kidney injury with or without a pre-
existing chronic kidney disease in CRS. As a proof of concept, once renal venous congestion
alleviates—e.g., following the paracentesis of ascites—renal function improves readily [18].
Likewise, when renal venous congestion is diagnosed in clinical medicine, the use of loop
diuretics regularly improves both venous congestion and renal function. Point-of-care
ultrasound of abdominal veins including portal-vein flow pattern and inferior vena cava
size [19], the sonographic detection of extravascular lung fluid [20], and the determination
of Doppler-sonographic intrarenal venous flow patterns [21] may help direct therapy to
achieve less venous congestion and an augmented renal function in hypervolemic CRS.
Euvolemia, or a steady state with the least possible venous congestion, is to be maintained
by achieving a low maintenance dose of loop diuretics by adjusting the recommended
daily intake of water and by lowering salt intake to 2–3 g per day. Once renal dysfunction
due to either venous congestion or renal arterial hypoperfusion occurs, cardiac function
may deteriorate. Conversely, once renal function resumes, cardiac tricuspid annular di-
latation may improve due to less right ventricular filling pressure. As a caveat, accidental
hypovolemia due to polyuria during renal recovery, hyperglycemia-related polyuria in
diabetes mellitus, or a prolonged use of high-dose loop-diuretics may lead to hypovolemic
shock with attenuated renal perfusion and/or to acute cardiac failure. Figure 2 summarizes
hyper- and hypovolemia-related pathomechanisms in CRS. In CRS, due to valvular heart
disease, because of both signs and symptoms, hemodynamics and therapeutic implications
may differ. Therefore, a differentiation between valvular and nonvalvular CRS is needed, if
therapy stratification is the goal. Besides changes in hemodynamics, both anemia [22] and
systemic inflammation [16] represent unifying final pathomechanisms in CRS.
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Figure 2. Title: Hypervolemia- and hypovolemia-related pathomechanisms in cardiorenal syn-
drome. Legend: Cardiovascular and autonomic-nervous-system-related and pathomechanisms in
hypervolemic or hypovolemic CRS. Adapted with permission from reference [16]. (Copyright 2018:
Linhart et al. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European
Society of Cardiology, Creative Commons Attribution-NonCommercial License).

4. Signs and Symptoms of Underlying Chronic Kidney Disease and Chronic
Heart Failure

As outlined in Table 1, both CHF and advanced CKD share several signs, symptoms,
and laboratory key findings. Based on the clinical exam, it is a challenge to determine
the underlying etiology of CRS—e.g., whether acute or chronic heart failure preceded an
acute or chronic kidney injury. Peripheral edema, pulmonary venous congestion, and
interstitial pulmonary edema are commonly detected in advanced CKD, in CHF, or in
the combination thereof, CRS. As for the pathomechanism, an activated SNS is regularly
found both in advanced CKD [14] and in CHF [23]. SNS activation is governed by the
afferent loop of cardiovascular reflexes and by the brain renin–angiotensin system [24]. The
renin–angiotensin system in the brain, the renin–angiotensin–aldosterone system (RAAS)
in the periphery, and the SNS are all interrelated: plasma angiotensin 2 may contribute
to hypothalamic SNS activation at anatomic loci where a tight brain–blood barrier is lack-
ing [25]. Likewise, an activated SNS may lead to renin release from juxtaglomerular cells
via the sympathetic renal nerves [26]. In CKD, renin activation leading to RAAS activation
is a hallmark [27]. In addition, hyperkalemia independently leads to aldosterone activation
in advanced CKD. Conversely, the treatment of hyperkalemia using the potassium binder
Patiromer has the potential to lower plasma aldosterone in advanced CKD [28]. Underly-
ing sarcopenia or protein-energy wasting has been recognized for both CHF and ESRD.
Hypoalbuminemia, which is regularly found in both CHF [29] and end-stage renal disease
(ESRD) [30] is associated with an increased mortality. As for ESRD, nutritional efforts
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were unable to prevent the prevalent catabolism [31]. The paradoxical association between
low levels of low-density lipoprotein cholesterol and mortality has been described both in
CHF [32] and ESRD [33]. Even though a causality was not proven, the pathomechanism
may relate to an impaired liver function comprising an impaired biosynthesis of transport
proteins both in CHF and in CRS, as 47% of ESRD patients included in this prospective
observational study had CHF comorbidity [33]. Lastly, anemia has associations with both
CHF [34] and CKD [35]. While a decreased erythropoietin production occurs in advanced
CKD [36], both early stages of CHF [37] and advanced CKD [38] are associated with iron
deficiency due to increased hepcidin plasma levels down-regulating enteral iron absorption.
Systemic inflammation represents a candidate pathomechanism for hepcidin activation in
both CHF [39] and advanced CKD [15].

Table 1. Clinical characteristics of chronic kidney disease and chronic heart failure.

Chronic Kidney Disease
(KDIGO G4-G5nonD)

Chronic Heart Failure
(NYHA III-IV)

Peripheral edema + +
Pulmonary venous congestion (+) +
Interstital pulmonary edema (+) (+)

Sympathoactivation + +
Renin–angiotensin–aldosterone activation + +

Hypoalbuminemia (+) (+)
Cholesterol paradox + +

Anemia + +
Microinflammation + +

5. Updated Classification of Cardiorenal Syndrome

In retrospect, the older classification differentiating between severe and non-severe
CRS [9] conveyed prognostic information when CRS is coined “severe”. For clinicians, this
differentiation implies that immediate action is needed to avoid a vicious cycle towards pro-
gressive cardiac and renal failure and death. In contrast, the current consensus classification
of CRS [1] highlights the complexity of the underlying causes; however, it lacks therapeutic
or prognostic implications. Here, the proposed update of the consensus classification of
CRS specifies whether CRS is acute or chronic, whether a valvular or nonvalvular heart
disease is present and whether CRS associates with hyper- or hypovolemia (Figure 3). The
first point, the descriptive information on an acute or chronic course of disease, rather
simplifies the current consensus classification. CRS types I, III, and V may be regarded as
acute CRS and types II, IV, and V as chronic CRS. Etiologic information on valvular and non-
valvular heart disease is necessary to direct therapeutic decisions. Valvular heart disease
may be subjected to a correctional cardiologic procedure or to cardiac surgery. Conversely,
nonvalvular heart disease as a component of CRS may be subjected to evidence-based
medical therapies. Lastly, if euvolemia is absent, information on a prevalent hyper- or
hypovolemia needs to be provided to further direct medical therapy.
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Figure 3. Title: A proposed new classification of cardiorenal syndrome. Legend: An upgraded
classification of CRS requires clinical information that further specifies current consensus classification
of CRS [1]. Aside from etiology and time course of CRS, clinical hallmarks such as the volemic state
are considered.

6. Valvular versus Nonvalvular Cardiorenal Syndrome

To date, outcome data on valvular versus nonvalvular CRS are lacking. A compre-
hensive body of evidence exists for valvular heart disease with and without reduced left
ventricular ejection fraction. Specifically, both surgical and transaortic-aortic valve im-
plantation (TAVI) [40,41] are superior to medical therapy in symptomatic aortic stenosis.
Likewise, in patients with aortic stenosis and reduced ejection fraction, TAVI is superior
to medical therapy [42]. In the COAPT study, a randomized clinical trial of patients with
functional mitral regurgitation and heart failure [43], the transcatheter mitral-valve repair
was shown to be superior to medical therapy. The surgical treatment of asymptomatic
severe mitral regurgitation was shown to be superior to medical therapy as well [44]. In
symptomatic severe tricuspid regurgitation, a large non-randomized study showed the
benefit of interventional valve repair therapy [45]. In nonvalvular CHF, the European
Society of Cardiology recommends the use of five drug classes for heart failure with a
reduced ejection fraction [46]. Therapy of heart failure with preserved ejection fraction
has been updated as well: the sodium-glucose-transporter-2 inhibitor Empagliflozin has
become a first-line therapy in patients with and without type-2-diabetes comorbidity [47].
Dedicated randomized clinical trials on valvular or nonvalvular CRS are needed to provide
evidence for either subgroup of CRS patients.

7. Hypervolemic versus Hypovolemic Cardiorenal Syndrome

Intravascular and interstitial fluid volume expansion due to cardiac congestion and/or
due to renal failure defines the clinical term “hypervolemia”, which characterizes many
patients with CHF [48] and CRS [49]. An existing volume overload congestion may turn
into a symptomatic clinical congestion requiring hospitalization. In hemodialysis pa-
tients, hypervolemia is associated with heparin-binding growth factor midkine release [50].
The underlying reason for cytokine activation in both CHF [39] and in CRS [16] is likely
gut-edema predisposing to enteral toxin translocation. As clinical signs, the presence of
peripheral edema and ana sarka supports the diagnosis of a hypervolemic CRS, while the
absence of peripheral edema and signs of exsiccosis and/or arterial hypotension are in line
with a hypovolemic CRS. Besides arterial hypotension, bradycardia has been reported as
a cause for heart failure in the elderly [51] and, in a first case report, as a possible cause
for acute cardiorenal syndrome [52]. As for CRS, the term “bradycardia, renal failure,
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atrioventricular blockade, shock, and hyperkalemia (BRASH) syndrome” has been coined
to describe this pathomechanism [53]. Therefore, in the updated classification of CRS, the
BRASH syndrome is considered to be a hypovolemic CRS.

8. Summary

The updated classification of CRS maintains the etiologic information introduced
in the existing consensus classification (type I-V). However, emphasis is laid upon the
course of disease, i.e., acute or chronic CRS. Verified etiologic information may be added by
the correct type of CRS, and unverified etiologic information should be omitted. Adding
clinical hallmarks (valvular or nonvalvular CRS / hyper- or hypovolemic CRS) allows for
improved clinical decision making and opens up more research opportunities. Further
validation studies are needed.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BRASH bradycardia, renal failure, atrioventricular blockade, shock, and hyperkalemia
CHF chronic heart failure
CKD chronic kidney disease
CRS cardiorenal syndrome
ESRD end-stage renal disease
RAAS renin–angiotensin–aldosterone system
SNS sympathetic nervous system
TAVI transaortic aortic valve implantation

References
1. Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.;

Cruz, D.N.; et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur.
Heart J. 2010, 31, 703–711. [CrossRef] [PubMed]

2. Virzì, G.; Day, S.; de Cal, M.; Vescovo, G.; Ronco, C. Heart-kidney crosstalk and role of humoral signaling in critical illness. Crit.
Care 2014, 18, 201. [CrossRef] [PubMed]

3. Virzì, G.M.; Clementi, A.; Brocca, A.; de Cal, M.; Vescovo, G.; Granata, A.; Ronco, C. The hemodynamic and nonhemodynamic
crosstalk in cardiorenal syndrome type 1. Cardiorenal Med. 2014, 4, 103–112. [CrossRef] [PubMed]

4. Clementi, A.; Virzì, G.M.; Brocca, A.; de Cal, M.; Pastori, S.; Clementi, M.; Granata, A.; Vescovo, G.; Ronco, C. Advances in the
pathogenesis of cardiorenal syndrome type 3. Oxid. Med. Cell. Longev. 2015, 2015, 148082. [CrossRef]

5. Braam, B.; Joles, J.A.; Danishwar, A.H.; Gaillard, C.A. Cardiorenal syndrome—Current understanding and future perspectives.
Nat. Rev. Nephrol. 2014, 10, 48–55. [CrossRef]

6. Ludwig, C. De Viribus Physicis Secretionem Urinae Adjuvantibus: Commentatio Quam Pro Venia Legendi Gratioso Medicorum
Marburgensium Ordini. Elwert. 1842. Available online: https://books.google.de/books?id=5bBSAAAAcAAJ&printsec=
frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 17 May 2022).

7. Catalog of Professors of the University of Leipzig/Catalogus Professorum Lipsiensium. Available online: https://research.uni-
leipzig.de/catalogus-professorum-lipsiensium/leipzig/ludwig_1277 (accessed on 17 May 2022).

8. Winton, F.R. The influence of venous pressure on the isolated mammalian kidney. J. Physiol. 1931, 72, 49–61. [CrossRef]
9. Bongartz, L.G.; Cramer, M.J.; Doevendans, P.A.; Joles, J.A.; Braam, B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur.

Heart J. 2005, 26, 11–17. [CrossRef]
10. Cohn, J.N.; Levine, T.B.; Olivari, M.T.; Garberg, V.; Lura, D.; Francis, G.S.; Simon, A.B.; Rector, T. Plasma norepinephrine as a

guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 1984, 311, 819–823. [CrossRef]
11. Francis, G.S.; Cohn, J.N. The autonomic nervous system in congestive heart failure. Annu. Rev. Med. 1986, 37, 235–247. [CrossRef]
12. Keith, M.; Geranmayegan, A.; Sole, M.J.; Kurian, R.; Robinson, A.; Omran, A.S.; Jeejeebhoy, K.N. Increased oxidative stress in

patients with congestive heart failure. J. Am. Coll. Cardiol. 1998, 31, 1352–1356. [CrossRef]

http://doi.org/10.1093/eurheartj/ehp507
http://www.ncbi.nlm.nih.gov/pubmed/20037146
http://doi.org/10.1186/cc13177
http://www.ncbi.nlm.nih.gov/pubmed/24393300
http://doi.org/10.1159/000362650
http://www.ncbi.nlm.nih.gov/pubmed/25254032
http://doi.org/10.1155/2015/148082
http://doi.org/10.1038/nrneph.2013.250
https://books.google.de/books?id=5bBSAAAAcAAJ&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.de/books?id=5bBSAAAAcAAJ&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://research.uni-leipzig.de/catalogus-professorum-lipsiensium/leipzig/ludwig_1277
https://research.uni-leipzig.de/catalogus-professorum-lipsiensium/leipzig/ludwig_1277
http://doi.org/10.1113/jphysiol.1931.sp002761
http://doi.org/10.1093/eurheartj/ehi020
http://doi.org/10.1056/NEJM198409273111303
http://doi.org/10.1146/annurev.me.37.020186.001315
http://doi.org/10.1016/S0735-1097(98)00101-6


J. Clin. Med. 2022, 11, 2896 8 of 9

13. Rauchhaus, M.; Doehner, W.; Francis, D.P.; Davos, C.; Kemp, M.; Liebenthal, C.; Niebauer, J.; Hooper, J.; Volk, H.D.;
Coats, A.J.; et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000, 102, 3060–3067.
[CrossRef]

14. Schlaich, M.P.; Socratous, F.; Hennebry, S.; Eikelis, N.; Lambert, E.A.; Straznicky, N.; Esler, M.D.; Lambert, G.W. Sympathetic
activation in chronic renal failure. J. Am. Soc. Nephrol. 2009, 20, 933–939. [CrossRef]

15. Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [CrossRef]
16. Linhart, C.; Ulrich, C.; Greinert, D.; Dambeck, S.; Wienke, A.; Girndt, M.; Pliquett, R.U. Systemic inflammation in acute cardiorenal

syndrome: An observational pilot study. ESC Heart Fail. 2018, 5, 920–930. [CrossRef]
17. Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H.W. Importance of venous

congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596.
[CrossRef]

18. Mullens, W.; Abrahams, Z.; Skouri, H.N.; Francis, G.S.; Taylor, D.O.; Starling, R.C.; Paganini, E.; Tang, W.H. Elevated intra-
abdominal pressure in acute decompensated heart failure: A potential contributor to worsening renal function? J. Am. Coll.
Cardiol. 2008, 51, 300–306. [CrossRef]

19. Argaiz, E.R.; Rola, P.; Gamba, G. Dynamic Changes in Portal Vein Flow during Decongestion in Patients with Heart Failure and
Cardio-Renal Syndrome: A POCUS Case Series. Cardiorenal Med. 2021, 11, 59–66. [CrossRef]

20. Pellicori, P.; Platz, E.; Dauw, J.; Ter Maaten, J.M.; Martens, P.; Pivetta, E.; Cleland, J.; McMurray, J.; Mullens, W.;
Solomon, S.D.; et al. Ultrasound imaging of congestion in heart failure: Examinations beyond the heart. Eur. J. Heart
Fail. 2021, 23, 703–712. [CrossRef]

21. Husain-Syed, F.; Birk, H.W.; Ronco, C.; Schörmann, T.; Tello, K.; Richter, M.J.; Wilhelm, J.; Sommer, N.; Steyerberg, E.;
Bauer, P.; et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure. J. Am. Heart Assoc.
2019, 8, e013584. [CrossRef]

22. Pallangyo, P.; Fredrick, F.; Bhalia, S.; Nicholaus, P.; Kisenge, P.; Mtinangi, B.; Janabi, M.; Humphrey, S. Cardiorenal Anemia
Syndrome and Survival among Heart Failure Patients in Tanzania: A Prospective Cohort Study. BMC Cardiovasc. Disord. 2017,
17, 59. [CrossRef]

23. Grassi, G.; Mancia, G.; Esler, M. Central and Peripheral Sympathetic Activation in Heart Failure. Cardiovasc. Res. 2021, cvab222.
[CrossRef]

24. Zucker, I.H.; Xiao, L.; Haack, K.K.V. The Central RAS and Sympathetic Nerve Activity in Chronic Heart Failure. Clin. Sci. 2014,
126, 695–706. [CrossRef]

25. Biancardi, V.C.; Stern, J.E. Compromised blood-brain barrier permeability: Novel mechanism by which circulating angiotensin II
signals to sympathoexcitatory centres during hypertension. J. Physiol. 2016, 594, 1591–1600. [CrossRef]

26. Schweda, F.; Friis, U.; Wagner, C.; Skott, O.; Kurtz, A. Renin release. Physiology 2007, 22, 310–319. [CrossRef]
27. Siragy, H.M.; Carey, R.M. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am. J. Nephrol.

2010, 31, 541–550. [CrossRef]
28. Weir, M.R.; Bakris, G.L.; Gross, C.; Mayo, M.R.; Garza, D.; Stasiv, Y.; Yuan, J.; Berman, L.; Williams, G.H. Treatment with patiromer

decreases aldosterone in patients with chronic kidney disease and hyperkalemia on renin-angiotensin system inhibitors. Kidney
Int. 2016, 90, 696–704. [CrossRef]

29. Horwich, T.B.; Kalantar-Zadeh, K.; MacLellan, R.W.; Fonarow, G.C. Albumin levels predict survival in patients with systolic heart
failure. Am. Heart J. 2008, 155, 883–889. [CrossRef]

30. Alves, F.C.; Sun, J.; Qureshi, A.R.; Dai, L.; Snaedal, S.; Bárány, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P. The higher
mortality associated with low serum albumin is dependent on systemic inflammation in end-stage kidney disease. PLoS ONE
2018, 13, e0190410. [CrossRef]

31. Zilles, M.; Betz, C.; Jung, O.; Gauer, S.; Hammerstingl, R.; Wächtershäuser, A.; Vogl, T.J.; Geiger, H.; Asbe-Vollkopf, A.;
Pliquett, R.U. How to Prevent Renal Cachexia? A Clinical Randomized Pilot Study Testing Oral Supplemental Nutrition in
Hemodialysis Patients with and Without Human Immunodeficiency Virus Infection. J. Ren. Nutr. 2018, 28, 37–44. [CrossRef]

32. Rauchhaus, M.; Clark, A.L.; Doehner, W.; Davos, C.; Bolger, A.; Sharma, R.; Coats, A.J.; Anker, S.D. The relationship between
cholesterol and survival in patients with chronic heart failure. J. Am. Coll. Cardiol. 2003, 42, 1933–1940. [CrossRef]

33. Liu, Y.; Coresh, J.; Eustace, J.A.; Longenecker, J.C.; Jaar, B.; Fink, N.E.; Tracy, R.P.; Powe, N.R.; Klag, M.J. Association between
cholesterol level and mortality in dialysis patients: Role of inflammation and malnutrition. JAMA 2004, 291, 451–459. [CrossRef]

34. Anand, I.S.; Gupta, P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation 2018,
138, 80–98. [CrossRef] [PubMed]

35. Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [CrossRef] [PubMed]
36. Hamza, E.; Metzinger, L.; Metzinger-Le Meuth, V. Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney

Disease: A Review. Cells 2020, 9, 2039. [CrossRef] [PubMed]
37. Jankowska, E.A.; Malyszko, J.; Ardehali, H.; Koc-Zorawska, E.; Banasiak, W.; von Haehling, S.; Macdougall, I.C.; Weiss, G.;

McMurray, J.J.; Anker, S.D.; et al. Iron status in patients with chronic heart failure. Eur. Heart J. 2013, 34, 827–834. [CrossRef]
38. Tomosugi, N.; Kawabata, H.; Wakatabe, R.; Higuchi, M.; Yamaya, H.; Umehara, H.; Ishikawa, I. Detection of serum hepcidin in

renal failure and inflammation by using ProteinChip System. Blood 2006, 108, 1381–1387. [CrossRef]

http://doi.org/10.1161/01.CIR.102.25.3060
http://doi.org/10.1681/ASN.2008040402
http://doi.org/10.1159/000368940
http://doi.org/10.1002/ehf2.12327
http://doi.org/10.1016/j.jacc.2008.05.068
http://doi.org/10.1016/j.jacc.2007.09.043
http://doi.org/10.1159/000511714
http://doi.org/10.1002/ejhf.2032
http://doi.org/10.1161/JAHA.119.013584
http://doi.org/10.1186/s12872-017-0497-2
http://doi.org/10.1093/cvr/cvab222
http://doi.org/10.1042/CS20130294
http://doi.org/10.1113/JP271584
http://doi.org/10.1152/physiol.00024.2007
http://doi.org/10.1159/000313363
http://doi.org/10.1016/j.kint.2016.04.019
http://doi.org/10.1016/j.ahj.2007.11.043
http://doi.org/10.1371/journal.pone.0190410
http://doi.org/10.1053/j.jrn.2017.07.003
http://doi.org/10.1016/j.jacc.2003.07.016
http://doi.org/10.1001/jama.291.4.451
http://doi.org/10.1161/CIRCULATIONAHA.118.030099
http://www.ncbi.nlm.nih.gov/pubmed/29967232
http://doi.org/10.1681/ASN.2011111078
http://www.ncbi.nlm.nih.gov/pubmed/22935483
http://doi.org/10.3390/cells9092039
http://www.ncbi.nlm.nih.gov/pubmed/32899941
http://doi.org/10.1093/eurheartj/ehs377
http://doi.org/10.1182/blood-2005-10-4043


J. Clin. Med. 2022, 11, 2896 9 of 9

39. Niebauer, J.; Volk, H.D.; Kemp, M.; Dominguez, M.; Schumann, R.R.; Rauchhaus, M.; Poole-Wilson, P.A.; Coats, A.J.; Anker, S.D.
Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet 1999, 353, 1838–1842. [CrossRef]

40. Ak, A.; Porokhovnikov, I.; Kuethe, F.; Schulze, P.C.; Noutsias, M.; Schlattmann, P. Transcatheter vs. surgical aortic valve
replacement and medical treatment: Systematic review and meta-analysis of randomized and non-randomized trials. Herz 2018,
43, 325–337. [CrossRef]

41. Freeman, P.M.; Protty, M.B.; Aldalati, O.; Lacey, A.; King, W.; Anderson, R.A.; Smith, D. Severe symptomatic aortic steno-sis:
Medical therapy and transcatheter aortic valve implantation (TAVI)-a real-world retrospective cohort analysis of out-comes and
cost-effectiveness using national data. Open Heart 2016, 3, e000414.

42. Pilgrim, T.; Wenaweser, P.; Meuli, F.; Huber, C.; Stortecky, S.; Seiler, C.; Zbinden, S.; Meier, B.; Carrel, T.; Windecker, S. Clinical
outcome of high-risk patients with severe aortic stenosis and reduced left ventricular ejection fraction undergoing medical
treatment or TAVI. PLoS ONE 2011, 6, e27556. [CrossRef]

43. Mack, M.J.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.K.; Grayburn, P.A.; Rinaldi, M.J.;
Kapadia, S.R.; et al. 3-Year Outcomes of Transcatheter Mitral Valve Repair in Patients with Heart Failure. J. Am. Coll. Cardiol.
2021, 77, 1029–1040. [CrossRef]

44. Kang, D.H.; Kim, J.H.; Rim, J.H.; Kim, M.J.; Yun, S.C.; Song, J.M.; Song, H.; Choi, K.J.; Song, J.K.; Lee, J.W. Comparison of early
surgery versus conventional treatment in asymptomatic severe mitral regurgitation. Circulation 2009, 119, 797–804. [CrossRef]

45. Taramasso, M.; Benfari, G.; van der Bijl, P.; Alessandrini, H.; Attinger-Toller, A.; Biasco, L.; Lurz, P.; Braun, D.; Brochet, E.;
Connelly, K.A.; et al. Transcatheter Versus Medical Treatment of Patients With Symptomatic Severe Tricuspid Regurgitation.
J. Am. Coll. Cardiol. 2019, 74, 2998–3008. [CrossRef]

46. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.;
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