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Abstract
The development of sequencing technology has promoted the expansion of cancer
genome data. It is necessary to identify the pathogenesis of cancer at the molecular level
and explore reliable treatment methods and precise drug targets in cancer by identifying
carcinogenic functional modules in massive multi‐omics data. However, there are still
limitations to identifying carcinogenic driver modules by utilising genetic characteristics
simply. Therefore, this study proposes a computational method, NetAP, to identify driver
modules in prostate cancer. Firstly, high mutual exclusivity, high coverage, and high to-
pological similarity between genes are integrated to construct a weight function, which
calculates the weight of gene pairs in a biological network. Secondly, the random walk
method is utilised to reevaluate the strength of interaction among genes. Finally, the
optimal driver modules are identified by utilising the affinity propagation algorithm.
According to the results, the authors’ method identifies more validated driver genes and
driver modules compared with the other previous methods. Thus, the proposed NetAP
method can identify carcinogenic driver modules effectively and reliably, and the
experimental results provide a powerful basis for cancer diagnosis, treatment and drug
targets.

1 | INTRODUCTION

Cancer genomics research can reveal much unknown infor-
mation about cancer [1–4]. It can not only explore the path-
ogenesis of cancer in‐depth but also provide more drug targets
for the clinical treatment of cancer by reasoning about the
interaction between genes [5–7]. It also lays the foundation for
the development of precision medicine [8, 9]. The in‐depth
development of cancer genomics research has enriched
genomic data, thus enabling researchers to design efficient and
effective computational methods to study cancer‐related ge-
nomics data systematically [10–13].

Vandin et al. [14] proposed the Dentrix algorithm to identify
oncogenic driver pathways by designing the greedy algorithm
based on gene mutation data. However, the method can only

obtain local optimal solutions, and the number of genes in a
driver pathway must be specified in advance. Therefore, the
application of the Dentrix algorithm is limited to a certain
extent. To solve the problems of the Dentrix algorithm, Zhao
et al. proposed the MDPFinder algorithm [10] to identify
oncogenic driver pathways in which a linear programming al-
gorithm was applied to solve the maximum weight submatrix
problem based on somatic mutation and gene expression data.
Subsequently, Leisersen et al. proposed the Multi‐Dentrix al-
gorithm [11] in order to identify multiple driver pathways
simultaneously that satisfy high mutual exclusivity and high
coverage. However, some parameters of the algorithm need to
be preset. Therefore, the algorithm lacks generality.

As previously identified, protein plays an important role in
cell structure and cell cycle [15–18]. Disruption of cell structure
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and cell cycle results in uncontrolled cell proliferation. There-
fore, normal cells may transform into cancer cells [19, 20]. Given
that abundant protein–protein interaction (PPI) data have been
augmented by proteomics experiments, it is better to identify
oncogenic driver modules based on PPI networks [21–24].

MCODE is a typical clustering algorithm to identify cancer
functional modules based on PPI networks [21]. Firstly, the
algorithm calculates the density value of the node to get the
weight of the node. Secondly, a cluster is expanded centred on
the node with the highest weight value. Finally, the algorithm
filters the non‐density subgraphs to identify optimal functional
modules in cancer. However, MCODE cannot efficiently
calculate the interaction strength between proteins. The algo-
rithm identifies passenger proteins associated with high den-
sities of proteins in the network, which lead to a decrease in the
accuracy of the method. Instead, ClusterONE [22] calculates
the strength of protein–protein interactions by constructing a
weighted network, and the greedy strategy is applied to the
algorithm to partition a set of proteins with high cohesion into
functional modules. However, the ClusterONE algorithm can
be biased due to overreliance on cohesive formulations. For
example, the addition of a node may lead to a decrease in the
cohesion of a candidate functional module; however, the node
should be classified as a member of a functional module.

It is difficult to accurately identify functional modules using
only proteomic data or genomics data. In this study, a compu-
tationalmethod,NetAP, is proposed to identify oncogenic driver
modules based on a multi‐omics biological network. Firstly, a
biological network is constructed by integrating gene mutation,
copy number variation (CNV), and PPI network data. The
interaction weights among genes in the biological network are
calculated using the weight function, which integrates the simi-
larity of topology among gene nodes and the two characteristics
of high coverage and mutual exclusivity. Secondly, the random
walk method is used to reevaluate the strength of the interaction
among genes to avoid adding unnecessary passenger genes to the
driver modules. Finally, the affinity propagation algorithm is
applied to obtain the optimal driver modules. Furthermore, we
analyse the contribution of the similarity index and randomwalk
method tomeasure the performance of the NetAPmethod. The
accuracy, effectiveness, and ability of the NetAP method to
identify validated driver genes are compared with other previous
methods in prostate cancer. Meanwhile, the evidence that the
optimal driver modules identified by NetAP play an important
role in prostate cancer and rational speculation that facilitates the
study of cancer pathogenesis and drug targets is elucidated.

2 | METHODS

2.1 | Mutual exclusivity and coverage

Previous studies have shown that the driver modules have two
key characteristics, namely high coverage and high mutual ex-
clusivity [14], which have been widely used in carcinogenic
driver module identification [25–28]. The definitions of
coverage and mutual exclusivity are described in this section.

In this study, gene mutation and CNV data are fused on
the basis of the PPI network data, which are stored as a binary
matrix Am�n with m rows and n columns, where m rows
represent m patient samples and n columns represent n genes.
If there is a mutation or copy number variation in the j‐th gene
of the i ‐th sample, Aij = 1, otherwise, Aij = 0. In this paper,
G = (V, E) represents the PPI network. Each vertex ui 2 V in
G represents a protein, and each undirected edge

�
ui; uj

�
2 E

corresponds to the interaction among proteins. If the genes in
Am�n correspond to nodes ui in the PPI network, the genes
are mapped to the PPI network. Let Si denote the set of
samples in which gene gi is mutated. V represents the set of
mutated genes. M ⊆ V is a subset of mutated genes. For any
pair of genes, gi, gj 2 M, gi ≠ gj, if Si ∩ Sj = ∅, the genes in M
are mutually exclusive.

The mutual exclusivity of gene subset M is represented as
follows:

EDðMÞ ¼

�
�[∀gi2MSi

�
�

P
∀gi2MjSij

ð1Þ

The coverage of gene subset M is represented as follows:

CDðMÞ ¼

�
�[∀gi2M Si

�
�

�
�[∀gi2V Si

�
�

ð2Þ

2.2 | Similarity definition

The local area network is composed of a gene node and their
neighbour nodes in the biological network, and its abnormality
may have an impact on biological functions. Therefore, the
influence of gene nodes on biological functions can be ana-
lysed by evaluating the similarity between adjacent nodes in the
local area network. In this paper, the gene node similarity
metrics are constructed utilising the Jensen–Shannon (JS)
divergence [29, 30], where the JS divergence is calculated based
on the discrete probability set [28, 31].

Firstly, a local area network with the gene node as the
centre and the one‐step range of the centre node as the radius
is constructed. Next, the discrete probability of each gene node
in the local area network is calculated to construct a discrete
probability set. In this step, let di be the degree of the i − th
gene node and dmax be the maximum node degree. Assume
that there are N elements in the probability set of each node,
N = dmax + 1.

In the local network of gene node gi, Dgi is the sum of
node degrees of gi, and the calculation formula is as follows:

Dgi ¼
Xn

j¼1

dj ð3Þ

where n represents the number of genes and dj represents
the degree of the j‐th gene node.

The discrete probability of gene node gi is calculated as
follows:
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pðiÞ ¼
di
Dgi

ð4Þ

The discrete probability set p(i) consists of the standardised
discrete probabilities of all gene nodes in the local area network
sorted from small to large, which is expressed as follows:

PðiÞ ¼ ðpð1Þ; pð2Þ;…; pðnÞ;…; pðNÞÞ ð5Þ

where p(n) represents the discrete probability value of the
n ‐ th gene node (n ≤ N ).

Secondly, the Kullback–Leibler (KL) divergence between
gene nodes is calculated using the constructed discrete prob-
ability set, which is a measure of the asymmetry of the dif-
ference between the probability distributions p(x) and Q(x). In
this paper, for two adjacent nodes gi and gj, p(x) and Q(x)
correspond to different probability sets p(i) and p( j ) with the
same number of elements, respectively. The KL divergence is
calculated as follows:

DKLðPðiÞkPðjÞÞ ¼
XN

k¼1

PiðkÞlog
PiðkÞ
PjðkÞ

ð6Þ

Thirdly, the JS divergence value between nodes gi and gj is
calculated based on the KL divergence value. The JS diver-
gence solves the asymmetry of the KL divergence, which is
calculated as follows:

DJS ðPðiÞkPðjÞÞ ¼
1
2
DKL

��

PðiÞÞk
PðiÞ þ PðjÞ

2

�

þ
1
2
DKL

��

PðjÞÞk
PðiÞ þ PðjÞ

2

� ð7Þ

Finally, the similarity metric SIM(gi, gj) is constructed to
analyse the topological similarity between gene pair gi and gj,
which is calculated as follows:

SIM
�
gi; gj

�
¼ 1 −DJS ðPðiÞkPðjÞÞ ð8Þ

The value range of SIM(gi, gj) is (0,1), and SIM(gi, gj) = 1
means that two gene nodes in the network have the same to-
pological structure.

In particular, we set a threshold θ to strengthen the in-
fluence of similarity on edge weights. If SIM(gi, gj) < θ, the
weight value of the edge is assigned as 0. We discuss the value
of the threshold in the parameter setting section of this study.

2.3 | Carcinogenic driver module
identification

2.3.1 | Edge weighted network construction

G = (V, E) represents the PPI network, where
V ¼

�
g1; g2; g3;…; gn

�
represents the set of abnormal genes

corresponding to the vertices in the PPI network, and

E ¼
n
e¼

�
gi; gj

�o
represents the set of protein–protein

interaction relationships.
Create a weighted undirected network graph Gω. Set the

weight ω
�
gi
�
¼ CD

� �
gi
��

, for each vertex gi 2 V, and the
larger the coverage value of the gene, the larger the weight
value of the vertex.

Taking into account the increased chance of the coexis-
tence of a gene and its surrounding genes, the set of gene node
gi and its surrounding gene nodes is taken as the local area
network Ne

�
gi
�
in this study, which is expressed as follows:

Ne
�
gi
�
¼
�
gi
�
[
n
[∀ðgi;gjÞ2Egj

o
ð9Þ

where the surrounding genes refer to the genes within one
step of a core gene.

In order to balance the mutual exclusivity between genes,
the mutual exclusivity of gene pairs ED (gi, gj) is determined as

the average of ED
�
Ne
�
gi
��

and ED
�
Ne
�
gj
��

. The calcula-

tion formula is as follows:

ED
�
gi; gj

�
¼
ED
�
Ne
�
gi
��
þ ED

�
Ne
�
gj
��

2
ð10Þ

To reduce the chance that a single gene with larger
coverage dominates the edge weights, the product of the two

gene coverages determines the gene pair coverage CD
�
gi; gj

�
.

The calculation formula is as follows:

CD
�
gi; gj

�
¼ CD

� �
gi
��
� CD

�n
gj
o�

ð11Þ

Based on the characteristics of high mutual exclusivity
and high coverage and the assumption of high topological
similarity within the same driver module, we have a trade‐off
between the characteristics of mutual exclusivity and coverage
of genes within the same driver module. Therefore, the
weights of gene pairs in the constructed network ω(gi, gj) are
calculated by the product of similarity and the harmonic
mean of mutual exclusivity and coverage. The calculation
formula is as follows:

ω
�
gi; gj

�

¼

8
>>>>>>>>>><

>>>>>>>>>>:

2� SIM
�
gi; gj

�

1

ED
�
gi; gj

�þ
1

CD
�
gi; gj

�
;

ED
�
gi; gj

�
≠ 0;

CD
�
gi; gj

�
≠ 0;

SIM
�
gi; gj

�
≥ θ;

0; otherwise

ð12Þ

The pseudocode of edge weighted network construction is
provided in Algorithm 1.
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Algorithm 1 Edge weighted network construction

Input: G(V, E), Si, θ
Output: Gω
Initialization : j¼ jEj;i¼ 1
2: for i to j do
3: compute ED(gi, gj), CD(gi, gj), SIM(gi,

gj)
4: if ED(gi, gj) ≠ 0 [ CD(gi, gj) ≠ 0 [ SIM(gi,

gj) ≥θ then
5: compute ω(gi, gj)
6: else ω(gi, gj) = 0
7: genenetwork[gi][gj] = ω(gi, gj)
8: i = i + 1

2.3.2 | Random walk process

The random walk method can further mine the relation-
ship among nodes in networks [32, 33]. In biological
networks, the strength of interactions among genes [34–36]
can be reassessed by random walk methods. Once the
weighted undirected network graph Gω is constructed, the
random walk method is executed on Gω. The random walk
can be described as a network propagation process. That
is, at the beginning, the traverser walks from any vertex gi
on Gω to the neighbour vertex gj of gi with the proba-
bility of α. Meanwhile, the traverser can also randomly

jump to any other vertex gs in Gω with probability 1 − α.
The weight distribution of Gω is updated after each
random walk process. Let the weight distribution at time t
be denoted by Ft. The updated weight distribution is used
as input to the next random walk process, which iterates
repeatedly until a steady state is reached. The iteration
formula is as follows:

Ftþ1 ¼
�
1 − α
n

⋅ I þ αF0
�

⋅ Ft ð13Þ

where F0 is a matrix with initial weight values, that is, F0 = Gω,
I is the identity matrix, and n is the number of nodes in the
network. α is the random walk probability, which is calculated
as follows:

α
�
gi; gj

�
¼

8
>>><

>>>:

ω
�
gi; gj

�

P
kω
�
gk; gj

�;
�
gi; gj

�
2 E

0; otherwise

ð14Þ

The weight of each gene pair gi and gj (i ≠ j) can be
updated to F by using the random walk method. Finally, a
weighted undirected graph Gd is constructed.

2.3.3 | Driver module set identification

Each gene in the constructed weighted undirected graph Gd
has dual features. In other words, each gene can be regarded
as a potential clustering centre of a cluster and can also be
classified as a member of a cluster with another clustering
centre. Responsibility and availability are described as the
duality of genes in the clustering process [37]. That is, for
each gene pair (gi, gk), responsibility represents the degree
that gene gk is the clustering centre of gene gi, and availability
represents the degree that gene gi supports gene gk as the
clustering centre of gene gi. The calculation formulas are as
follows, respectively:

R
�
gi; gk

�
¼ C

�
gi; gk

�
−maxgk0≠gk

�
A
�
gi; gk0

�
þ C

�
gi; gk0

��

ð15Þ

According to Formula 15 and 16, the larger the value of
R(gk, gk) + A(gk, gk), the larger the possibility that gene gk
is the clustering centre of gene gi and the larger the pos-
sibility that gene gi is classified as a member of the clus-
tering centre gk.

In this study, the idea of affinity propagation clustering is
used to identify driver modules in prostate cancer in the
following three steps:

A. Input matrix construction. A matrix consisting of corre-
lations among gene nodes is created as the input. The
correlation value is determined by the negative Euclidean
distance between the gene nodes gi and gk in Gd [37]. The
calculation formula is as follows:

C
�
gi; gk

�
¼ −

�
�gi − gk

�
�2 ð17Þ

A
�
gi; gk

�
¼

8
><

>:

min
8
><

>:
0;R

�
gk; gk

�
þ
X

gi0∉ðgi;gkÞ
max

�
0;R

�
gi0 ; gk

��o
gi ≠ gj

X

gi0≠gkÞ
max

�
0;R

�
gi0 ; gk

��
; gi ¼ gj

ð16Þ
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According to Formula 17, the larger the value of C (gi, gk), the
smaller the distance between genes, and the stronger the cor-
relation between gi and gk. In this case, gi and gk tend to be in
the same driver module.
B. Initialisation. The responsibility matrix and availability

matrix are created using Formulas 15 and 16, which
contain the responsibility and availability information of
genes in the iterative process, respectively. Given that the
iterative process can only be started from zero matrices, the
two matrices are initialised to zero. Shocks are easily
generated in the next iterative process, thus the damping
coefficient λ is set for the convergence effect of the control
method [37]. The iteration formula is as follows:

Rtþ1
�
gi; gk

�
¼ λ� Rt

�
gi; gk

�
þ ð1 − λÞ � Rtþ1

�
gi; gk

�
ð18Þ

Atþ1
�
gi; gk

�
¼ λ� At

�
gi; gk

�
þ ð1 − λÞ � Atþ1

�
gi; gk

�
ð19Þ

The responsibility matrix and the availability matrix will be
updated after each iteration. When the value of R
(gk, gk) + A (gk, gk) is the maximum`, the clustering centre of
gene gi can be decided to be gene gk. If gi = gk, then gi is the
clustering centre of the module to which it belongs. Other-
wise, gi is the member gene of the cluster where gk is the
clustering centre.
C. Formulas 18 and 19 are executed alternately. Gene nodes

will be divided into corresponding clustering centres until
the modules no longer change.

The pseudocode of edge weighted network construction is
provided in Algorithm 2.

Algorithm 2 Driver module set identification

Input: Cðgi;gkÞgi;gk2f1;2;3;…;Ng; λ; p
Output: clustering results C
1: Initialisation: R(gi, gk) = 0, A(gi, gk) = 0
2: repeat
3: Rt+1(gi, gk) = λ � Rt(gi, gk) + (1 − λ) �

Rt+1(gi, gk)
4: At+1(gi, gk) = λ � At(gi, gk) + (1 − λ) �

At+1(gi, gk)
5: until Rt+1(gi, gk) = Rt(gi, gk) and At+1(gi,

gk) = At(gi, gk)
6: Ci = argmaxk[At+1(gi, gk) + Rt+1(gi, gk)]
7: C = (C1, C2.C3, …, Ci, …, CN)

3 | DATA PREPROCESSING

This study integrates multiple omics data, including gene
mutation data, CNV data of prostate adenocarcinoma (PRAD)
from TCGA and human PPI network data from the human
protein reference database (HPRD) [38].

3.1 | PRAD data preprocessing

Some passenger genes in the PRAD database are filtered to
simplify the gene network. The specific screening operations
are as follows: Delete the low‐mutation genes that are not
higher than the mutation in one sample from the genetic
mutation data of 495 PRAD patient samples containing 40,543
genes. Delete the low‐variable genes that are less than 15% of
the samples from the CNV data of 493 PRAD patient samples
containing 24,776 genes. Finally, 489 samples containing 507
candidate driver genes are obtained. The results of PRAD data
preprocessing are shown in Table 1.

3.2 | The combination of genes and the
HPRD network

It is difficult to accurately identify functional modules using
only proteomic or genomic data. Therefore, candidate driver
genes are mapped to the human PPI network from HPRD,
which consists of 14,213 proteins and 173,231 interaction re-
lationships. Finally, a gene network consisting of 178 proteins
and 251 interaction relationships is obtained.

4 | RESULTS

4.1 | Evaluation metrics

The three evaluation metrics of Calinski–Harabaz Score, ac-
curacy and F‐measure are introduced to evaluate the results of
the NetAP method. The Calinski–Harabaz Score is a reference
for evaluating the quality of the clustering method [39]. The
higher the Calinski–Harabaz Score, the better the clustering
results. Accuracy and F‐measure are the most widely used to
evaluate the clustering effect. Generally, the higher the accu-
racy, the better the clustering method. F‐measure balances the
precision rate and recall rate to evaluate the effectiveness of the
method scientifically. The higher the F‐measure, the stronger
the ability of the identified driver modules to be enriched into

TABLE 1 Results of prostate adenocarcinoma (PRAD) data preprocessing

Type of data

Before filtering After filtering Results

Number of
samples Number of genes

Number of
samples Number of genes

Number of
samples Number of genes

Gene mutation data 495 40,543 495 4618 489 507

Copy number variation data 493 24,776 493 6139
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known biological pathways. Accuracy and F‐measure are
calculated as follows:

Accuracy¼
TP þ TN

TP þ TN þ FP þ FN
ð20Þ

Precision¼
TP

TP þ FP
ð21Þ

Recall ¼
TP

TP þ FN
ð22Þ

F −measure¼
2� Precision� Recall
Precisionþ Recall

ð23Þ

In this study, the validated driver gene sets in the driver
modules are set as ground truth. The validated driver genes are
obtained from the tumour driver gene database, NCG 7.0 [43].
The enrichment results of predicted driver modules and the
‘ground truth’ of driver modules are obtained by the functional
enrichment analysis tool, DAVID. Driver modules with p‐value
< 0.05 are set as positive classes. True Negative (TN) indicates
the number of modules in which negative classes are predicted
to be negative classes; True Positive (TP) indicates the number
of modules in which positive classes are predicted to be pos-
itive classes; False Negative (FN) indicates the number of
modules in which positive classes are predicted to be negative
classes; and False Positive (FP) indicates the number of
modules in which negative classes are predicted to be positive
classes.

4.2 | Parameter settings

For the NetAP method, three important parameters of θ, p and
λ need to be set. To determine the value range of the similarity
threshold θ, we check the similarity values of all edges and plot
the distribution of the similarity values of all edges shown in
Figure 1a. It can be seen from the figure that the similarity
value of each edge is greater than 0.45. Therefore, the values of
θ are set to be {0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95}.

Figure 1b shows the Calinski–Harabaz score with different
θ after running NetAP. We observe that the Calinski–Harabaz
score is the maximum when θ = 0.9. Therefore, θ = 0.9.

The threshold p plays a crucial role in generating an
appropriate number of clusters. In general, the median value of
the correlation degree is selected as the value of p. To ensure
that the value of p is set reasonably, the range of p is set to be
{median/2, median, 2 � median}. Additionally, the conver-
gence effect of the NetAP method is controlled by λ, and the
range of λ is {0.5, 0.6, 0.7, 0.8, 0.9} [37].

To obtain the optimal results of the NetAP method, the
grid optimisation strategy is used to obtain the appropriate
values of parameters p and λ. It can be seen from Figure 1c
that the NetAP method obtains the maximum Calinski–
Harabaz score with p = median and λ = 0.6. It means that

NetAP has the best clustering effect in this case. Therefore, we
set p = median and λ = 0.6.

4.3 | Influence of the initial input gene set

To investigate the effect of different choices of the initial input
gene set on module identification, we applied the NetAP
method to gene mutation data, CNV data and combined data
in prostate cancer. Subsequently, the results are evaluated using
the Calinski–Harabaz score. It can be seen from Table 2 that
the NetAP method achieves a better Calinski–Harabaz score
using the combined data than using the single gene mutation
data or the single CNV data. The results show that the module

F I GURE 1 Parameter settings
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recognition effect of the NetAP method is higher on combined
data than on single data. We can conclude that the gene mu-
tation data and CNV data complement each other and both
contribute to the reconstruction of the biological network.
Therefore, multi‐omics data is more helpful to improve the
effect of module identification than single data.

4.4 | Contribution of random walk and
similarity

The method framework of the similarity metric (Similarity) and
non‐similarity metric (Non‐Similarity) are introduced to illus-
trate the contribution of similarity to the NetAP method. In
addition, the random walk (RW) method and the RW and
restart random walk (RRW) methods are compared to illustrate
the contribution of the random walk method to the NetAP
method. The restart probability of the RRW method with
β 2 (0,1), the three representative values of β are set as 0.1, 0.5
and 0.9, respectively. In this study, the method that uses the
random walk is represented by RW, and the method that does
not use the random walk is represented by NRW. According to
different values of β, the methods that use the restart random
walk are represented by RRW_β01, RRW_β05, and RRW_β09,
respectively. The results using the above methods are shown in
Figure 2.

The Calinski–Harabaz scores of the five methods are uti-
lised to evaluate the contribution of random walk, and the
results are shown in Figure 2. Within the framework of the
similarity metric, the scores of the RW and NRW are 641.31
and 0, respectively. The score of the RW method is higher than
that of the NRW method significantly. In addition, the score of
the RW method is 91 times, 471.4 times, and 616.6 times
higher than that of RRW_β01, RRW_β05, and RRW_β09,
respectively. Similarly, the scores of the five methods are also
compared within the framework of non‐similarity. The RW
method achieves the highest score of 97.40. The scores of the
RRW_β05 and the RRW_β09 methods are 0, and the score of
the RW method is 22.8 times and 62 times higher than that of
the RRW_β01 method and NRW method, respectively.
Therefore, the random walk method has a significant promo-
tion on the performance within the two frameworks, and it is
better than the restart random walk method.

The contribution of the similarity metric is shown in
Figure 2. The scores of the five methods within the similarity
metric framework and the non‐similarity framework are
compared. The scores of the RW method and RRW_β01
method increase by 6.6 times and 1.7 times, respectively, and
the scores of the RRW_β05 and RRW_β09 methods increase
from 0 to 1.36 and 1.04, respectively. Although the framework
of the similarity metric does not perform well in the NRW
method, the similarity metric improves the performance of the

NetAP method to a great extent. In conclusion, ignoring either
similarity or random walk may adversely affect the perfor-
mance of the NetAP method. We can conclude that both the
similarity metric and the random walk method are helpful to
improve the performance of the NetAP method. It shows that
it is reasonable to consider the similarity metric and random
walk method in the NetAP method.

4.5 | Identification proficiency verification

We run the MCODE [21], ClusterONE [22], OH‐PIN [40],
HC‐PIN [41] and NetAP methods in prostate cancer data from
TCGA. MCODE identifies only one effective driver module. It
means that the MCODE method does not have good data
compatibility and effectiveness. Therefore, the results of
ClusterONE, OH‐PIN, HC‐PIN and NetAP are compared in
Figure 3. It can be seen that the accuracy of the NetAP method
is 11%, 4% and 11% higher than that of ClusterONE, OH‐
PIN and HC‐PIN, respectively. The F‐measure of the
NetAP method is 1%, 1% and 18% higher than that of the
other three methods, respectively. The experimental results
show that the NetAP method is more accurate and effective

TABLE 2 Results of the NetAP
algorithm with different initial input data sets

Gene mutation data CNV data Gene mutation ∪ CNV data

Calinski–Harabaz score 1.33 230.12 641.31

F I GURE 2 The results of the five methods

F I GURE 3 Accuracy and F‐measure of the NetAP method
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than MCODE, ClusterONE, OH‐PIN and HC‐PIN. There-
fore, the NetAP method shows a better ability to identify
driver modules in prostate cancer compared with other pre-
vious competitive methods.

4.6 | Comparison of ability to identify
validated driver genes

In order to evaluate the ability of different methods to identify
driver genes and driver modules, we compare the gene sets
identified by different algorithms with a list of validated cancer
driver genes [42]. Firstly, the list of cancer driver genes is
downloaded from the commonly used tumour driver gene
database, NCG 7.0, including 3177 validated cancer driver
genes [43]. Secondly, 55 validated prostate cancer driver genes
are screened out from NCG as a benchmark to analyse cancer
driver genes identified by the five algorithms [42]. The com-
parison of the identification results with the validated driver
genes from NCG is shown in Table 3. The results show that
the NetAP and HC‐PIN identify the same number of validated
cancer driver genes, which is higher than the number of driver
genes identified by the MCODE, ClusterONE and OH‐PIN
methods. The driver genes identified by NetAP have the
same enrichment in prostate cancer as those by the HC‐PIN
and have higher enrichment in prostate cancer than those by
the other three methods. Therefore, the NetAP has a strong
ability to identify driver genes.

4.7 | Comparison of the results of five
clustering methods

The results of applying the MCODE, ClusterONE, HC‐PIN,
OH‐PIN and NetAP methods to prostate cancer data from

TCGA are shown in Table 4, where the effective modules are
driver modules with p‐value<0.05 and the module size is ≥ 3
[27, 28]. It can be seen from Table 4 that both the HC‐PIN
and NetAP methods identify more candidate driver genes
than the other three methods, which indicates that the HC‐
PIN and NetAP methods have a better ability to capture
driver genes. However, HC‐PIN identifies fewer candidate
driver modules than the NetAP method, because there are
large driver modules identified by the HC‐PIN method. The
large driver modules are not conducive to clinical drug target
experiments. It can be seen that the OH‐PIN method has the
same situation as the HC‐PIN method. Meanwhile the
NetAP method identifies a large number of candidate driver
modules, which is different from the HC‐PIN and OH‐PIN
methods. Therefore, the average size of the modules identi-
fied by the NetAP method is more appropriate [27]. In
addition, the NetAP and ClusterONE methods identify a
larger number of effective driver modules compared with the
other three methods. However, the effective driver modules
identified by the NetAP method have a smaller p‐value
compared with the ClusterONE method. It shows that the
driver modules identified by the NetAP method are more
statistically significant. In summary, the NetAP method
identifies more candidate driver genes, candidate driver
modules and effective driver modules compared with other
previous competitive methods. Moreover, the driver modules
identified by the NetAP method have an appropriate size
and are more statistically significant than other previous
competitive methods.

4.8 | Module analysis

Seven driver modules with statistical significance are identified
by the NetAP method in prostate cancer. They are analysed in

TABLE 3 Results of different methods to identify validated driver genes

Methods The number of genes Validated driver genes in prostate cancer p‐value

MCODE 1 TP53 N/A

ClusterONE 3 CHD1 NCOR1 TMPRSS2 N/A

OH‐PIN 8 APC ATM BRAF BRCA2 EPHA7 NCOR1 PTEN TP53 2.09E‐03

HC‐PIN 11 APC ATM BRAF BRCA2 EPHA7 NCOR1 PIK3CA PTEN RB1 TMPRSS2 TP53 5.30E‐08

NetAP 11 APC ATM BRAF BRCA2 CDKN1B EPHA7 NCOR1 PTEN RB1 TMPRSS2 TP53 5.30E‐08

TABLE 4 Results of different methods in prostate cancer

Methods
Number of candidate
driver genes

Number of candidate
driver modules

Average size of a
module

Number of effective
driver modules

Optimal p‐value for effective
driver module

MCODE 8 3 2.67 1 2.60E‐04

ClusterONE 50 12 4.17 7 1.10E‐06

OH‐PIN 54 3 18.00 3 4.10E‐15

HC‐PIN 128 8 16.13 6 4.80E‐15

NetAP 118 25 4.72 7 4.10E‐15
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detail and their roles in the development and progression of
prostate cancer are elucidated.

4.8.1 | TP53 module

The TP53 module containing 49 genes is a critical driver
module, and its network structure is shown in Figure 4a. The
optimal p‐value of the TP53 module is 4.1E‐15 by using
DAVID, which shows that the internal genes of the TP53

module have strong biological relevance and statistical signifi-
cance. 10 statistically significant biological pathways closely
related to the development and progression of prostate cancer
are shown in Table 5. Many driver genes in the TP53 module
are included in each biological pathway, showing that the TP53
module plays an important role in prostate cancer.

We analyse three signalling pathways, including the PI3K‐
Akt signalling pathway, FoxO signalling pathway and Wnt
signalling pathway, in which the TP53 module has a significant
enrichment. It can be seen from Table 5 that the p‐value of the

F I GURE 4 Optimal driver modules

TABLE 5 Biological pathways significantly enriched for TP53 modules

Term Count p‐value Genes

PI3K‐Akt signalling pathway 12 2.68E‐06 GSK3B, FLT1, LAMA1, LAMA4, ITGA2, LAMA3, ITGA2B, PTEN, TP53,
PTK2, EGFR, FGFR1

Protein kinase activity 9 6.95E‐06 GSK3B, ROCK1, WNK1, PRKDC, LIMK1, BRAF, MAP3K7, PTK2, EGFR

Histone deacetylation 5 6.95E‐06 HDAC2, TBL1XR1, CHD4, CHD3, SIRT1

Protine serine/threonine kinase activity 9 9.74E‐06 GSK3B, ROCK1, WNK1, PRKDC, LIMK1, LMTK2, BRAF, ATM, MAP3K7

FoxO signalling pathway 8 9.92E‐06 SMAD2, SMAD4, BCL6, PTEN, BRAF, ATM, SIRT1, EGFR

Regulation of actin cytoskeleton 9 2.19E‐05 APC, ROCK1, ITGA2, LIMK1, ITGA2B, BRAF, PTK2, EGFR, FGFR1

Prostate cancer 6 1.41E‐04 GSK3B, PTEN, BRAF, TP53, EGFR, FGFR1

Histone deacetylase activity 4 1.83E‐04 HDAC2, CHD4, CHD3, SIRT1

Protein tyrosine kinase activity 5 5.48E‐04 EPHA7, FLT1, PTK2, EGFR, FGFR1

Wnt signalling pathway 6 1.13E‐03 GSK3B, SMAD4, APC, TBL1XR1, MAP3K7, TP53
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TP53 module is 2.68E‐06 in the PI3K‐Akt signalling pathway.
The PI3K‐Akt signalling pathway is involved in and controls
cell proliferation, apoptosis and tumourigenesis. Regulation of
the PI3K‐Akt signalling pathway affects the occurrence and
development of prostate cancer. It has been reported that the
PI3K‐Akt signalling pathway is one of the most important
ways to promote the development of prostate cancer, and its
abnormal activation may promote cell invasiveness and pro-
mote the development of prostate cancer [44]. Similarly, the
FoxO signalling pathway is involved in many cellular physio-
logical events, such as apoptosis and cell cycle control. The
p‐value of the TP53 module is 9.92E‐06 in the FoxO signalling
pathway. It can be seen from Table 5 that the eight members of
the TP53 module participate in the FoxO signalling pathway.
Regulation of the FoxO signalling pathway inhibits the func-
tional reversal of the PC‐3 cell viability, thereby achieving the
purpose of treating prostate cancer [45]. The p‐value of the
TP53 module is 1.13E‐03 in the Wnt signal pathway. It can be
seen from Table 5 that the six members of the TP53 module
are involved in the Wnt signalling pathway. The Wnt signalling
pathway plays an important role in prostate cancer, affects cell
proliferation and polarity, and regulates the expression of
factors related to tumour metastasis and development. It has
been reported that gene mutations or expression changes in
the Wnt signalling pathway are associated with prostate tu-
mours [46]. Therefore, targeting the driver genes in the TP53
module has a better effect on the treatment of prostate cancer.

4.8.2 | RB1 module

The network structure of the RB1 module is shown in
Figure 4b. The RB1 module contains only four driver genes
but is altered in 73.01% of samples, and it means that the RB1
module has extremely high coverage. The p‐value of The RB1
module is 8.93E‐04 in the regulation of lipid kinase activity,
thus it has strong statistical significance. It has been reported
that targeting the lipid kinase PIKfyve can inhibit autophagy
and further affect metabolism and cell death [47]. Advanced
prostate cancer is sensitive to immunotherapy by targeting lipid
kinases. Therefore, it is speculated that the RB1 module is of
great significance in the targeted therapy of prostate cancer.

4.8.3 | ADCY8 module

The network structure of the ADCY8 module is shown in
Figure 4c. The p‐value of the ADCY8 module is 6.7E‐04 in the
Calcium signalling pathway, which indicates that the ADCY8
module has significant enrichment in the Calcium signalling
pathway. It has been reported that the Calcium signalling
pathway is involved in the malignant progression of prostate
cancer cells mediated by androgens [48]. The incidence of
prostate cancer can be reduced by using calcium signalling
pathway blockers. Therefore, the ADCY8 module can affect
the occurrence and development of prostate cancer by regu-
lating the Calcium signalling pathway, and it may have a better

guiding significance for the clinical treatment of prostate
cancer by targeting the ADCY8 module.

4.8.4 | IL6ST module

The network structure of the IL6ST module is shown in
Figure 4d. The IL6ST module participates in the activity of
collagen fibre tissue cells, and its p‐value is 4.64E‐03. Collagen
is composed of collagen fibrous tissue and plays an important
role in bone metastasis of prostate cancer. It has been reported
that bone metastasis of prostate cancer can cause degradation
of only collagen in bone tissue, which leads to the further
development of prostate cancer [49]. Bone metastasis is the
main factor affecting the prognosis of prostate cancer.
Therefore, the IL6ST module may have a great impact on the
bone metastasis of prostate cancer.

4.8.5 | MCC module

The network structure of the MCC module is shown in
Figure 4e. Seven driver genes in the MCC module are involved
in cytoplasmic cell activities, and the p‐value of the MCC
module is 2.91E‐03. It has been reported that the PTOV1
protein in prostate tumour cells is located in the cytoplasm,
and its overexpression can promote the proliferation of pros-
tate tumour cells [50]. Therefore, the cytoplasmic life activities
regulated by the MCC module are related to the occurrence
and development of prostate cancer.

4.8.6 | GALNS module

It can be seen from Figure 4f that the GALNS module con-
tains three interacting genes. The GALNS module participates
in the activity of hydrolase active cells, and its p‐value is 3.55E‐
03. It has been reported that the hydrolase PSA can activate the
growth factors VEGF‐C and VEGF‐D, thereby promoting the
metastasis of prostate cancer [51]. Therefore, the GALNS
module can affect the development of prostate cancer by
regulating the activity of hydrolase.

4.8.7 | STARD13 module

It can be seen from Figure 4g that the STARD13 module is
composed of nine driver genes. Six of them are involved in the
life activities of the cell membrane, and the p‐value of
the STARD13 module is 8.18E‐03. It has been reported that
the related membrane proteins of the targeted protein adipo-
cytes can be found by extracting the subcellular components
on the membrane of prostate cancer cells. Membrane protein
expression is increased in the presence of cholesterol, thereby
promoting the development of prostate cancer [52]. Therefore,
the STARD13 module has a strong driving effect on prostate
cancer.
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4.9 | Survival analysis

To verify the prognostic values of the identified driver
modules for prostate cancer, we test the association of the
major genes in the identified driver modules with patient
survival. It can be seen from Figure 5 that the samples

with TP53, RB1, ADCY8, IL6ST, MCC, GALNS and
STARD13 gene mutations have significantly shorter survival
times than normal samples. Therefore, TP53, RB1,
ADCY8, IL6ST, MCC, GALNS and STARD13 genes play
a vital role in the occurrence and development of prostate
cancer.

F I GURE 5 Survival analysis of major genes in
identified modules
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4.10 | Application in gliomatosis

Gliomatosis is a complex disease that is difficult to treat and
prone to relapse. It is of great significance to deeply explore the
molecular mechanisms in the occurrence and development of
gliomatosis. The findings can guide molecular typing and drug
targets in the development of gliomatosis. Therefore, the
NetAP algorithm is applied to the gliomatosis data from
TCGA, and we obtain 1564 candidate driver genes and 88
driver modules. After DAVID enrichment analysis, we obtain
83 driver modules with high statistical significance and bio-
logical relevance. Most notably, we find that the EGFR gene‐
centred module is statistically significant, and its p‐value is
8.7E‐57. The p‐value of the EGFR module in gliomatosis is
3.8E‐10, which indicates that the EGFR module is highly
enriched in gliomatosis. 22 known genes closely related to
gliomatosis are included in the EGFR module, and they are
involved in the occurrence and development of gliomatosis.
Indeed, more than half of GBM patients have mutations in the
EGFR gene, and anti‐EGFR drugs have been used for GBM
treatment [53]. In addition, a gliomatosis treatment programme
targeting the BRAF gene has been formed clinically [54].
Mutations in PTEN and TP53 can lead to the formation of
gliomatosis [55]. The PIK3CA mutation has been identified as
a novel prognostic marker in gliomatosis [56]. However,
resistance to these agents is a major problem clinically, thus it
might benefit from targeting multiple genes in this module.
Therefore, the EGFR modules identified by the NetAP algo-
rithm may play an important role in the diagnosis and treat-
ment of gliomatosis, and the NetAP algorithm also has a high
ability to identify driver modules from gliomatosis data.

5 | CONCLUSIONS

In this study, we propose a computational method, NetAP, to
identify oncogenic driver modules based on multi‐omics bio-
logical networks. Firstly, this study integrates gene mutation,
CNV, and PPI network data into the biological network, and
then a weight function created based on high coverage, high
mutual exclusivity, and high topological similarity among genes
is used to calculate the interaction weights among genes in
biological networks. Secondly, a random walk method is used
to reassess the strength of interactions among genes. Finally,
the affinity propagation algorithm is used to identify the
optimal driver modules. It is experimentally verified that it is
reasonable to consider the similarity index and random walk
method in the NetAP method, as they improve the perfor-
mance of the NetAP method. The experimental results show
that the NetAP algorithm has higher accuracy, effectiveness
and ability to identify the validated driver genes compared with
the other four previous competing algorithms, and the driver
modules identified by the NetAP method are of suitable size
and have great statistical significance. Moreover, the biological
functions of the driver modules identified in this study are
analysed in detail, and it is confirmed that they are directly or

indirectly related to the occurrence and development of
prostate cancer. Therefore, multi‐omics‐based biological net-
works are helpful in accurately identifying cancer driver
modules. The results of the study help to explore the patho-
genesis of cancer, and it is conducive to the diagnosis and drug
targets of clinical cancer. Gene expression reflects the abun-
dance of mRNA of gene transcription products measured
directly or indirectly in cells, and methylation is an important
modification of proteins and nucleic acids, which regulates the
expression and closure of genes, and is closely related to many
diseases, such as cancer, ageing, Alzheimer's disease and so on.
Therefore, it is very meaningful to identify driver modules by
integrating gene expression, gene mutation, methylation and
PPI network.
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