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Background: Multi-site functional MRI (fMRI) databases are becoming increasingly
prevalent in the study of neurodevelopmental and psychiatric disorders. However, multi-
site databases are known to introduce site effects that may confound neurobiological
and measures such as functional connectivity (FC). Although studies have been
conducted to mitigate site effects, these methods often result in reduced effect size
in FC comparisons between controls and patients.

Methods: We present a site-wise de-meaning (SWD) strategy in multi-site FC analysis
and compare its performance with two common site-effect mitigation methods, i.e.,
generalized linear model (GLM) and Combining Batches (ComBat) Harmonization. For
SWD, after FC was calculated and Fisher z-transformed, the site-wise FC mean was
removed from each subject before group-level statistical analysis. The above methods
were tested on two multi-site psychiatric consortiums [Autism Brain Imaging Data
Exchange (ABIDE) and Bipolar and Schizophrenia Network on Intermediate Phenotypes
(B-SNIP)]. Preservation of consistent FC alterations in patients were evaluated for each
method through the effect sizes (Hedge’s g) of patients vs. controls.

Results: For the B-SNIP dataset, SWD improved the effect size between schizophrenic
and control subjects by 4.5–7.9%, while GLM and ComBat decreased the effect size
by 22.5–42.6%. For the ABIDE dataset, SWD improved the effect size between autistic
and control subjects by 2.9–5.3%, while GLM and ComBat decreased the effect size
by up to 11.4%.

Conclusion: Compared to the original data and commonly used methods, the SWD
method demonstrated superior performance in preserving the effect size in FC features
associated with disorders.

Keywords: autism spectrum disorder, effect size, functional connectivity, multi-site, resting-state functional MRI,
Schizophrenia
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INTRODUCTION

Neuroimaging has become a powerful tool in studying psychiatric
disorders (Peter et al., 2018). Functional magnetic resonance
imaging (fMRI) allows for the study of aberrant functional
connectivity (FC), predictions of normal individuals vs. patients,
early identification of neurological diseases, neuromarkers, and
responses to treatment (Van Horn and Toga, 2009). Many
traditional fMRI studies were limited by statistical power, since
large-scale data is difficult to obtain at a single imaging site
due to limited diseased population in one geographical location,
limited time, and limited funds (Van Horn and Toga, 2009).
Multi-site neuroimaging consortiums are becoming increasingly
common in attempts to capture heterogeneity associated with
various disorders, as well as to increase geographic variability,
sample size, and statistical power (Van Horn and Toga, 2009).

While there are many benefits to multi-site consortiums, there
are significant challenges in combining the data for analysis.
FMRI data from different sites may contain scanner and site
variability, leading to conflicting results and inferior reliability
(Van Horn and Toga, 2009; Newton et al., 2012; Birn et al.,
2013; Rane et al., 2014; An et al., 2017; Badhwar et al., 2019).
Scanner variability can arise from different scanning vendors,
scanner technology, and field inhomogeneities (Van Horn and
Toga, 2009). Sites with the same scanner vendors and models
have been found to introduce different field inhomogeneities that
have affected the way the data was interpreted (Van Horn and
Toga, 2009). Additionally, different scanner manufacturers are
known to have different levels of test-retest reliability. It has
been reported that Siemen’s scanners have better consistency
than Philips’s scanners (An et al., 2017; Badhwar et al., 2019).
In many multi-site consortiums, individual imaging sites utilized
different scanning parameters, including repetition time, echo
time, acquisition time, voxel size, flip angle, field of view, and
slice thickness, in collecting fMRI data. The use of different
scanning parameters has been known to influence resting-state
fMRI results (Newton et al., 2012; Birn et al., 2013; Rane et al.,
2014). For example, increasing the acquisition time of scans from
5 to 13 min has been proven to improve the reliability and
similarity of functional correlations in resting state scans (Birn
et al., 2013). Newton et al. (2012) reported that decreasing voxel
size dimensions increased FC correlations in resting state scans,
while Rane et al. (2014) demonstrated that a short TE (TE = 15
ms) in scans led to results less correlated with group results than
scans acquired at a higher TE (TE = 35 ms and TE = 55 ms).

Efforts to reduce site variability have been made through
homogenizing scanning protocols and/or through site-to-site
quality assurance via standardized brain imaging phantoms
(Yu et al., 2018). While these methods mitigate some of
the variability associated with site-effects, in existing multi-
site consortiums where data were not originally purposed
for aggregation, homogenized scanning protocols and imaging
phantoms were not available. One study quantified the sampling
bias and engineering measurement bias of a traveling subject
cohort who received resting-state scans at multiple imaging
sites (Yamashita et al., 2019). This method was able to remove
only the measurement bias, therefore improving signal-to-noise
ratio. However, utilizing a traveling-cohort is costly, time

consuming, and may be impractical with many established multi-
site consortiums, and therefore a post-acquisition method to
mitigate site-effects is desirable.

Attempts to reduce multi-site consortium variability in FC
analysis of fMRI data after acquisition include generalized linear
model (GLM) and Combining Batches (ComBat) harmonization
(Rao and Joao, 2017; Yu et al., 2018; Yamashita et al., 2019).
GLM modifies FC values to account for site differences, but
important FC features associated with patient groups may be
compromised after this method (Rao and Joao, 2017; Yamashita
et al., 2019). ComBat utilizes site-specific scaling factors and
an empirical Bayesian criterion to shift samples to the grand
mean and pooled variance across sites (Yu et al., 2018). It
has demonstrated effectiveness in small samples of resting-state
fMRI data using homogenized scanning parameters. However,
it is unclear if ComBat harmonized fMRI data preserves the
functional networks associated with psychiatric disorders or can
accurately account for FC effects imposed by heterogeneous
scan parameters (Yu et al., 2018). ComBat also centers the FC
data of each site to the overall, grand mean of all samples,
thus resulting in harmonized FC features that lose their original
physical meaning (Da-Ano et al., 2020).

Although some multi-site consortiums may use phantoms
or homogenous scanning parameters, there is always the
possibility that sites will decide to aggregate FC data after image
acquisition. There is a great need for a site-effect mitigation
method that can be applied after acquisition, on heterogeneous
scanning parameters, and that preserves functional networks
associated with psychiatric disorders. Examples of such multi-site
database are the Autism Brain Imaging Data Exchange (ABIDE)
and the Bipolar and Schizophrenia Network on Intermediate
Phenotypes (B-SNIP) (Tamminga et al., 2013; Di Martino
et al., 2014). ABIDE is a consortium of neuroimaging data
from Autism Spectrum Disorder (ASD) subjects and healthy
controls (HC) from 17 international sites, while B-SNIP is a
consortium of Schizophrenia (SZ), Schizoaffective disorder (SA),
Bipolar disorder subjects and HCs from 5 different imaging
sites (Tamminga et al., 2013). Both datasets include sites that
utilize different resting-state scanning parameters, protocols,
and scanner models.

Here, we describe a site-wise de-meaning (SWD) strategy
for multi-site FC analysis of fMRI data and compare its
performance with two common site-effect mitigation methods
(GLM, and ComBat Harmonization). We (1) establish the
consistent FC differences between disease groups and control
groups in literature, (2) apply site-effect mitigation methods
(GLM, ComBat, SWD) to multi-site FC data, and (3) compare
the effect size of established FC findings of the three site-effect
mitigation methods.

MATERIALS AND METHODS

Datasets
Bipolar and Schizophrenia Network on Intermediate
Phenotypes
Resting-state fMRI data of 317 subjects from 4 sites in B-SNIP
with a Diagnostic and Statistical Manual, 4th Edition (DSM-IV)
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SZ diagnosis (n = 149) and the corresponding HCs (n = 168) were
included in this study (Tamminga et al., 2013). Demographic
information including site, sample size, sex, and age is shown in
Table 1.

Autism Brain Imaging Data Exchange
Resting-state fMRI data from 850 subjects in ABIDE I with an
ASD DSM-IV-TR diagnosis (n = 355) and the corresponding HCs
(n = 495) from the same sites were used in this study (First and
Gibbon, 2004; Di Martino et al., 2014). Demographic information
including site, sample size, sex, age, and mean Full Scale IQ (FIQ)
is shown in Table 2.

Image Acquisition
Imaging data used in this analysis were collected on 3T MRI
scanners. Scan parameters for the resting-state fMRI protocols
from B-SNIP are summarized in Table 3 and scan parameters
from ABIDE are summarized in Table 4. For each subject, a T1-
weighted structural image was collected and used for registration
to the MNI152 space. Full details for acquisition parameters,
informed consent, and site-specific protocols can be found at
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html for
ABIDE and http://b-snip.org/for B-SNIP (Tamminga et al., 2013;
Di Martino et al., 2014).

TABLE 1 | Demographic information for the SZ and HC subjects from B-SNIP.

Site N % SZ % Male Mean age ± std (yr)

Baltimore 188 71.3 52.8 38.7 ± 12.7

Boston 52 65.4 50.0 34.7 ± 11.5

Dallas 143 59.4 44.1 39.6 ± 11.4

Hartford 129 705 51.9 33.9 ± 11.3

TABLE 2 | Demographic information for the ASD and HC subjects from ABIDE.

Site N % ASD % Male Age
Mean ± std

Caltech 23 47.8 78.3 27.1 ± 5.8

CMU 32 40.6 78.1 26.8 ± 9.8

KKI 44 25.0 77.3 10.1 ± 1.2

Leuven 62 46.8 88.7 18.1 ± 5.0

Ludwig 34 5.9 88.2 25.3 ± 10.3

NYU 122 43.4 73.0 13.8 ± 5.8

Olin 36 55.6 86.1 16.8 ± 3.5

SBL 17 11.8 100 32.7 ± 7.0

SDSU 24 12.5 70.8 14.1 ± 1.9

Trinity 35 28.6 100 16.8 ± 3.5

UCLA 102 54.9 88.2 13.1 ± 2.5

UMich 129 41.1 81.4 14.2 ± 3.3

UPitt 56 51.8 85.7 18.8 ± 6.9

USM 100 57.0 100 22.1 ± 7.7

Yale 34 17.7 70.6 13.1 ± 2.8

Caltech, California Institute of Technology; CMU, Carnegie Mellon University; FIQ,
Full Scale IQ; KKI, Kennedy Krieger Institute; Ludwig, Ludwig Maximilians University
Munich; NYU, New York University Langone Medical Center; Olin, Olin, Institute
of Living at Hartford Hospital; SDSU, San Diego State University; SBL, Social
Brain Lab; Trinity, Trinity Centre for Health Sciences; UCLA, University of California,
Los Angeles; Leuven, University of Leuven; UMich, University of Michigan; UPitt,
University of Pittsburgh School of Medicine; USM, University of Utah School of
Medicine and Yale, Yale Child Study Center.

Preprocessing
The resting-state fMRI data was preprocessed using the
Connectome Computation System pipeline (Zuo et al., 2013).
Steps included slice time correction, motion correction, skull
stripping, global mean intensity normalization, nuisance signal
regression, band pass filtering (0.01–0.1 Hz), and registration
of the resting-state fMRI image to the T1-weighted image,
followed by a transformation to standard space (Zuo et al.,
2013). The resting state fMRI data was then parcellated into
200 regions of interest (ROIs) using a spatially constrained
spectral clustering algorithm based on functional parcellations by
Cameron Craddock (Craddock et al., 2012).

Functional Connectivity Matrices and
Parcellation
Pearson’s correlation coefficient was used to ascertain the FC of
each region of interest (ROI) pair, resulting in a 200 × 200 FC
matrix for each subject. Each correlation coefficient was Fisher
z-transformed, then linear regression was used to regress out age
and sex covariates to ensure that these confounding variables did
not affect results.

Established Functional Connectivity
Differences in Diagnostic Groups
The most common resting-state FC findings between disease and
control groups was determined by performing a literature review
in PubMed to identify relevant studies published within the last
15 years for FC differences between SZ and HC (keywords: SZ,
FC, resting-state, functional MRI) and for FC differences between
ASD and HC (keywords: ASD, FC, resting-state, functional MRI).

Comparison of Methods
We compared the effect size of FC differences between patients
and controls for the following methods: (1) GLM, (2) ComBat
(Johnson et al., 2007), and (3) SWD.

(1) GLM

After Fisher z-transforming the FC data, multiple linear
regression with terms for age, sex, and site was performed in
MATLAB. The regression model can be written as:

yijv = αv + XT
ijβv + εijv

Where yijv represents the connectivity at every site (i), subject (j),
and for every ROI pair (v), αv is the average connectivity value
for a particular connectivity value (v), XT

ij is the design matrix for
the covariates (age, sex, site) for every site (i), and subject (j), and
βv is the vector of regression coefficients corresponding to XT

ij .
The removal of site-effects is done by subtracting the estimated
site-effects:

yGLM
ijv = yijv − αv − XT

ijβv

(2) ComBat

FC values were Fisher z-transformed and a multivariate linear
mixed effects regression with terms for biological variables and
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TABLE 3 | Resting-state fMRI scan parameters for subjects in B-SNIP.

Site Scanner TR (ms) TE (ms) Acq. time Voxel size (mm2) Number of slices Flip angle (degree)

Baltimore Siemens Trio Tim 2,210 30 5 min 3.4x3.4x3 36 70

Boston GE Signa HDX 3,000 27 5 min 3.4x3.4x4 30 60

Dallas Philips 1,500 27 5 min 3.4x3.4x4 29 60

Hartford Siemens Allegra 1,500 27 5 min 3.4x3.4x5 29 70

Acquisition Time (Acq. Time), Echo Time (TE), Repetition Time (TR).

TABLE 4 | Resting-state fMRI scan parameters for subjects in ABIDE.

Site Scanner TR (ms) TE (ms) Acq. time (min) Voxel size (mm) Number of slices Flip angle (deg)

Caltech Siemens Trio 2,000 30 5:04 3.5 × 3.5 × 3.5 34 75

CMU Siemens Verio 2,000 30 8:06 3 × 3 × 3 28 73

KKI Philips Achieva 2,500 30 6:40 3.59 × 3.59 × 4 47 75

Leuven Philips Intera 1,667 33 7:06 3 × 3 × 4 32 90

Ludwig Siemens Verio 3,000 30 6:06 3 × 3 × 4 28 80

NYU Siemens Allegra 2,000 15 6:00 3.75 × 3.75 × 3.8 33 90

Olin Siemens Allegra 1,500 27 5:15 2.75 × 2.75 × 2.72 29 60

SBL Philips Intera 2,200 30 7:28 3.44 × 3.44 × 3.4 38 80

SDSU GE MR750 2,000 30 6:10 3.13 × 3.13 × 4.5 34 90

Trinity Philips Achieva 2,000 28 5:06 3 × 3 × 3.5 38 90

UCLA Siemens Trio 3,000 28 6:06 3 × 3 × 4 34 90

UMich GE Signa 2,000 30 10:00 3.44 × 3.44 × 3 40 90

UPitt Siemens Allegra 1,500 25 5:06 3.1 × 3.1 × 4 29 70

USM Siemens Trio 2,000 28 8:06 3.4 × 3.4 × 3 40 90

Yale Siemens Trio 2,000 25 6:50 3.4 × 3.4 × 4 34 60

Acq, Time, Acquisition time; Caltech, California Institute of Technology; CMU, Carnegie Mellon University; deg, degree; TE, Echo time; FOV, Field of view; KKI, Kennedy
Krieger Institute; Ludwig, Ludwig Maximilians University Munich; NYU, New York University Langone Medical Center; Olin, Olin, Institute of Living at Hartford Hospital; TR,
Repetition time; SDSU, San Diego State University; SBL, Social Brain Lab; Trinity, Trinity Centre for Health Sciences; UCLA, University of California, Los Angeles; Leuven,
University of Leuven; UMich, University of Michigan; UPitt, University of Pittsburgh School of Medicine; USM, University of Utah School of Medicine; Yale, Yale Child Study
Center.

FIGURE 1 | FC features associated with SZ. Medial Prefrontal Cortex (MPFC), Anterior Cingulate Cortex (ACC).
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TABLE 5 | Resting state fMRI studies finding within MPFC hypoconnectivity in SZ participants.

Author n (HC/SZ) Age mean (std)
(HC/SZ)

N female (HC/SZ) Analysis method B-SNIP SZ participant info

Bluhm et al. (2007) 17/17 30.94 (12.60)/
33.54 (13.77)

3/3 Seed No 15 paranoid SZ/2 undifferentiated SZ

Chen et al. (2017) 20/20 41.6 (13.6)/
40.3 (13.8)

13/11 Local FCD No SZ only

Cole et al. (2011) 22/23 37.18 (7.59)/
36.54 (9.36)

6/5 Seed No SZ only

Du et al. (2016) 82/82 37.7 (10.8)/
38.0 (14.0)

19/17 ROI No SZ only

Fang et al. (2018) 22/20 24.3 (4.8)/
24.2 (4.8)

10/13 Seed/ROI (Effective connectivity) No FES

Guo et al. (2014) 50/49 23.48 (2.49)/
22.69 (4.62)

27/19 Network homogeneity No SZ only

He et al. (2013) 113/115 26.61 (8.9)/
25.36 (8.2)

56/62 fALFF No FES

Huang et al. (2010) 66/66 24.5 (8.6)/
24.2 (8.4)

36/36 ALFF No FES (Treatment naïve)

Lui et al. (2010) 34/34 25.0 (8.0)/
24.6 (8.5)

21/21 ICA No FES (Treatment naïve)

Meda et al. (2012) 324/296 35.2 (13.4)/
34.9 (12.2)

144/97 ICA Yes SZ only

Mingoia et al. (2012) 25/25 29.1 (8.6)/
30 (7.3)

10/8 pICA No SZ only

Mwansisya et al. (2013) 33/41 24.52 (6.33)/
23.88 (5.85)

17/16 Seed No FES

Ongür et al. (2010) 15/14 37.9 (9.5)/
42.3 (9.5)

6/6 ICA No SZ and SA

Su et al. (2013) 25/25 42.5 (9.9)/
42.5 (9.9)

13/13 Seed No SZ only

ALFF, Amplitude of Low Frequency Fluctuations; BOLD, Blood Oxygenation Level Dependent; FES, First Episode Schizophrenia; fALFF, Fractional Amplitude of Low
Frequency Fluctuations; FCD, Functional Connectivity Density; ICA, Independent Component Analysis; pICA, Probabilistic ICA.

scanner were used to model FC (Yu et al., 2018). The ComBat
harmonization model can be written as:

yijv = αv + XT
ijβv + γiv + δivεijv

Where yijv represents the connectivity at every site (i), subject (j),
and for every ROI pair (v), αv is the average connectivity value for
a particular connectivity value (v), XT

ij is a design matrix for the
covariates of interest (age, sex, and diagnostic group) for every
subject (j), βv is a vector of regression coefficients corresponding
to XT

ij, γiv and δiv are the additive (or location parameter) and
multiplicative (or scale parameter), respectively, of site-effects
of site i for connectivity value v (Yu et al., 2018). ComBat was
performed in MATLAB and the adjusted FC values are given by:

yComBat
ijv =

yijv − α̂v − XT
ij β̂v − γ∗iv

δ∗iv
+ α̂v + XT

ij β̂v

where γ∗iv and δ∗iv are the empirical Bayes estimate of the additive
(or location parameter) and multiplicative (or scale parameter),
respectively, of site-effects of site i for connectivity value v (Yu
et al., 2018). Age and sex effects were then regressed out of the
ComBat harmonized FC data.

(3) SWD

The Fisher z-transformed data with age and sex regressed out
is referred to in Algorithm as FC. A single overall mean value

for each site was determined by averaging all FC values for every
subject in each site. The mean value was then subtracted from
each FC feature for every subject.

Algorithm | Site-wise de-meaning (SWD).

Input: Fisher z-transformed functional connectivity data (FC), number of subjects
(N), number of FC values (n), site means (SM)

Output: SWD FC data (FCSWD)

For: i = 1:N

For: j = 1:n

FCSWD (i, j) = FC (i, j)–SM (i)

End

End

Effect Size
To evaluate how each method affects the underlying
neurobiological measures, Hedge’s g was used to calculate
the effect size of consistent FC alterations in group analysis
(ASD vs. HC and SZ vs. HC) for (1) original data with sex
and age regressed out, (2) GLM, (3) ComBat harmonized
data, and (4) SWD. It is suggested that 0.2 is considered
to be a small effect size, 0.5 represents a medium effect
size and 0.8 represents a large effect size (Hedges and
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TABLE 6 | Resting state fMRI studies finding MPFC to ACC hypoconnectivity in SZ participants.

Author n (HC/SZ) Age mean (std)
(HC/SZ)

N Female (HC/ASD) Analysis method B-SNIP SZ participant info

Alonso-Solís et al. (2015) 20/19 37.75 (7.4)/
40.05 (8.9)

7/6 Seed No Auditory hallucinating SZ participants

Anticevic et al. (2015) 56/73 31.25 (10.3)/
32.99 (10.9)

32/24 Seed No SZ only

Camchong et al. (2009) 29/29 41.1 (10.6)/
41.3 (9.28)

11/11 ICA/ROI No SZ only

Fang et al. (2018) 22/20 24.3 (4.8)/
24.2 (4.8)

10/13 Seed/ROI
(Effective
connectivity)

No FES

Holt et al. (2011) 17/18 40 (12.5)/
35.9 (13.7)

6/6 Seed No SZ only

Hoptman et al. (2014) 31/33 38.6 (9)/
38.2 (10.4)

9/6 Seed No SZ and SA

Jang et al. (2011) 16/16 22.06 (1.65)/
21.32 (5.65)

7/7 Seed No Genetic high risk for SZ

Kyriakopoulos et al. (2012) 20/25 16.3 (2.1)/
16.1 (2.5)

8/11 Seed No EOS

Li et al. (2019) 2567/2588 31.17/
31

1168/1092 ICA No SZ onlyMeta-Analysis

Lui et al. (2015) 59/37 38 (17)/
36 (14)

33/15 ALFF Yes SZ only

Meda et al. (2014) 324/296 35.2 (13.4)/
34.9 (12.2)

144/97 ICA Yes SZ only

Penner et al. (2016) 24/24 23.8 (4.3)/
23.2 (4.2)

12/3 Seed No SZ only

Zhou et al. (2015) 10/91 33.3 (10.5)/
33.9 (7.7)

55/40 Seed No SZ only

ALFF, Amplitude Low Frequency Fluctuations; EOS, Early onset Schizophrenia; FES, First Episode Schizophrenia; ICA, Independent Component Analysis; SA,
Schizoaffective Disorder; SZ, Schizophrenia.

FIGURE 2 | FC features associated with ASD. Medial prefrontal cortex (MPFC), Posterior Cingulate Cortex (PCC), Medial Temporal Gyrus (MTG).
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TABLE 7 | Resting state fMRI studies of the primary FC feature of ASD finding MPFC to PCC hypoconnectivity compared to HCs.

Author N (HC/ASD) Age mean (std)
(HC/ASD)

N female (HC/ASD) Analysis method ABIDE ASD participant info

Abbott et al. (2016) 38/37 13.0 (2.6)/
13.9 (2.6)

8/5 iFC No ASD only

Assaf et al. (2010) 15/15 17.1 (3.6)/
15.7 (3.0)

2/1 ICA No HFA

Cherkassky et al. (2006) 57/57 24 (9.0)/
24 (10.6)

5/4 ROI No HFA

Doyle-Thomas et al. (2015) 44/71 12.2 (3.8)/
12.3 (3.1)

0/0 Seed No ASD

Eilam-Stock et al. (2014) 15/17 27.1 (8.2)/
26.1 (6.5)

NA Seed No HFA (12), ASP (5)

Falahpour et al. (2016) 76/76 64 (12)/
62 (14)

12/9 iFC Yes ASD

Falahpour et al. (2016) 32/32 13.5 (2.7)/
14.3 (2.4)

5/4 SD-iFC No ASD

Joshi et al. (2017) 16/15 21.9 (3.5)/
21.6 (3.7)

0/0 Seed No HFA

Jung et al. (2014) 21/19 24.8 (4.3)/
25.3 (6.9)

0/0 Seed No HFA

Jones et al. (2010) 20/17 17.1 (2.1)/
16.1 (2.6)

0/0 Seed No HFA

Lee et al. (2016) 517/458 16. 5 (7.3)/
16.2 (7.4)

90/54 FCD Yes ASD/ASP/PDD-NOS

Liu et al. (2020) 548/506 16.86 (7.55)/
16.59 (8.05)

95/60 Seed Yes ASD/ASP/PDD-NOS

Long et al. (2016) 64/64 Child Cohort: 9.3 (1.5)/9.6 (1.0)
Adolescent Cohort: 14.5

(1.9)/13.7 (1.8)
Adult Cohort: 25.5 (4.2)/

25.4 (5.9)

10/10 Seed Yes ASD/ASP/PDD-NOS

Maximo et al. (2013) 29/29 13.5 (2.2)/
13.8 (2.4)

7/4 ReHo No HFA

Monk et al. (2009) 12/12 27 (6.1)/
26 (5.9)

2/1 Seed No ASD (7)/ASP (3) and PDD-NOS (3)

Murdaugh et al. (2012) 14/13 22.6 (4.2)/
21.4 (3.9)

0/0 Seed No HFA

Washington et al. (2014) 24/24 10.08 (3.17)/
10.88 (2.27)

3/3 ICA/ROI No ASD only

Weng et al. (2010) 15/16 16 (1.44)/
15 (1.45)

2/1 Seed No ASP (2), PDD-NOS (8), ASD (6)

Yerys et al. (2015) 22/22 11.37 (1.56)/
11.41 (1.51)

4/4 Seed No ASD

ASP, Asperger’s; FCD, Functional Connectivity Density; HFA, High Functioning Autism; ICA, Independent Component Analysis; iFC, Intrinsic Functional Connectivity;
PDD-NOS, Pervasive Development Disorder-Not Otherwise Specified; ROI, Region of Interest; ReHo, Regional Homogeneity; SD-iFC, Standard deviation of the sliding
window correlation.

Olkin, 1985). The following equation was used to calculate
Hedge’s g:

Hedge′s g =
MHC −MASD

SD∗pooled

where MHC is the mean connectivity of HCs for a particular
connectivity value, MASD is the mean connectivity of ASDs for
a particular connectivity value, and SD∗pooled is the weighted and
pooled standard deviation.

Ethics
Ethical guidelines used in this manuscript are available at http://
fcon_1000.projects.nitrc.org/indi/abide/abide_I.html for ABIDE
and http://b-snip.org/for B-SNIP (Tamminga et al., 2013;
Di Martino et al., 2014).

RESULTS

Consistent Functional Connectivity
Alterations
Healthy Controls vs. Schizophrenia Literature Review
Findings
Hypoconnectivity, specifically in the medial prefrontal cortex
(MPFC), as well as between the MPFC and the anterior cingulate
cortex (ACC) (Figure 1), was the most common resting state
finding in SZ. Further information regarding the literature
findings on hypoconnectivity within MPFC and between MPFC
and ACC can be found in Tables 5, 6, respectively.

Autism Spectrum Disorder Findings
The hypoconnectivity hypothesis of ASD posits that behavioral
features of ASD arise from reduced neural connections in
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the brain (Just et al., 2012). The most common resting state
fMRI finding regarding ASD FC was anterior-posterior DMN
hypoconnectivity (see Hull et al., 2016). More specifically,
our literature review resulted in eighteen studies reporting
hypoconnectivity between the posterior cingulate cortex
(PCC)/precuneus and the MPFC (Figure 2 and Table 7).
Hypoconnectivity between the MPFC in the frontal lobe and
MTG of the temporal lobe was the second most common finding
in the ASD literature (Figure 2 and Table 8).

Effect Size
Schizophrenia
Hedge’s g was used to calculate the effect size of SZ vs. HCs
for the primary and secondary FCs depicted in Figure 1 for (1)
the original data, (2) GLM, (3) ComBat, and (4) SWD. For the
primary FC feature, an ROI corresponding to the MPFC (center
of mass MNI coordinates 1.4, 55.9, −7.2; volumes: 193), and
ACC (center of mass MNI coordinates 1.6, 33.3, 24.3; volumes:
297) were used for the effect size calculation (Figure 1). For
the secondary FC feature (within MPFC FC), two ROIs in
the prefrontal cortex were used, MPFC (center of mass MNI
coordinates 1.4, 55.9, −7.2; volumes: 193) and MPFC (center of

mass MNI coordinates−9.1, 46.4, 40.6; volumes: 206) to calculate
the effect size (Figure 1). For the primary FC feature, the effect
size decreased compared to the original data for GLM (42.6%
decrease), and ComBat (22.5% decrease), and increased for SWD
(4.5% increase) (Table 9). For the secondary FC feature (within
MPFC FC), the effect size decreased compared to the original
data for GLM (40% decrease) and ComBat (23.9% decrease) and
increased for SWD (7.9% increase) (Table 9).

Autism Spectrum Disorder
Hedge’s g was used to calculate the effect size of ASD vs. HC
for the primary and secondary FC features depicted in Figure 2
for (1) the original data, (2) GLM, (3) ComBat, and (4) SWD.
For the primary FC feature, a seed region for the MPFC (center
of mass MNI coordinates 10.7, 63.0, 10.0; volumes: 202) and
PCC/precuneus (center of mass MNI coordinates: 1.5, −52.8,
14.8; volumes: 231) was used for effect size calculation (Figure 2).
The effect size decreased compared to the original data for GLM
(7.5% decrease) and increased for ComBat (5.1% decrease) and
SWD (5.3% increase) for the primary FC feature (Table 10). For
the secondary FC feature (frontal pole to temporal lobe FC), a
seed region in the frontal pole (center of mass MNI coordinates

TABLE 8 | Resting state fMRI studies for the secondary FC feature of ASD finding MPFC—MTG hypoconnectivity for ASD participants.

Author N (HC/ASD) Age mean (std)
(HC/ASD)

N female (HC/ASD) Analysis Method ABIDE ASD participant info

Borràs-Ferrís et al. (2019) 74/74 Child Cohort 10.63 (0.86)
Adolescent Cohort: 14.35

(1.77)

0/0 ROI Yes ASD only

Cheng et al. (2015) 509/418 16.4 (7.08)/
17.17 (7.97)

85/51 ROI Yes ASD/ASP/PDD-NOS

von dem Hagen et al. (2013) 24/15 25 (6)/
30 (8)

0/0 Seed/ICA No HFA (2)/ASP (13)

Hahamy et al. (2015) 73/68 25.82 (0.79)/
26.6 (0.77)

14/6 Seed Yes HFA

Iidaka (2015) 328/312 12.9 (3.0)/
13.2 (3.1)

61/39 ROI Yes ASD

Liu et al. (2020) 548/506 16.86 (7.55)/
16.59 (8.05)

95/60 Seed Yes ASD/ASP/PDD-NOS

Murdaugh et al. (2012) 14/13 22.6 (4.2)/
21.4 (3.9)

0/0 Seed No HFA

Paakki et al. (2010) 27/28 14.49 (1.51)/
14.58 (1.62)

9/8 ReHo No ASD (9)/ASP (19)

ASP, Asperger’s; HFA, High Functioning Autism; ICA, Independent Component Analysis; PDD-NOS, Pervasive Development Disorder-Not Otherwise Specified; ROI,
Region of Interest; ReHo, Regional Homogeneity.

TABLE 9 | Effect size (Hedge’s g) comparison between SZ and HC for the primary FC feature (within MPFC), and for the secondary FC feature (MPFC and ACC) for the
original FC data, GLM, ComBat, and SWD.

Original GLM %change ComBat %change SWD %change

Within MPFC 0.3069 0.1761 −42.6% 0.2379 −22.5% 0.3206 4.5%

MPFC—ACC 0.2046 0.1228 −40.0% 0.1557 −23.9% 0.2207 7.9%

TABLE 10 | Effect size (Hedge’s g) comparison between ASD and HCs for the primary FC feature (MPFC and PCC/precuneus), and for the secondary FC feature (MPFC
and MTG) for the original FC data, GLM, ComBat, and the SWD method.

Original GLM %change ComBat %change SWD %change

MPFC–PCC/Precuneus 0.2634 0.2436 −7.5% 0.2769 5.1% 0.2773 5.3%

MPFC—MTG 0.4892 0.4334 −11.4% 0.4829 −1.3% 0.5034 2.9%

The percent change columns indicate the percent increase/decrease between each method and the original data.
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1.4, 55.9, −7.2; volumes: 193) and temporal lobe (center of mass
MNI coordinates 55.1, −3.6, −25.4; volumes: 201) were used
to calculate the effect size (Figure 2). The effect size decreased
compared to the original data for GLM (11.4% decrease) and
ComBat (1.3% decrease), and increased for SWD (2.9% increase)
for the secondary FC feature (Table 10).

DISCUSSION

Previously introduced methods to reduce fMRI site-effects
associated with multi-site disorders result in the loss of effect
size associated with psychiatric or neurodevelopmental disorders.
The SWD method reduced site-effects in large sample sizes in
multi-site databases with heterogeneous scan parameters, while
improving the effect size of FC features associated with ASD and
SZ compared to previous site-effect mitigation methods. This
simple method is computationally inexpensive, is applicable to
multi-site consortiums post-acquisition, and can be applied to
other multi-site fMRI databases.

Preservation of Functional Networks
Associated With Autism Spectrum
Disorder and Schizophrenia
ComBat has been proposed to mitigate site-effects in small sizes,
when using homogeneous scanning parameters, however it is
unknown if it can accurately account for site-effects imposed
by heterogeneous scan parameters and whether it can preserve
the functional networks associated with psychiatric disorders
(Yu et al., 2018). ComBat also centers the FC data of each
site to an overall grand mean, thus resulting in harmonized
FC features that lose their meaning (Yu et al., 2018; Da-Ano
et al., 2020). In addition, GLM may diminish the measurable
disease effects when applied to FC data (Yamashita et al.,
2019). Therefore, a method is needed to reduce site-effects
while maintaining the FC effects present in psychiatric and
neurodevelopmental disorders.

Hypoconnectivity in SZ has been widely reported and is
associated with symptoms of SZ (Cole et al., 2011; Mwansisya
et al., 2013; Du et al., 2016; Fang et al., 2018), while DMN
anterior-posterior connectivity in ASD has also been widely
reported and has been found to be predictive of clinical
symptoms of ASD (Assaf et al., 2010; Weng et al., 2010;
Yerys et al., 2015). GLM resulted in a reduction of the
effect size of these features by up to 42.6% and ComBat
resulted in a reduction of the effect size of these features
up to 23.9% in patients vs. control subjects. By de-meaning
multi-site FC data, we removed site-effects and improved the
effect size by 2.9–7.9% for patients vs. control subjects in
the established FC features in both disorders compared to
the original data.

The superior performance of SWD compared to GLM may be
due to better generalizability and removal of overall site-effects
in site de-meaning. In sites with unequal cohort sizes, GLM may
introduce a diagnostic group bias. In addition, while diagnostic
group is a covariate used in ComBat, the FC values are shifted

to an overall mean, which can result in the loss of important
diagnostic group information.

Limitations and Future Work
While there are advantages with SWD, there are several
limitations as well. First, while there are many reports of
hypoconnectivity in SZ and ASD, there is no conclusive ground
truth fMRI neuromarker for either disorder. In addition,
while we postulate that this method could be utilized on
multiple multi-site databases with various other disorders,
this has only been tested on two multi-site consortiums
with two different disorders. Therefore, more extensive
testing is needed.

CONCLUSION

We introduce a site-size demeaning method for reducing site
effects in multi-site studies and compared it with two existing
methods. The SWD method improved the effect size across these
features in two multi-site disorder databases as compared to
the original data and previously used harmonization methods
(ComBat and GLM).
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