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Intramuscular fat (IMF) content plays an essential role in meat quality. For identifying
potential candidate genes and pathways regulating IMF content, the IMF content and
the longissimus dorsi transcriptomes of 28 purebred Duroc pigs were measured. As a
result, the transcriptome analysis of four high- and four low-IMF individuals revealed a
total of 309 differentially expressed genes (DEGs) using edgeR and DESeq2 (p < 0.05,
|log2(fold change)| ≥ 1). Functional enrichment analysis of the DEGs revealed 19
hub genes significantly enriched in the Gene Ontology (GO) terms and pathways
(q < 0.05) related to lipid metabolism and fat cell differentiation. The weighted gene
coexpression network analysis (WGCNA) of the 28 pigs identified the most relevant
module with 43 hub genes. The combined results of DEGs, WGCNA, and protein–
protein interactions revealed ADIPOQ, PPARG, LIPE, CIDEC, PLIN1, CIDEA, and FABP4
to be potential candidate genes affecting IMF. Furthermore, the regulation of lipolysis in
adipocytes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway
were significantly enriched for both the DEGs and genes in the most relevant module.
Some DEGs and pathways detected in our study play essential roles and are potential
candidate genes and pathways that affect IMF content in pigs. This study provides
crucial information for understanding the molecular mechanism of IMF content and
would be helpful in improving pork quality.

Keywords: pork quality, IMF content, RNA sequencing, differentially expressed genes, WGCNA

INTRODUCTION

Meat quality is the main economic trait in pig production and can be evaluated by multiple
indicators, such as intramuscular fat (IMF) content, pH, water holding capacity, color, and
tenderness. Of these, IMF content is arguably the most important and is closely correlated to other
meat quality traits, such as flavor, juiciness, and tenderness (Klont et al., 1998). High levels of IMF
content or marbling have a positive influence on the eating quality of pork (Van Laack et al., 2001).
However, for the past century, thinner backfat was considered as an important parameter in pig
breeding. Although this selection led to higher muscularity and growth, IMF content, juiciness,
and tenderness of the meat decreased (Hernández-Sánchez et al., 2013). It is extremely difficult
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to improve IMF content by traditional breeding methods, even
as consumers have become more discerning about meat quality.
Therefore, it is worthwhile to understand the molecular basis
of IMF content and carry out molecular breeding for satisfying
consumer preferences.

IMF content is a complex trait, which is regulated by
many genes. Over the past two decades, using low-density
microsatellite markers, quantitative trait loci (QTL) linkage
analyses have been performed to determine the QTL underlying
IMF content in pigs (Grindflek et al., 2001; Ma et al., 2009).
However, due to the low density of markers, these QTL represent
large chromosomal regions, and it is difficult for further fine
mapping to identify causative genes (Pearson and Manolio,
2008). The emergence of high-throughput genotyping platforms,
such as single nucleotide polymorphism (SNP) arrays, makes
it possible to find genetic variants and QTL associated with
traits of interest in a narrower region. Genome-wide association
studies (GWAS), using pig-specific high-density SNP chips,
have made substantial progress in identifying genetic factors
associated with or underlying IMF content (Roger et al., 2016;
Wang et al., 2020). To date, 709 QTL for IMF content have
been deposited in the pigQTLdb (Release 41, Apr 26, 2020)1.
However, when compared with other traits, the progress of
dissecting the genetic basis for IMF content is still limited due
to its complexity.

RNA sequencing (RNA-seq), a method based on next-
generation sequencing (NGS), offers opportunities to provide
unprecedented details about the transcriptional landscape
of a certain organism. Compared with real-time PCR and
microarrays, RNA-seq, with low background noise and high
dynamic ranges of gene expression level quantification, integrates
advanced molecular biology techniques and bioinformatics
(Wang et al., 2009). Therefore, it is a powerful method
for studying complex quantitative traits controlled by many
interacting genes. Several studies on transcriptome profiling
of porcine longissimus dorsi (LD) have been performed to
investigate genes or pathways influencing IMF content in pigs.
However, most of these studies have been carried out using pigs
of different breeds (Li et al., 2016, 2020; Xu J. et al., 2018), with few
studies on individuals of the same breed (Lim et al., 2017; Muñoz
et al., 2018) with distinct IMF content to identify consistent
candidate genes. Hence, based on the RNA-seq, further studies
using multiple analysis methods should be conducted to unravel
genes and the pathways that regulate IMF contents.

Comparing the gene expression profile across phenotypes of
interest to identify differentially expressed genes (DEGs) is the
most commonly used approach in RNA-seq. Complementary
to it, weighted gene coexpression network analysis (WGCNA)
method, developed by Langfelder and Horvath (2008) in the
form of an R package, identifies gene sets that work cooperatively
in related pathways and contribute to resulting phenotypes. To
date, WGCNA has been widely used in the investigation of
complex diseases and traits in humans and mice based on RNA-
seq (Darlington et al., 2013; Li et al., 2015; Jin et al., 2019; Shi
et al., 2020). In pigs, WGCNA was also employed to analyze a

1https://www.animalgenome.org/cgi-bin/QTLdb/SS/index

number of complex traits, such as feed efficiency (Xu Y. et al.,
2018; Banerjee et al., 2020; Carmelo et al., 2020), heat tolerance
(He et al., 2020), residual feed intake (Liu H. et al., 2016), and
obesity (Kogelman et al., 2014). However, so far, only one study
was found that have used WGCNA to analyze IMF content in
Italian Large White pigs (Zappaterra et al., 2020).

The Duroc pig population is extensively used as the terminal
male parent in the breeding of Duroc × Landrace × Yorkshire
(DLY) commercial pigs due to its high meat quality and large
muscle mass. Previous studies have shown that the Duroc
breed has substantially higher levels of IMF content than other
commercial breeds (Cisneros et al., 2010). Moreover, in this
study, we found that IMF content of Duroc pigs also varied
significantly between individuals (from 1.17 to 4.23%). Thus,
individuals with extreme IMF content in the Duroc population
are good specimens for transcriptomics study of IMF content.
Hence, in the present study, we performed RNA sequencing
of LD muscles from 28 Duroc pigs with variant IMF content,
analyzed the transcriptome differences between the groups with
extremely high- and low-IMF content, conducted WGCNA
of all individuals, and determined key DEGs and biological
pathways affecting IMF content. This study provides valuable
information for understanding the molecular basis underlying
IMF content in pigs.

MATERIALS AND METHODS

Animals and Sample Collection
In this study, we selected 28 Duroc pigs (13 male and 15 female)
of similar ages with an average body weight of 108.29 ± 6.00 kg
(mean ± standard deviation) (Supplementary Table S1). These
pigs were reared together in the same breeding farm in the
Shandong province of China. The individuals were derived from
different sires and dams, and thus, no sibling and half-sibling
relationships existed among them. These pigs were fed on diets
formulated according to their age and were provided free access
to water under the same environment. They were slaughtered
in one batch following stunning by electric shock, which is a
common abattoir practice. All the experimental procedures were
approved by the Institutional Animal Care and Use Committee
of Institute of Animal Husbandry and Veterinary Medicine,
Shandong Academy of Agricultural Sciences (approval code,
IACC20060101, 1 January 2006). About 0.2 g of LD muscle from
the last fourth and fifth thoracic vertebrae was collected for
each pig, placed into a tube with RNAlater Stabilization Solution
(Thermo Fisher Scientific, Waltham, MA, United States), and
frozen at −80◦C for RNA extraction.

For the determination of IMF content, about 200 g of
LD muscle was also obtained from the last fourth and fifth
thoracic vertebra of each pig. After removing the adipose
and connective tissues, these muscle samples were oven dried
to constant weight for removing moisture. After the samples
were ground, IMF content was examined using the Soxhlet
petroleum–ether method and expressed as the weight percentage
of wet muscle tissue. Each sample was measured in triplicate to
ensure its accuracy.
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RNA Isolation, Library Construction, and
Sequencing
Total RNA was isolated from 28 porcine LD samples using
the TRIzol reagent (Invitrogen, Life Technologies). To evaluate
the quality of RNA, RNA degradation and contamination were
first monitored on 1% agarose gels. Then, the purity and
concentration of RNA were examined with NanoPhotometer R©

spectrophotometer (IMPLEN, CA, United States) and Qubit R©

RNA Assay Kit in Qubit R© 2.0 Fluorometer (Life Technologies,
CA, United States), respectively. Finally, RNA integrity was
confirmed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 (Agilent Technologies, CA, United States). RNA integrity
numbers (RINs) of the samples were 8.0–8.6. A total amount of 3
µg RNA with RIN > 8.0 was used as input material for the RNA
sample preparations. RNA libraries were constructed using the
NEBNext R© UltraTM RNA Library Prep Kit for Illumina R© (NEB,
United States) following the manufacturer’s recommendations.
The method used for library construction is based on the poly-
T oligo-attached magnetic beads. Messenger RNA (mRNA),
including coding RNA and a small group of long non-coding
RNA (lncRNA) with ploy A tail, were isolated from the total RNA.
Then, the library preparations were sequenced with 15 cycles
on an Illumina Hiseq platform, and 150 bp paired-end reads
were generated.

Quality Assessment of Sequencing Data
and Mapping of mRNA-Seq Reads
To ensure the quality of bioinformatics analysis, raw reads
were first filtered to obtain clean reads. We filtered raw reads
in the FASTQ format by removing reads according to the
following criteria: containing adapter sequences, ambiguous
base content > 0.1%, and 50% of bases whose Qphred quality
score ≤ 20. Clean reads were then mapped to the Sus scrofa
reference genome (Sscrofa11.1) and the annotation database
Ensembl Genes 95 using HISAT2 software (Daehwan et al., 2015).
FeatureCounts tool of subread package was used for calculating
the number of reads mapped to each gene for estimating gene
expression levels (Yang et al., 2014). Gene expression levels were
normalized using the expected number of fragments per kilobase
of exon per million fragments (FPKM).

Differentially Expressed Genes’
Detection and Functional Enrichment
Analysis
Based on the phenotypic data of IMF and sex from 28 Duroc
pigs, samples from four high- (two male and two female) and
four low-IMF content pigs (two male and two female) were
chosen for transcriptome difference analysis. The differential
expression analysis was carried out using the R package DESeq2
(Love et al., 2014) and edgeR (Robinson et al., 2010), and
adjusted p-values (q-value) were calculated using Benjamini and
Hochberg’s (BH) approach for controlling the false discovery
rate. Compared to edgeR, DESeq2 allowing more general data
gives an advantage selection of differential genes expression
during the dynamic range of data (Varet et al., 2016). However,
Alshehri and Alkharouf found that EdgeR had a large number

of unique differential expression genes that were not shared with
other tools including DESeq2 (Alshehri and Alkharouf, 2018).
Hence, in the present study, overlapped DEGs were detected by
edgeR and DESeq2.

Overlapped DEGs, which were detected by DESeq2 and edgeR
methods in terms of |log2(fold change)| ≥ 1 and p < 0.05,
were subjected to GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis using R package
clusterProfiler (Yu et al., 2012). The GO terms and pathways
with q value (adjusted p-value by BH method) < 0.05 were
considered to be significantly enriched ones. Genes involved in
the significantly enriched GO terms and pathways related to IMF
content were treated as hub genes, and more attention was paid to
these in downstream WGCNA (Langfelder and Horvath, 2008).

Weighted Gene Coexpression Network
Analysis
To construct a coexpression network, we further applied
WGCNA using FPKM values obtained from the mRNA-Seq of
28 Duroc pigs. The WGCNA, a comprehensive collection of R
functions, was used for performing various aspects of weighted
correlation network analysis (Langfelder and Horvath, 2008).
Genes with FPKM values > 1 in more than 14 individuals were
selected for a coexpression network setting, resulting in 10,676
genes. Based on these genes, hierarchical cluster analysis of all
samples was carried out by group average method to detect
outliers with a cutoff at a height of 2,000. Outliers are defined as
the samples that appear to deviate markedly from other samples.
After filtering the outliers, the other samples were employed for
establishing an unsigned coexpression network.

Specifically, adjacency matrix a was first calculated by formula
aij = |sij|β, where sij is the absolute value of the correlation
coefficient between gene i and gene j, and β is a soft-power
threshold. In the present study, the power of 14 based on the
scale-free topology criterion was used, resulting in a scale-free
topology index (R2) of 0.85. Next, to make networks less sensitive
to spurious connections or to connection missing due to random
noises, the topological overlap matrix (TOM) (Zhang and
Horvath, 2005), representing the overlap in shared neighbors,
was introduced to identify modules of highly coexpressed genes
based on the adjacency matrix. The dissimilarity TOM, which
was calculated by 1 minus the TOM, was used as input for
the dendrogram. By hierarchical clustering and dynamic tree
cutting (Langfelder et al., 2007), genes clustered into distinct
modules were assigned to a color. The hybrid dynamic tree
cutting method was used to cut branches using a minimum
module size of 30, which is the default and commonly used
value (Maertens et al., 2018). Furthermore, module eigengene
(ME) (Zhao et al., 2010), representing the module expressions
of each module, was calculated by the first principal component
of the expression matrix. The ME can be considered as a
weighted average expression profile. To identify biologically
significant modules and to select potential critical modules for
downstream analysis, the WGCNA approach defines module–
trait relationships (MTRs) (Kogelman et al., 2014) and gene
significance (GS) of each module (Liu J. et al., 2016). The
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Pearson’s correlations between the ME and the IMF content
values and between the expression profiles and the IMF content
values were calculated for estimating the MTRs and GS,
respectively. Module GS (MS) was the mean value of GS of
the module genes. According to the selection criteria for critical
modules reported in previous studies, modules with MTRs > 0.30
and MS > 0.25 were considered as candidate modules for the
following functional enrichment analysis (Howard et al., 2017;
Yang et al., 2018).

Functional annotation using the R package clusterProfiler was
conducted on the genes in each candidate module. The GO terms
and pathways with q < 0.05 (adjusted p-value by BH method)
were considered as significant. Among the candidate modules,
modules were considered as critical ones when the module
genes were involved in IMF-related GO terms and pathways.
Meanwhile, to further identify biologically significant gene in
each critical module, module membership (MM) (Howard et al.,
2017) and connectivity of genes were also detected; MMs, the
correlation coefficient between the gene expression and ME
for module membership, were calculated to measure the gene-
module membership. Intramodular connectivity of one gene,
which was the sum of the adjacency matrix α between that gene
and all the other genes in the module, was also calculated. Genes
with GS > 0.3, MM > 0.85, and an intramodular connectivity > 5
were considered hub genes.

RESULTS AND DISCUSSION

Summary of Sequencing Data and
Sample Selection for Comparative Gene
Expression Analysis
In this study, we measured IMF content of 28 Duroc pigs
selected from a breeding farm. IMF content varied significantly
among individuals, ranging from 1.17 to 4.23% with an average
of 2.36% (Supplementary Table S1). The LD muscles of
these 28 pigs were sequenced using a paired-end mRNA-seq
approach. In total, 52.43–86.93 million raw reads per sample
were generated. After filtering 2.31% of raw reads, an average of
62.56 million clean reads were used for the following analyses
(Supplementary Table S2). Of these, 94.36% of clean reads
were successfully mapped to the S. scrofa (Sscrofa11.1) genome
assembly, with 90.34% being uniquely mapped (Supplementary
Table S2). In addition, out of the reads mapped to the
reference genome, 91.58 and 3.85% were located in the exon
and intron regions, respectively, and the remaining, a small
group of lncRNA with ploy A tail, were in the intergenic regions
(Supplementary Table S2).

Based on the sex and IMF content of these 28 Duroc pigs,
four pigs with extremely high- (D8, D15, D19, and D21) and four
with low-IMF content (D13, D17, D18, and D26) were chosen
as the two divergent groups for comparative gene expression
analysis. The mean IMF contents of the two groups were 3.70
and 1.47%, respectively. According to the alignment result of
RNA sequencing data with the S. scrofa genome, a total of 26,918
coding genes (including 1,038 novel genes) were expressed in

eight individuals with extreme IMF content. Taking into account
genes with FPKM value > 1 in more than four pigs, we found
18,411 and 18,950 coding genes in the high- and low-IMF
groups, respectively.

Differentially Expressed Genes Between
Low- and High-IMF Groups
DESeq2 and edgeR were very popular and easy-to-use packages
for the differential expression analysis of RNA-seq data (Varet
et al., 2016). In the present study, both methods were employed
to identify DEGs between the two groups. Using the DESeq2
method in terms of |log2(fold change)| ≥ 1, we identified 316,
130, and 10 DEGs between the high- and low-IMF groups at
p-value cutoffs of 0.05 and 0.01 and a q-value cutoff of 0.05,
respectively. It suggested that the transcript differences related to
IMF content between the selected pigs were small. These results
were similar to those from a previous study, in which 96 and
28 DEGs related to lipid profiles were detected in term of fold-
change ≥ 1.5 at cutoffs of p ≤ 0.01 and q ≤ 0.05 in Duroc
pigs, respectively (Cardoso et al., 2017). On the other hand,
using the edgeR packages, we detected 457, 172, and 12 DEGs
between the two groups at p-value cutoffs of 0.05 and 0.01 and
a q value cutoff of 0.05, respectively. A total of 309 overlapped
genes detected in terms of |log2(fold change)| ≥ 1 and p < 0.05
were considered as DEGs for the following functional enrichment
analyses (Supplementary Table S3). Of these, 240 and 69 genes
were up- and downregulated in the high-IMF group, respectively.
Figure 1 exhibits the heatmap of these DEGs, from which it can
be seen that the expression patterns of DEGs are consistent within
groups and different between groups.

Moreover, using DESeq2 and edgeR, only seven overlapped
genes, including SPP1, KCNN1, ENSSSCG00000034371, LEP,
CIDEC, SFRP1, and ENSSSCG00000040849, remained significant
after correction for multiple testing (q ≤ 0.05 and |log2(fold
change)| ≥ 1, Table 1). Among these genes, LEP gene encodes
a protein, leptin, which is secreted by white adipocytes into the
circulation and exerts physiological action through the leptin
receptor (LTPR), which is also associated with IMF content
(Roger et al., 2016; Wang et al., 2019). Consistent with our result,
Gao et al. (2004) found that expression of LEP is significantly
different in the intramuscular fat tissue between Erhualian and
Large white pigs. CIDEC encodes an adipocyte lipid drop protein,
which negatively regulates lipolysis and promotes triglyceride
accumulation (Puri et al., 2007).

Gene Ontology and Pathway Enrichment
Analyses of DEGs
To gain an insight into the function of DEGs detected in
terms of |log2(fold change)| ≥ 1 and p < 0.05, we carried
out GO term enrichment analysis for up- and downregulated
genes, respectively. Consequentially, 58 significantly enriched
GO terms (q< 0.05, Supplementary Table S4) were found for the
upregulated genes and none for the downregulated genes. Among
the 58 enriched GO terms, most belonged to the biological
process (BP) category, and only two terms, lipid particle and
natural killer cell lectin-like receptor binding, belonged to the
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FIGURE 1 | Heat map of differentially expressed genes (DEGs) between the high- and low-intramuscular fat (IMF) groups. The DEGs were detected by DEseq2 and
edgeR with |log2(fold change)| ≥ 1 and p < 0.05.

TABLE 1 | Description of the top seven differentially expressed genes (DEGs) detected between high- and low-intramuscular fat (IMF) groups with |log2(fold change)| ≥ 1
and q < 0.05.

ID Gene name log2(fold change) DEseq2 edgeR

p-value q-value p-value q-value

ENSSSCG00000009216 SPP1 2.44 2.01E−12 6.11E−09 1.02E−08 9.69E−05

ENSSSCG00000013892 KCNN1 −1.73 4.37E−12 1.14E−08 1.44E−07 6.84E−04

ENSSSCG00000034371 – 3.73 1.67E−10 3.82E−07 2.14E−09 4.08E−05

ENSSSCG00000040464 LEP 2.00 1.16E−05 2.12E−02 4.34E−05 3.94E−02

ENSSSCG00000011557 CIDEC 1.83 1.16E−05 2.12E−02 2.65E−06 5.06E−03

ENSSSCG00000025822 SFRP1 1.37 2.24E−05 2.92E−02 5.18E−06 8.22E−03

ENSSSCG00000040849 – −1.42 3.48E−05 4.24E−02 1.36E−05 1.72E−02

molecular function (MF) and cellular component (CC) category,
respectively (Figure 2A). Importantly, 27 of the 58 GO terms
identified were closely associated with lipid metabolism and

fat cell differentiation, such as lipid catabolic process, low-
density lipoprotein receptor particle metabolic process, white
fat cell differentiation, and positive regulation of cholesterol
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efflux (Figure 2B). Lipid particle was the most significant GO
term (q = 1.56E−05). Moreover, other significant GO terms
related to some physiological and biological events, such as
response to cytokine, response to tumor necrosis factor, alcohol
metabolic, and detoxification, were also enriched (Figure 2A). In
addition, we conducted KEGG pathway analysis for the DEGs.
Five pathways were significantly enriched for the upregulated
DEGs (q < 0.05, Table 2), whereas none were enriched for the
downregulated genes. The q values of the enriched pathways
of DEGs showed a low level of significance. It may be one
feature of muscle tissue. Similar results could be found in the
previous studies (Cardoso et al., 2017; Lim et al., 2017). Of the

five significant pathways, two pathways, the regulation of lipolysis
in adipocytes (q = 5.05E−03) and the peroxisome proliferator-
activated receptor (PPAR) signaling pathway (q = 5.05E−03),
were IMF related.

The DEGs involved in GO terms and pathways related to lipid
metabolism and fat cell differentiation were further analyzed.
A total of 18 DEGs, as illustrated in Figure 2B, were found to
be involved in the 27 significantly enriched GO terms related
to IMF content. Moreover, of the 18 genes, APOE, ADIPOQ,
PPARG, CEBPA, LIPE, MT3, and PNPLA3 were involved in more
than five GO terms (Figure 2B). Two IMF-related pathways
covered eight genes, PLIN1, LIPE, PTGER3, ADRB1, FABP4,

FIGURE 2 | Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs). (A) Significantly enriched GO terms of the DEGs detected by DEseq2
and edgeR with |log2(fold change)| ≥ 1 and p < 0.05. The figure is composed of three parts, biological processes, cellular components, and molecular functions,
which are divided by blue horizontal lines. The significance level of enrichment was set at corrected p-value (q-value) < 0.05. (B) Significantly enriched GO terms
related to lipid metabolism and fat cell differentiation. Blue dots represent enriched GO terms. Genes involved in GO terms are represented by V shape. The colors of
genes are decided by the p-values examined by DEseq2.

TABLE 2 | Significantly enriched pathways of differentially expressed genes (DEGs) between low- and high-intramuscular fat (IMF) groups.

Description Gene representation p-value q-value Gene name

Regulation of lipolysis in adipocytes 5/47 4.94E−05 5.05E−03 PLIN1, LIPE, PTGER3, ADRB1, FABP4

Retinol metabolism 4/47 1.20E−04 5.05E−03 CYP2A19, SDR16C5, RETSAT, AOX1

PPAR signaling pathway 5/47 1.34E−04 5.05E−03 PLIN1, ACAA1, PPARG, ADIPOQ, FABP4

Vitamin B6 metabolism 2/47 1.77E−03 4.14E−02 PSAT1, AOX1

cAMP signaling pathway 6/47 1.83E−03 4.14E−02 LIPE, PTGER3, HCAR1, ADRB1, PPP1R1B
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ACAA1, PPARG, and ADIPOQ, which were relevant to lipid
metabolism and fat cell differentiation. It is noticeable that, except
for PTGER3, all the others overlapped with the 18 upregulated
DEGs covered by enriched GO terms (Figure 2B). Therefore,
functional enrichment analysis of DEGs detected 19 genes that
were involved in GO terms and pathways related to lipid
metabolism and fat cell differentiation. These DEGs would be
regarded as key genes and used in the following detection of
candidate genes.

Coexpressed Gene Modules Associated
With IMF Content
The WGCNA relies on the assumption that strongly correlated
expression levels of gene sets indicate that the genes work
cooperatively in related pathways and contribute to the
resulting phenotype. Based on this assumption, we further
carried out WGCNA for all the expressed genes. By sample
clustering with all genes, D22, deviating from other samples
and exceeding the cutoff height, was considered to be an
outlier (Supplementary Figure S1). Therefore, in WGCNA, we
constructed a coexpression network with the other 27 individuals
and ultimately identified 22 modules (Figure 3A). Critical
modules associated with IMF content were first selected based
on two criteria: MTRs > 0.3 and MS > 0.25. The results of
the MTRs showed that five modules, including cyan, turquoise,
gray, midnight blue, and magenta, were moderately correlated
with IMF content (correlation coefficients ranging from 0.30 to
0.36, correlation p < 0.1, Figure 3B). The MS of the five gene
modules was also detected for understanding the relationship
between expression profiles and the phenotypic values based
on the GS of each module genes. Among these modules, there
were two modules, midnight blue (88 genes, MS = 0.27) and
magenta modules (208 genes, MS = 0.28) whose MS reached 0.25
(Figure 3B). The GS of midnight blue and magenta module genes
varied from −0.07 to 0.50 and from −0.28 to 0.65 with 0.11
and 0.13 of standard deviation, respectively. Consequently, based
on the combined results of MTRs and MS, midnight blue and

magenta modules were selected for the downstream functional
enrichment analysis. The detail information about genes in the
two modules is presented in Supplementary Tables S5, S6.

Further functional enrichment analyses were conducted on
the genes in each module to understand the biological function
of the midnight blue and magenta modules. The significant GO
terms and pathways (q < 0.05) are presented in Supplementary
Tables S7, S8. It can be seen that genes in the magenta module
were significantly enriched in GO terms and pathways related
to lipid metabolism (q < 0.05, Supplementary Table S7).
Among these GO terms, 32 were IMF related, such as fat cell
differentiation, fatty acid metabolic process, and lipid storage.
Figure 4A illustrates the top 5 BP terms and all CC and MF
terms of 65 GO terms identified with the magenta module genes.
We found that there were 25 GO terms that overlapped between
the GO terms identified by DEGs and magenta module genes
(Figure 4B and Supplementary Table S9). In addition, 19 of
them were IMF related, such as lipid metabolism, lipoprotein
metabolism, cholesterol metabolism, sterol metabolism, and fat
cell differentiation (Figure 4B and Table 3). This suggested that
the results of the functional enrichment analysis of DEGs and
magenta module genes could corroborate each other.

Six significantly enriched pathways were discovered in the
KEGG analysis for the genes of the magenta module (q < 0.05,
Figure 4C). It is worth noting that regulation of lipolysis in
adipocytes and PPAR signaling pathway, which were identified in
the KEGG analysis of the DEGs, were also identified. According
to the KEGG database2, regulation of lipolysis in adipocytes is
a pathway regulating triacylglycerol to release fatty acids and
glycerol for other organs as energy substrates. Fat deposition is a
dynamic process between lipid synthesis and degradation. Some
studies have demonstrated that IMF content in LD is determined
by a balance between fat accumulation and degradation (Jeong
et al., 2012). It is implied that more lipid storage may lead to
the increase in lipolysis (Serr et al., 2013). Consequently, in this

2https://www.genome.jp/dbget-bin/www_bget?map04923

FIGURE 3 | Coexpressed gene modules detected by weighted gene coexpression network analysis (WGCNA). (A) Cluster dendrogram showing the coexpression
modules defined by WGCNA and labeled by colors. (B) Module–trait relationships and gene significances of each module.
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FIGURE 4 | Coexpressed genes in magenta module. (A) The top 5 biological processes (BP) terms, all cellular components (CC), and molecular functions (MF) of
Gene Ontology (GO) terms identified with magenta module genes. (B) Venn diagram of GO terms identified with magenta module genes and differentially expressed
genes (DEGs). (C) Pie chart of all significant pathways (q < 0.05) in the magenta module. Each sector of the pie chart is proportional to the log10 (-q value) of each
pathway it represents. (D) Association between the module membership (MM) and gene significance (GS) in the magenta module. (E) Association between the
intramodular connectivity and module membership (MM) in the magenta module.

TABLE 3 | Intramuscular fat (IMF)-related Gene Ontology (GO) terms overlapped between significantly enriched GO terms of differentially expressed genes (DEGs) and
those of magenta module genes.

GO terms of DEGs GO terms of magenta module genes

Gene representation p-value q-value Gene representation p-value q-value

Fatty acid metabolic process 7/71 1.78E−04 2.02E−02 14/166 2.52E−07 3.05E−04

White fat cell differentiation 3/71 3.38E−05 1.64E−02 4/166 4.68E−06 1.91E−03

Brown fat cell differentiation 4/71 7.47E−05 1.64E−02 6/166 5.00E−06 1.91E−03

Positive regulation of lipid localization 4/71 2.69E−04 2.08E−02 7/166 5.86E−06 1.91E−03

Lipid catabolic process 8/71 6.86E−06 1.35E−02 12/166 6.79E−06 1.91E−03

Regulation of lipid localization 4/71 1.23E−03 4.66E−02 8/166 1.79E−05 3.61E−03

Sterol metabolic process 4/71 5.29E−04 2.89E−02 7/166 3.44E−05 5.96E−03

Fat cell differentiation 7/71 7.44E−05 1.64E−02 10/166 5.45E−05 7.78E−03

Positive regulation of sterol transport 3/71 1.53E−04 1.92E−02 4/166 6.31E−05 8.05E−03

Positive regulation of cholesterol transport 3/71 1.53E−04 1.92E−02 4/166 6.31E−05 8.05E−03

Positive regulation of lipid transport 3/71 1.26E−03 4.66E−02 5/166 1.18E−04 1.42E−02

Regulation of fat cell differentiation 5/71 2.05E−04 2.08E−02 7/166 1.32E−04 1.46E−02

Positive regulation of fat cell differentiation 4/71 9.39E−05 1.68E−02 5/166 1.50E−04 1.52E−02

Cholesterol metabolic process 4/71 3.69E−04 2.69E−02 6/166 1.71E−04 1.56E−02

Positive regulation of cholesterol efflux 3/71 6.13E−05 1.64E−02 3/166 5.02E−04 3.05E−02

Steroid metabolic process 5/71 8.79E−04 4.02E−02 8/166 6.47E−04 3.55E−02

Regulation of sterol transport 3/71 4.68E−04 2.70E−02 4/166 8.18E−04 3.81E−02

Regulation of cholesterol transport 3/71 4.68E−04 2.70E−02 4/166 8.18E−04 3.81E−02

Lipid particle 6/67 1.65E−07 1.56E−05 12/170 1.05E−13 2.19E−11
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study, we found that the regulation of lipolysis in adipocytes
pathway was enriched in the high-IMF group compared with
that in the low-IMF group. The PPAR signaling pathway is
a canonical pathway involved in lipid metabolism. Expression
patterns of many candidate genes in this pathway were correlated
with meat quality traits in the LD muscles of pigs (Wang
et al., 2016). Furthermore, previous studies showed that the
PPAR signaling pathway was a significant enriched pathway
for DEGs of subcutaneous and intramuscular stromal vascular
cells during adipogenic differentiation (Jiang et al., 2013) and
for DEGs detected by transcriptome analysis of LD muscles
between Laiwu and Yorkshire pigs (Chen et al., 2017). This has
provided new evidence that DEG analysis and WGCNA could
corroborate each other.

In addition, for the magenta module, the correlation between
MM and GS (correlation = 0.34, p = 5.4e−07), and the MM and
connectivity (correlation = 0.98, p = 1e−145) both reached either
moderate or strong levels (Figures 4D,E). These suggest that the
magenta module is a critical module, and some of the genes in
it could be candidate genes affecting the IMF content. Totally,
there were 200 genes in the module. As expected, the expression

of these genes varied with individuals (Figure 5A), and 39 genes
out of them were overlapped with DEGs detected in terms of
|log2(fold change)| ≥ 1 and p < 0.05.

Detection of Candidate Genes That
Affect IMF Content
As the magenta module resulting from the WGCNA showed
a strong association with IMF, we investigated the candidate
genes that affected IMF content in this module. First, hub genes
of magenta module were identified. As hub genes for each
module, their expression should first correlate significantly to
module eigengene (MM > 0.85), which would suggest that the
gene was a member of the magenta module. In addition, the
expression of these genes should either moderately or strongly
correlate to IMF value (GS > 0.3) and have more connectivity
with other coexpression genes (intramodular connectivity > 5).
Under these criteria, we selected 43 hub genes (Supplementary
Table S10), 16 of which were DEGs, which were detected in
terms of |log2(fold change)| ≥ 1 and p < 0.05 (Figure 5B). When
comparing these 16 genes with the 19 key genes detected by

FIGURE 5 | Hub genes in magenta module. (A) Heatmap of the magenta module genes. (B) Network visualization of the coexpression of 43 hub genes in magenta
module. Hexagon represents 16 differentially expressed genes (DEGs) of the hub genes; orange hexagon represents nine DEGs in magenta module overlapping with
19 hub genes detected by functional enrichment analysis of DEGs. (C) Protein–protein interaction network of nine hub genes. ACAA1 without protein–protein
interactions with the others is not displayed in the network.
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the functional enrichment analysis of DEGs, we found that nine
genes overlapped, viz. ADIPOQ, PPARG, LIPE, CIDEC, PLIN1,
CIDEA, ACAA1, ADIRF, and FABP4.

Then, to evaluate the interactive relationships of the nine
overlapped genes, we conducted a protein–protein interaction
(PPI) network analysis using the STRING version 11.03 online
software. PPI networks were visualized and analyzed using
Cytoscape 3.6.1 software. Except for ACAA1 and ADIRF, the
other seven genes, i.e., ADIPOQ, PPARG, LIPE, CIDEC, PLIN1,
CIDEA, and FABP4, exhibited protein–protein interactions with
each other (Figure 5C).

IMF content is determined by the number (hyperplasia) and
size (hypertrophia) of adipocytes within the muscle (Zhao and
Gao, 2009). The differentiation of intramuscular preadipocytes
into intramuscular adipocytes starts during the embryonic
growth and continues immediately after birth, then slow
down during the growth of the animal (Sepe et al., 2011).
The hypertrophy process is determined by the ratio between
lipogenesis and lipolysis in mature adipocytes. Some previous
studies have proved these seven genes as relevant candidate genes
because of their important roles in these biological processes
related to IMF content. Adiponectin, encoded by the ADIPOQ
genes, is a protein hormone secreted by adipocytes involved in
the regulation and inhibition of lipogenesis and the stimulation
of fatty acid oxidation (Yuchang et al., 2005). Expression of
ADIPOQ was higher in Lantang, a high-IMF pig breed, compared
to that in Landrace, a low-IMF pig breed (Kaifan et al.,
2013). Hormone-sensitive lipase gene (LIPE) is one of the most
important factors in controlling lipolysis and fat accumulation in
animals (Guenter et al., 2003). LIPE were found to be significantly
higher expressed in pigs with low-IMF content (Zappaterra et al.,
2016), its polymorphisms associated with pig IMF content (Xue
et al., 2015), and, in the candidate regions under positive selection
of Laiwu pigs, one Chinese indigenous pig breed with extremely
high proportion of IMF content (Chen et al., 2017). CIDEA and
CIDEC are two members of the novel CIDE family of apoptosis-
inducing factors. The expression of CIDEA, an adipose-specific
gene, was associated with the terminal differentiation of fat
cells (Danesch et al., 1992). It was discovered that both CIDEA
and CIDEC were highly expressed in adipose tissues, and their
expression levels were significantly higher in obese pigs than in
their lean counterparts (Li et al., 2009). Notably, CIDEC was one
of the top 7 DEGs distinguishing at |log2(fold change)| value ≥ 1
and q < 0.05 (Table 1).

The genes, PPARG, PLIN1, and FABP4, all belong to the
significantly enriched PPAR signaling pathway, and PPARG was
the core regulator gene of this pathway. PPARG regulates lipid
metabolism and glucose homeostasis and promotes adipocyte
differentiation and fat deposition (Vanden Heuvel and Peters,
2010). Previous studies have found that the polymorphisms
of PPARG could significantly affect gene expression and
intramuscular fat deposition in pigs (Wang et al., 2013). In
addition, PPARG could enhance PLIN1 expression by DNA
demethylation on PPAR-response elements of PLIN1 gene
promoter upon differentiation (Fujiki et al., 2013). PLIN1 protein

3https://string-db.org

plays a key role in the regulation of the extra-myocellular
lipid storage in pigs, which mainly determines the IMF content
(Gandolfi et al., 2011). PLIN1 was detected as a key gene affecting
porcine IMF based on transcriptome and knockdown analysis (Li
et al., 2018). Furthermore, once activated, the PPARG complex
can recruit other transcription factors and activate the adipogenic
gene transcription by the PPAR responsive elements including
FABP4 (Yutaka et al., 2008). As an adipokine, FABP4 is secreted
from adipocytes and induced during adipocyte differentiation. In
pigs, FABP4 levels were associated with the number of adipocytes
and IMF content (Damon et al., 2006). Gerbens et al. (1998)
found that a microsatellite sequence in the first intron of porcine
FABP4 is associated with IMF content in Duroc population, and
approximately 1% IMF was observed between certain genotype
classes. In bovine, polymorphisms in FABP4 associated with
IMF content were also found (Bartoň et al., 2016). Furthermore,
differing from adipogenic differentiation of muscle stem cells, a
novel mechanism for fatty infiltration, which might be regulated
by inhibition of FABP4, was found in mouse (Lee et al., 2017).

To sum up, according to the results of the DEG analysis,
WGCNA, and the relevant literature, the seven genes discussed
above, ADIPOQ, PPARG, LIPE, CIDEC, PLIN1, CIDEA, and
FABP4, could be potential candidate genes affecting IMF
content in pigs.

CONCLUSION

In this study, we performed a high throughput RNA sequencing
to evaluate the transcriptome profiles differences of eight Duroc
pigs with extreme IMF content. A total of 309 DEGs were
screened using the DESeq2 and edgeR packages. The GO terms
and pathway enrichment analysis of DEGs and WGCNA of 28
Duroc pigs revealed some potential candidate genes, such as
ADIPOQ, PPARG, LIPE, CIDEC, PLIN1, CIDEA, and FABP4, and
pathways, such as regulation of lipolysis in adipocytes and PPAR
signaling pathway. These potential candidate genes and pathways
play an essential role in affecting the IMF content of pigs, and
further studies should be carried out to unravel their specific
mechanism on IMF content.
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