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Abstract

The metabolic symbiosis with photosynthetic algae allows corals to thrive in the oligotrophic

environments of tropical seas. Different aspects of this relationship have been investigated

using the emerging model organism Aiptasia. However, many fundamental questions, such

as the nature of the symbiotic relationship and the interactions of nutrients between the part-

ners remain highly debated. Using a meta-analysis approach, we identified a core set of 731

high-confidence symbiosis-associated genes that revealed host-dependent recycling of

waste ammonium and amino acid synthesis as central processes in this relationship. Subse-

quent validation via metabolomic analyses confirmed that symbiont-derived carbon enables

host recycling of ammonium into nonessential amino acids. We propose that this provides a

regulatory mechanism to control symbiont growth through a carbon-dependent negative

feedback of nitrogen availability to the symbiont. The dependence of this mechanism on

symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon

translocation, as imposed by environmental stress.

Author summary

The symbiotic relationship with photosynthetic algae is key to the success of reef building

corals in the nutrient poor environment of tropical waters. Extensive insight has been

obtained from both physiological and “omics” level studies, yet, there are still gaps in our

knowledge with respect to the metabolic interactions in this symbiotic relationship. In

particular, the role of the host in nitrogen utilization and its potential link to symbiont

population control still remains unclear. Using a meta-analysis approach on publicly

available RNA-seq data and isotope-labeled metabolomics, we demonstrate the presence

of a negative-feedback cycle in which the host uses symbiont-derived organic carbon to

assimilate its own waste ammonium. This host-driven nitrogen recycling process might

serve as a molecular mechanism to control symbiont densities in hospite. The dependence

of this regulatory mechanism on organic carbon provided by the symbionts explains the

sensitivity of this symbiotic relationship to environmental stress.
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Introduction

The symbiotic relationship between photosynthetic dinoflagellates in the family Symbiodinia-

ceae [1] and corals is the foundation of the coral reef ecosystem. This metabolic symbiosis is

thought to enable corals to thrive in the oligotrophic environment of tropical oceans by allow-

ing efficient recycling of nitrogenous waste products in return for photosynthates from the

symbionts [2]. Despite the general acceptance of this assumption, cumulative studies have

raised discussions about the molecular mechanisms underlying host-symbiont metabolic

interactions.

In particular, the role of nitrogen recycling from waste ammonium is still under debate.

While it is generally assumed that ammonium assimilation is predominantly performed by the

symbiont, some studies indicate that symbiont-growth is nitrogen limited in hospite [3–5],

suggesting that the host might be able to control nitrogen availability. Moreover, it has been

suggested that the host might be able to utilize organic carbon [5], in the form of glucose pro-

vided by the symbiont [6], to promote ammonium assimilation by itself, while suppressing

ammonium production from deamination reactions [7]. Consequently, it has been proposed

that recycling of ammonium waste by the host might serve as a mechanism to control symbi-

ont densities [5]. Although this potential mechanism to control symbiont densities through

nitrogen conservation by the host has been proposed for decades, it still remains highly con-

tentious. Consequently, the coral research field still recognizes nitrogen recycling as a main

function of the symbiont [8, 9].

To better understand these metabolomic interactions, the sea anemone Aiptasia (sensu

Exaiptasia pallida) [10]—an anthozoan as corals—has emerged as a powerful model system

because of the similar symbiotic relationship it forms with Symbiodiniaceae. Multiple symbio-

sis-centered transcriptomic studies have provided invaluable information on the interactions

between Aiptasia and Symbiodiniaceae [11–13]. To generate a more concise set of high-confi-

dence symbiosis-related genes, we adapted a meta-analysis approach, which is a statistical

method developed from evidence-based medical research [14]. Because of its statistical power

in integrating results from multiple sources, it has been recently applied to transcriptomic

studies from both animals [15] and plants [16], and allows for the identification of high-confi-

dence genes associated with certain biological processes.

By carrying out a meta-analysis on available symbiosis-centered RNA-seq datasets, we iden-

tified a core set of high-confidence genes and pathways involved in symbiosis establishment

and maintenance. To further verify our conclusions made from expression changes of these

core genes, we subsequently analyzed metabolomic profiles of symbiotic and non-symbiotic

Aiptasia using 13C bicarbonate labeling. Through the integration of these two layers of omics-

level information, we identified the pathways associated with nitrogen conservation in the host

animal, and further revealed competition for nitrogen as a central mechanism in this relation-

ship that is generally believed to be entirely mutualistic. Based on these findings, we propose a

glucose-dependent nitrogen competition model that highlights the sensitivity of the symbiotic

relationship to environmental stresses.

Results

To carry out the meta-analysis, we collected symbiosis-centered transcriptomic data that was

generated from the same clonal Aiptasia strain CC7. Since this was the strain used to sequence

the genome, we expected to minimize background noise in our meta-analysis by mapping the

reads from the different transcriptomic studies to the published reference gene models [12].

Based on these requirements, we identified 3 previous RNA-seq studies that met our criteria

and provided 4 separate datasets, encompassing 17 biological replicates per symbiosis state
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(i.e., aposymbiotic and symbiotic) [11–13]. We named the four datasets after the initials of the

respective first authors whose paper we obtained the data from—YL, SB, EML, and EML-36

(i.e. Yong Li [13], Sebastian Baumgarten [12], and Erik M. Lehnert [11], respectively). The

meta-analysis was conducted on the expression levels of gene models that were quantified

based on these data.

Experimental variations

The initial PCA performed on samples from individual studies showed a clear separation of

samples by symbiotic condition (S1 Fig). This implied that the symbiotic state was the main

driver of expression changes in each of the individual studies. To further investigate the rela-

tionship between samples from different studies, we performed a principal component analysis

(PCA) and a rank correlation analysis (RCA) on inter-sample normalized transcripts per mil-

lion (TPM) values across all studies. Both the PCA (Fig 1A) and RCA (Fig 1B) showed clear

grouping of samples by experiment rather than symbiotic state. This indicated that technical

and/or experimental effects from each study exerted stronger effects on gene expression pro-

files than the actual symbiotic state of the animals.

Differential expression analyses

Although the four datasets grouped distinctly in the PCA analysis (Fig 1), there was still a clear

separation of symbiotic and aposymbiotic replicates within each of the datasets (S1 Fig). We

hypothesized that this separation was due to the differential expression of core genes involved

in symbiosis initiation and/or maintenance. To identify these genes, we performed four inde-

pendent differential expression analyses using the exact same pipeline and parameters as

described in Materials and Methods. These analyses identified between 2,398 to 11,959 differ-

entially expressed genes (DEGs), corresponding to ~10–50% of all expressed genes in the

respective studies (Table 1). Since the symbiotic state was supposed to be the main factor

Fig 1. Relationship between samples from different studies. (A) Principal component analysis of samples across all four studies. The symbiotic state (condition) of the

animals was indicated by the color of the points, while the source studies were represented as different shapes. (B) Kendall rank correlation of all samples, with high-

correlation as blue, and low-correlation as red. The pie chart in each cell also indicates the correlation of the two samples from the corresponding row and column. In

both figures, Apo and Sym represent the symbiotic state of the anemones: aposymbiotic and symbiotic, respectively.

https://doi.org/10.1371/journal.pgen.1008189.g001
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driving expression differences between the individuals in each study, we expected to find a

great overlap between these lists of DEGs. However, the overlap was poor despite the large

number of DEGs identified in the individual analyses: only 393 genes were consistently differ-

entially expressed across all four studies. Out of these 393 genes, 166 were upregulated in sym-

biotic anemones in all comparisons, while 134 were found to be downregulated in symbiotic

animals, relative to aposymbiotic controls (Table 1). Paradoxically, the remaining 93 genes

(23.7% of all overlapped DEGs) were differentially expressed in all studies, but in different

directions i.e. in some studies they were significantly upregulated while in others they were sig-

nificantly downregulated.

Performing a meta-analysis across four datasets

To obtain a more robust set of core genes involved in symbiosis, we performed a meta-analysis

with random effects across the four independent differential gene expression analyses (S1

Table). Using this approach, we identified 731 genes that exhibited a more consistent response

to symbiosis.

To assess the robustness of these genes, we carried out a principal variance component

analysis (PVCA). PVCA is an approach to partition the total variance present in the expression

data by estimating the contribution of each experimental parameter (biological or technical) to

the variance, and determine which of these sources are the most prominent [17]. By fitting the

expression profiles and the different experimental parameters used in each study (such as feed-

ing schedule, water source, temperature, etc., as shown in S2 Table) into the PVCA, we were

able to detect correlations between expression changes and potential effect sources (Fig 2).

For the four individual studies, we found that the symbiotic state of the anemones

accounted for a relatively small fraction (6.5% in raw data, 8.4% in normalized data) of the

observed variance. Most of the variance was introduced by study-specific variables such as

feeding frequency, days between feeding and sampling, water, light intensity, and temperature.

We further noticed that a large proportion of the variance across these four datasets remained

unaccountable, suggesting that technical variability, e.g. RNA extraction, library preparation

and sequencing, also introduces substantial unwanted heterogeneity to gene expression pro-

files. When the PVCA was similarly applied to the 731 genes identified through our meta-anal-

ysis, we observed that these core genes had a significantly higher association with symbiosis.

Symbiosis state accounted for 46.6% of the expression variance observed in these genes (Fig 2).

We noticed that smaller gene lists tended to have variances that were better explained by

symbiosis state, exemplified by DEG_YL and DEG_EML-36 having better association with

symbiosis than DEG_SB and DEG_EML (Fig 2). Thus, one could argue that the meta-analysis

merely achieved better association with symbiosis as it had the fewest genes of interest. To as-

sess this potentially confounding factor, we performed PVCAs on sets of 731 randomly picked

genes from each of the DEG lists (DEG_YL, DEG_SB, DEG_EML, and DEG_EML-36). These

Table 1. Number of differentially expressed genes in different analyses. “Upregulated” and “downregulated” refers to the number of genes that are expressed at higher

levels and lower levels respectively in symbiotic Aiptasia, relative to aposymbiotic ones.

Study Expressed DEGs Upregulated Downregulated

YL 27,684 3,058 1,552 1,506

SB 24,013 11,959 6,072 5,887

EML 24,511 9,613 4,758 4,855

EML-36 24,246 2,398 1,241 1,157

Overlap 22,394 393 166 134

Meta-analysis 25,857 731 366 365

https://doi.org/10.1371/journal.pgen.1008189.t001
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were repeated 10,000 times (i.e., a Monte-Carlo approach). These simulations allowed us to

estimate that the likelihood of our meta-analysis producing the observed 46.6% by random

chance was p< 10−4 (0 of 40,000 trials had symbiosis state accounting for> 46.6% of the

variance).

Functional interpretation

To assess the impact of the previously identified experiment-specific biases, we conducted

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses on the DEGs identified using the four independent differential gene expression analy-

ses, respectively. Across the analyses of four independent experiments, 283–645 GO terms and

9–55 KEGG pathways were enriched. However, the functional overlap across all studies was

poor: a large proportion of the putatively enriched terms were only identified in a single data-

set (~75% in GO, and ~65% in KEGG) (S2 Fig). This finding reflected the previously observed

poor overlap of differentially expressed genes across the studies and provided further evidence

for the role of study-specific technical factors in driving gene expression profiles. Compared to

the independent analyses, the GO and KEGG enrichment of the 731 symbiosis-associated core

genes contained fewer significant GO terms (204) (S3 Table), but comparatively more signifi-

cantly enriched KEGG reference pathways (31) (S4 Table).

Fig 2. Principal variance component analysis of DEGs from different analyses. The contribution of each factor to the overall variance in each analysis was

estimated by PVCA. The variance explained by symbiotic state (blue) is highest in the set of DEGs from the meta-analysis (DEG_meta); the combined variation

attributable to experimental factors (red) is lowest in DEG_meta as well. Unresolved variance is in gray. DEG_YL, _SB, _EML and _EML-36 represent the sets of

differentially expressed genes identified in four independent differential analyses. Raw and Normalized are the combined raw and inter-sample normalized

expression data across all Aiptasia genes, showing that< 10% of the variation in overall gene expression can be attributed to symbiotic state. DAF: days after feeding.

https://doi.org/10.1371/journal.pgen.1008189.g002
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Many of the enriched GO terms and KEGG reference pathways, as well as their associated

genes, fit well with processes previously reported to be involved in symbiosis [11, 18], includ-

ing symbiont recognition and the establishment of symbiosis, host tolerance of symbiont, and

nutrient exchange between partners and host metabolism which are discussed separately (S1

Text). The enrichment of the KEGG nitrogen metabolism reference pathway (S3 Fig) concurs

with previous studies that reported the symbiosis-induced upregulation of genes involved in

glutamine synthetase / glutamine oxoglutarate aminotransferase (GS/GOGAT) cycle in Aipta-
sia [11, 18]. The GS/GOGAT cycle has been demonstrated to be the main pathway of ammo-

nium assimilation in plants [19], bacteria [20] as well as in cnidarians [9, 11]. Moreover, we

found that the GS/GOGAT cycle connects to several symbiosis-related processes that were pre-

viously overlooked; of these processes, pathways associated with amino acid metabolism exhib-

ited some of the most extensive changes in response to symbiosis. These findings therefore

suggested that amino acid biosynthesis pathways might play a previously undiscovered role in

the maintenance of the symbiotic relationship.

Extensive changes of amino acid metabolism in response to symbiosis

Amino acid and protein metabolism represented a major symbiosis-related aspect in our

meta-analysis. Nine of 31 enriched KEGG pathways (S4 Table) and 18 of 125 enriched biologi-

cal process GO terms (S3 Table) were associated with amino acid and/or protein metabolism

(Fig 3). A total of 97 DEGs were involved in these processes, of which 43 were upregulated in

symbiotic animals. Interestingly, the DEGs involved in most of the enriched biological pro-

cesses exhibited consistent expression changes (Fig 3A), i.e. the genes associated with the cor-

responding process were either exclusively upregulated or downregulated.

Further integration of these enriched biological processes and pathways revealed an amino

acid metabolism hub in Aiptasia-Symbiodiniaceae symbiosis (Fig 4). We observed that genes

catalyzing glycine/serine biosynthesis from food-derived choline were systematically downre-

gulated in symbiotic anemones. In contrast, the genes involved in de novo serine biosynthesis

from 3-phosphoglycerate, one of the glycolysis intermediates, and glutamine/glutamate metab-

olism were generally upregulated (Fig 4A). The resulting change in amino acid synthesis path-

ways suggested that symbiotic anemones utilize glucose and waste ammonium to synthesize

serine and glycine, which are both main precursors for many other amino acids (S1 Text).

Based on these findings, we hypothesized that the host might be using symbiont-derived glu-

cose to assimilate waste ammonium into amino acids. To test this hypothesis, we further ana-

lyzed the metabolic profiles of anemones at different symbiotic states using 13C bicarbonate

labeling, which can only be fixed by the symbiont through photosynthesis.

Abundance and isotope changes of metabolites associated with amino acid

synthesis

We first investigated metabolomes of symbiotic and aposymbiotic anemones using nuclear

magnetic resonance (NMR) spectroscopy. Three metabolites in the de novo serine biosynthesis

pathway were highly abundant in symbiotic Aiptasia (two of them significantly so, p< 0.05),

while five out of the six intermediates in the alternative glycine/serine biosynthesis pathway

using food-derived choline were significantly enriched in aposymbiotic anemones as predicted

(Fig 4B, Fig 5A). However, as glucose produces multiple peaks in the 1H NMR spectrum, and

most of these peaks overlap with many other potential metabolites in both symbiotic and apos-

ymbiotic anemones, it was not possible to precisely determine glucose concentrations via

NMR. Consequently, we performed 13C bicarbonate labeling experiments and compared

metabolite profiles of symbiotic and aposymbiotic anemones using gas chromatography-mass
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spectrometry (GC-MS), in order to test if the glucose is indeed provided by the symbiont and

if the downstream usage of symbiont derived organic carbon is in the host. Our experiments

confirmed that symbionts provide large amounts of 13C-labeled glucose to the host (S4 Fig)

and that the 13C-labeling was significantly enriched in many amino acids and their precursors

in symbiotic anemones compared to aposymbiotic ones (S5 Table). Moreover, metabolite set

Fig 3. Amino acid metabolism biological processes (A) and pathways (B) enriched with DEGs identified in meta-analysis. For the two Circos plots, the height of

each bar in the inner circle indicates statistical significance of the enriched GO terms (A) and KEGG pathways (B), while color of the bars represents the overall

regulation effect of each process. The outer circle shows the differential expression of genes associated with each process, where red and blue represent upregulation and

downregulation in symbiotic anemones, respectively. The table describes the annotation of each term or pathway.

https://doi.org/10.1371/journal.pgen.1008189.g003
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enrichment analysis indicated that 13C was mainly enriched in several amino acid metabolism

pathways (Fig 5B), which is consistent with the enrichment analysis of the 731 differentially

expressed core-symbiosis genes. For the amino acids with good abundance in both symbiotic

and aposymbiotic animals, we examined the proportion of 13C in each of them, respectively.

Interestingly, we observed relatively stable increases (~1.5-fold) of 13C levels in symbiotic ani-

mals compared to aposymbiotic ones (Fig 5C). This constant increase suggests a single carbon

source (photosynthesis-produced glucose) rather than multiple sources (glucose and symbi-

ont-derived amino acids) involved in host amino acid biosynthesis. In the latter case, we

would expect to identify more amino acid transporter genes being differentially expressed

in response to symbiosis, which is not the case according to the meta-analysis. This provides

further proof for symbiont derived glucose as the carbon source used for host amino acid

synthesis.

Discussion

Meta-analysis in the identification of symbiosis-associated genes

Technical variation during experimentation may introduce strong bias in high throughput

sequencing studies [21]. This is especially true in the study of symbiotic systems. Since such

systems usually feature highly interdependent metabolic interactions, technical variations in

culturing, sampling, and/or manipulation can be expected to introduce significant noise in the

metabolic processes intertwined with real symbiosis-associated signals. However, this is often

overlooked in transcriptomic studies, and especially so in non-model organisms. As we have

noticed, the non-experimental parameters sometimes exerted stronger effects on the expres-

sion profiles than the symbiotic state in the Aiptasia transcriptomic studies. To reduce the

high signal-to-noise ratio, we suggest two potential venues for differential expression studies.

Fig 4. Amino acid biosynthetic pathways in response to Aiptasia-Symbiodiniaceae symbiosis. (A) Differential expression of genes involved in two alternative serine/

glycine synthesis pathways: glucose-dependent and choline-dependent. Color indicates log-transformed fold change of the gene expression level in the comparison

between symbiotic and aposymbiotic anemones. (B) Serine biosynthesis in symbiotic and aposymbiotic Aiptasia. The pathway on the left shows de novo serine

biosynthesis using symbiont-produced glucose and waste ammonium, while the right part represents glycine/serine biosynthesis using food-derived choline. Enzyme

names are colored to indicate differential expression of the corresponding genes, where red and blue mean upregulation and downregulation in symbiotic anemones,

respectively. The changes in abundances of metabolites in symbiotic animals are indicated with +/- superscripts.

https://doi.org/10.1371/journal.pgen.1008189.g004
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Firstly, future transcriptomic efforts should take extreme care to standardize all experimental

conditions save for the one under study. For example, culture conditions should be identical

across treatments except for the factor under study, treatments should further be performed

on multiple independent batches, RNA extractions and library preparation should be carried

out on all samples simultaneously. The prepared libraries should also be sequenced on the

same run to further minimize technical variation. Secondly, one should not dogmatically

adhere to the convention of using p = 0.05 as the cutoff for statistical significance. If a study

Fig 5. Change of Aiptasia metabolite profiles in response to symbiosis. (A) Metabolite abundance changes in response to symbiosis. Color represent abundance

changes, with red for increases in symbiotic anemones, blue for increase in aposymbiotic animals. (B) Pathways associated with 13C-enriched metabolites. (C)

Increasing 13C proportion of glucose and amino acids in symbiotic Aiptasia. Asterisks denote statistical significance of the changes (two-tail t test: � p< 0.05, ��

p< 0.01, ��� p< 0.001). Statistical testing of isoleucine and valine was not possible as they were detected in only one aposymbiotic replicate with reasonable

concentration. Error bar represents standard error of the mean.

https://doi.org/10.1371/journal.pgen.1008189.g005
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considers one in every three genes as significantly differentially expressed, to a careful reader,

the proclaimed significance of those genes is diminished. As the number of DEGs increase, the

rate of type I errors would also increase, which makes the discovery of meaningful biological

processes more difficult.

Consequently, meta-analyses have become a powerful approach for summarizing sequenc-

ing data from different trials in order to reduce the biases inherent to single experiments and

to increase the statistical power for the identification of underlying common processes [15,

16]. By applying this approach to Aiptasia RNA-seq data, we were able to deal with the specific

variances present in the individual studies, improve the precision in effect size estimation for

each of the genes, and eventually identify a group of high-confidence symbiosis-associated

candidates. As shown in our Monte Carlo simulations of PVCA, the genes we identified using

meta-analysis exhibited significantly higher association with symbiotic state than any of the

single experiment analyses. Moreover, the functional enrichment analyses of our core gene set

presented more symbiosis-related GO terms and KEGG pathways, rather than the very broad

terms identified from individual studies, being enriched. These terms were also enriched sig-

nificantly with relatively smaller p values in meta-analysis-identified genes and assisted in the

understanding of metabolic interactions between host and symbiont.

Metabolic equilibrium in cnidarian-Symbiodiniaceae symbiosis

The metabolic interactions between host and symbionts have been of great interest in the

study of the cnidarian-Symbiodiniaceae symbiosis [22, 23]. Among these interactions, the

exchange of carbonic and/or nitrogenous compounds between the two partners is arguably a

central process that has been the focus of many investigations [5, 7, 9, 24–26]. However, the

connections between these two major compounds remains unclear and highly controversial.

By combining a meta-analysis of transcriptomic data, metabolomics, and 13C profiling, we

demonstrated a host-dependent negative feedback mechanism in the regulation of nitrogen

availability to the symbionts, which is driven by symbiont-derived fixed carbon (Fig 6).

The systematic upregulation of genes involved in choline-betaine pathway highlights the

heterotrophic state of aposymbiotic Aiptasia (Fig 6A). This also emphasizes the importance of

regular feeding in the maintenance of aposymbiotic animals as previously stated [27]. The

downregulation of choline transport in symbiotic Aiptasia indicates a decrease of the host’s

demand on dietary choline (Fig 6B and 6C). Correspondingly, genes involved in the down-

stream conversion of choline to betaine and the production of glycine from betaine are also

downregulated. The decrease of glycine caused by this downregulation is likely compensated

by the metabolism of serine, which can be achieved by the observed upregulation of serine

hydroxymethyltransferase (SHMT, AIPGENE4781), which catalyzes the interconversion of

glycine and serine. Interestingly, our results suggest that serine is one of the key components

in amino acid interconversion, as the genes involved in its de novo biosynthesis from 3-phos-

phoglycerate (one of the intermediates of glycolysis) were consistently upregulated. The con-

version from glutamate to 2-oxoglutarate, catalyzed by the upregulated phosphoserine

aminotransferase (PSAT, AIPGENE17104), may serve as the main reaction to provide amino

groups for the biosynthesis of amino acids. Since 2-oxoglutarate is also one of the intermedi-

ates in the citrate acid cycle, an increase of glucose provided by the symbionts may also

increase the overall activity of the cycle, hence raising the relative abundance of 2-oxoglutarate

in symbiotic animals. High levels of 2-oxoglutarate have been reported to induce ammonium

assimilation through glutamine synthetase / glutamate synthase cycle in bacteria [28]. Consis-

tent with this finding, we observed upregulation of all the genes involved in this pathway for

symbiotic anemones.
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Metabolomic analyses of symbiotic and aposymbiotic anemones confirmed the predictions

derived from our transcriptomic meta-analysis. Most of the metabolic intermediates in the de
novo serine biosynthesis using symbiont-derived glucose were highly enriched in symbiotic

anemones and showed increased 13C-labeling. Conversely, many of the metabolites from cho-

line-betaine-glycine-serine conversion showed decreased abundance in symbiotic animals.

Furthermore, we also identified many other amino acids with significantly increased abun-

dance and 13C-labeling signals, suggesting that serine may serve as a metabolic intermediate

for the production of other amino acids. Overall, these results highlight that symbiont-derived

glucose fuels ammonium assimilation and amino acid production in the host and that serine

biosynthesis acts as a main metabolic hub in symbiotic hosts (Fig 6B and 6C).

Fig 6. A predicted model of metabolic interactions between host and symbiont at different stages. (A) Aposymbiotic stage. Host cells synthesize amino acids from

food-derived choline. The ammonium produced from the catabolism of amino acids is converted to urea and evacuated from host cells. (B) Early symbiotic stage. The

animal host is partially colonized by symbiont cells which produce glucose via photosynthesis. A large proportion of the glucose remains in the symbiont for its own

proliferation, while a minimum amount of glucose is transferred to host and enables host-dependent ammonium assimilation. The production of amino acids frees host

from its dependence on food-derived choline. (C) Fully symbiotic stage. The proliferation of symbiont cells requires more nitrogen to produce more glucose. This

further enhances the capability of the host to assimilate ammonium and control the nitrogen availability to symbiont. The process reaches an equilibrium eventually

where symbiont cell density is stable. (D) Stressed stage. The balance of this system depends on the photosynthesis of symbiont and the translocation of photosynthates

to the host. Stresses, such as temperature stress imposed by climate change, reduce photosynthetic efficiency of the symbionts and photosynthate translocation, resulting

in reduced ammonium assimilation by the host and increased ammonium availability to the symbionts. The increased availability of nitrogen to the symbionts can

induce cell proliferation and further reduction of photosynthate translocation which exacerbates the metabolic imbalance of the system and initiates a vicious cycle.

https://doi.org/10.1371/journal.pgen.1008189.g006
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The strong shifts in host amino acid metabolic pathways induced by symbiont-provided

glucose explains the interactions between nitrogen and carbon metabolism in the Aiptasia-

Symbiodiniaceae symbiosis. The catabolism of glucose through pathways such as glycolysis,

pentose phosphate pathway, and citric acid cycle, not only generates more energy (in forms of

ATP, NADH, and NADPH), which is critical to ammonium assimilation, but also produces

more intermediate metabolites that can serve as carbon backbones in many biosynthetic path-

ways such as amino acid synthesis. Our findings thus highlight nitrogen conservation, i.e. the

host driven assimilation of waste ammonium using symbiont-derived carbon, as a central

mechanism of the cnidarian-algal endosymbiosis [7]. This metabolic interaction might serve

as a self-regulating mechanism for the host to control symbiont density through the regulation

of nitrogen availability [5] in a carbon dependent manner. This allows for higher nitrogen

availability in the early stages of infection (few symbionts translocating little carbon and

requiring little nitrogen) and gradual reduction of nitrogen availability with increasing symbi-

ont densities (many symbionts translocating more carbon and requiring more nitrogen).

The strict dependence of this mechanism on symbiont-derived carbon highlights the sensitiv-

ity of this relationship to changes in carbon translocation from the symbiont to the host as

imposed by environmental stresses (Fig 6D). Heat-challenged symbionts have been shown to

retain significantly more carbon for their own proliferation using the increased nitrogen avail-

ability [29], while exhibiting a significant decline in light utilization efficiency [30]. This indi-

cates that the balance of the negative-feedback system is tipped by climate change-induced

heat stress, because such stress disrupts carbon translocation from the symbionts to the host

while increasing the amount of nitrogen available to the symbionts. Overall, this sensitive met-

abolic equilibrium presents a potential molecular mechanism underlying the establishment,

maintenance, and breakdown of symbiotic relationships between cnidarian hosts and

Symbiodiniaceae.

Materials and methods

Data collection and pre-processing

To collect data for a meta-analysis, we screened for transcriptomic study that focused on cni-

darian-Symbiodiniaceae symbiosis using the clonal Aiptasia strain CC7. We obtained 3 previ-

ous RNA-seq studies that met our criteria and provided 4 separate datasets [11–13]. All the

datasets were generated on the same platform (Illumina HiSeq 2000). Three of the datasets

contained 101 bp paired-end reads, while the last one contained 36 bp single-end reads. Sam-

ples were labeled based on the initials of the first author of published papers: YL, SB, EML,

EML-36.

As all raw data from Lehnert et al. [11] was provided as a monolithic FASTQ file, a custom

Python script was written to split the reads into its constituent replicates, as inferred from the

FASTQ annotation lines.

Identification of DEGs

To avoid biases stemming from the use of disparate bioinformatics tools in calling DEGs, data

from the four datasets were processed with identical analytical pipelines.

Gene expressions were quantified (in TPM, transcripts per million) based on the published

Aiptasia gene models [12] using kallisto v0.42.4 [31]. DEGs were independently identified in

the four datasets using sleuth v0.28.0 [32]. Genes with corrected p values< 0.05 were consid-

ered differentially expressed.

To enable direct comparisons of gene expression values between datasets, another normali-

zation with sleuth was carried out on all samples (n = 17 aposymbiotic and n = 17 symbiotic).
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Principal component analysis (PCA) and ranked correlation analysis (RCA) were carried out

on these normalized expression values to assess the relationship between samples and repro-

ducibility of these studies.

Profiling sources of batch effects

Principal variance components analysis (PVCA), a technique that was developed to estimate

the extent of batch effects in microarray experiments [17], was used several times in our study.

A PVCA was carried out on raw data to estimate the batch effects in the combined dataset and

their possible source in the original experimental designs. Consistently, the normalized data

was also assessed for the reduction of batch effects post-normalization. We also performed

PVCA on normalized expression values of the DEGs identified in each independent analysis

or the final meta-analysis to detect the robustness of DEG calling.

Meta-analysis across studies

For every gene with at least two studies with significant differential expression values, a meta-

analysis was performed to determine the overall effect size and associated standard error.

Effect sizes from each study i (represented as wi) were calculated as the natural logarithm of its

expression ratio (ln Ri), i.e. geometric means of all expression values in the aposymbiotic state

divided by the geometric means of all expression values in the symbiotic state. Conveniently,

this value is approximately equal to the βi value provided by sleuth. As sleuth also calculates

the standard error of βi, the variance of ln Ri was not calculated via the typical approximation

—instead, the variance vi was directly calculated as

vi ¼ SE2

bi
� ni

where ni represents the number of replicates in study i.
To combine the studies, a random-effects model was used. While the use of this model is

somewhat discouraged for meta-analyses with few studies as it is prone to produce type I

errors [33], we still opted for its use over the fixed-effects model due to the substantial inter-

study variation evident in the PCAs performed previously. Also, the type I error rate could be

controlled by setting a more conservative p threshold, if required.

The DerSimonian and Laird [14] method was implemented as described below. Studies

with individual effect sizes mi were weighted (w�) by a combination of the between-study vari-

ation (τ2) and within-study variation (vi), according to the formula

w�i ¼
1

vi þ t2

The between-study variation (τ2) across all k studies was calculated as

t2 ¼ max
Q � df
C

; 0

� �

where

Q ¼
X

wiðTi �
�TÞ2

C ¼
X

wi �

P
w2

iP
wi
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The weighted mean (m�) was calculated as

m� ¼
P

w�i TiP
w�i

while the standard error of the combined effect was

SE m�ð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiP

w�i
p

The two-tailed p-value was calculated using

p ¼ 2 1 � F
m�

SEðm�Þ

�
�
�
�

�
�
�
�

� �� �

and then subsequently corrected for multiple hypothesis testing with the Benjamini-Hoch-

berg-Yekutieli procedure [34, 35] using a Python script. Genes with corrected p< 0.05 were

considered differentially expressed. For transparency, calculations for all equations were

implemented manually in Microsoft Excel (S1 Table) following established guidelines [36].

Functional interpretation of DEGs

Gene ontology (GO) and KEGG pathway enrichment analyses were both conducted on five

DEG lists: one each from the four independent datasets, and one from the results of the meta-

analysis.

Identification of enriched GO terms were conducted using topGO [37] by a self-developed

R script (https://github.com/lyijin/topGO_pipeline). A GO term was considered enriched only

when its p value was less than 0.05.

KEGG pathway enrichment analyses were performed using Fisher’s exact and subsequent

multiple testing correction via false discovery rate (FDR) estimation. A KEGG pathway was

deemed enriched (or depleted) only when its FDR was less than 0.05. The results of enrich-

ment analyses were visualized using GOplot [38].

Metabolomic profiles of symbiotic and aposymbiotic anemones

Aposymbiotic Aiptasia strain CC7 and the same strain in symbiosis with Breviolum minutum
strain SSB01 (formerly Symbiodinium minutum SSB01) [1] were used for metabolic profiling.

All the symbiotic and aposymbiotic anemones were maintained in the laboratory in autoclaved

seawater (ASW) at 25˚C in 12-hour light/12-hour dark cycle with light intensity of ~30 μmol

photons m-2s-1 for over three years. Anemones were fed three times a week with freshly

hatched Artemia nauplii, and water change was done on the day after feeding.

Anemones were rinsed extensively to remove any external contaminations, and starved for

two days in ASW and transferred into ASW with 10 mM 13C-labelled sodium bicarbonate

(Sigma-Aldrich, USA) for another two days before sampling. The four-day starvation period

ensured all Artemia had been digested and consumed, hence there was no contamination

from Artemia in the samples for NMR and GC-MS. The samples were drained completely on

clean tissues to remove any water on surface, then snap frozen in liquid nitrogen to avoid any

further metabolite changes in downstream processing.

To compare metabolomic profiles of anemones at different symbiotic states, four replicates

of each state (n = 30 individuals per replicate), were processed for metabolite extraction using a

previously reported methanol/chloroform method [39]. The free amino acid-containing metha-

nol phase was dried using CentriVap Complete Vacuum Concentrators (Labconco, USA).
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For NMR metabolite profiling, samples were dissolved in 600 μl of deuterated water (D2O),

and vortexed vigorously for at least 30 seconds. Subsequently, 550 μL of the solution was trans-

ferred to 5 mm NMR tubes. NMR spectrum was recorded using 700 MHz AVANCE III NMR

spectrometer equipped with Bruker CP TCI multinuclear CryoProbe (BrukerBioSpin, Ger-

many). To suppress any residual HDO peak, the 1H NMR spectrum were recorded using exci-

tation sculpting pulse sequence (zgesgp) program from Bruker pulse library. To achieve a

good signal-to-noise ratio, each spectrum was recorded by collecting 512 scans with a recycle

delay time of 5 seconds digitized into 64 K complex data points over a spectral width of

16 ppm. Chemical shifts were adjusted using 3-trimethylsilylpropane-1-sulfonic acid as inter-

nal chemical shift reference. Before Fourier transformations, the FID values were multiplied

by an exponential function equivalent to a 0.3 Hz line broadening factor. The data was col-

lected and quantified using Bruker Topspin 3.0 software (Bruker BioSpin, Germany), with

metabolite-peak assignment using Chenomx NMR Suite v8.3, with an up-to-date reference

library (Chenomx Inc., Canada).

For 13C-labelling investigation using GC-MS, dried samples were re-dissolved in 50 μl of

Methoxamine (MOX) reagent (Pierce, USA) at room temperature and derivatized at 60˚C for

one hour. 100 μl of N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) was added and incu-

bated at 60˚C for further 30 min. 2 μl of the internal standard solution of fatty acid methyl

ester (FAME) were then spiked in each sample and centrifuged for 5 min at 10,000 rpm. 1 μl of

the derivatized solution was analyzed using single quadrupole GC-MS system (Agilent 7890

GC/5975C MSD) equipped with EI source at ionization energy of 70 eV. The temperature of

the ion source and mass analyzer was set to 230˚C and 150˚C, respectively, and a solvent delay

of 9.0 min. The mass analyzer was automatically tuned according to manufacturer’s instruc-

tions, and the scan was set from 35 to 700 with scan speed 2 scans/s. Chromatography separa-

tion was performed using DB-5MS fused silica capillary column (30m x 0.25 mm I.D., 0.25 μm

film thickness; Agilent J&W Scientific, USA), chemically bonded with 5% phenyl 95% methyl-

polysiloxane cross-linked stationary phase. Helium was used as the carrier gas with constant

flow rate of 1.0 ml min-1. The initial oven temperature was held at 8˚C for 4 min, then ramped

to 300˚C at a rate of 6.0˚C min-1, and held at 300˚C for 10 min. The temperature of the GC

inlet port and the transfer line to the MS source was kept at 200˚C and 320˚C, respectively. 1 μl

of the derivatized solution of the sample was injected into split/splitless inlet using an auto

sampler equipped with 10 μl syringe. The GC inlet was operated under splitless mode. Metabo-

lites in all samples were identified using Automated Mass Spectral Deconvolution and Identifi-

cation System software (AMDIS) with the NIST special database 14 (National Institute of

Standards and Technology, USA). The mass isotopomer distributions (MIDs) of all com-

pounds were detected and their 13C-labelling enrichment in symbiotic Aiptasia were investi-

gated using MIA [40]. Pathways associated with these 13C-enriched metabolites were explored

using MetaboAnalyst v3.0 [41].

Supporting information

S1 Fig. Relationship between symbiotic and aposymbiotic Aiptasia in different studies. (A)

YL, (B) SB, (C) EML, and (D) EML-36. Colors represent symbiotic states of the samples with

blue for animals at aposymbiotic state and orange for symbiotic anemones.

(TIF)

S2 Fig. (A) Gene ontology and (B) KEGG pathway enrichment of differentially expressed

genes identified from four individual experiments.

(TIF)
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S3 Fig. KEGG nitrogen metabolism reference pathway. Color represents the expression

changes of the gene in response to symbiosis, where red and blue indicate upregulation and

downregulation in symbiotic anemones, respectively. 1.4.1.13/1.4.1.14: glutamate synthase

(GS, AIPGNENE26077); 6.3.1.2: glutamine synthetase (GOGAT, AIPGENE26763); 1.4.1.4:

glutamate dehydrogenase (GDH, AIPGENE24026, AIPGENE27618).

(TIF)

S4 Fig. Glucose abundance in Aiptasia determined by GC-MS. Lines represent the GC-MS

spectrums of anemones at different symbiotic states, with blue for aposymbiotic, and red for

symbiotic animals. The peak located between the dotted lines is for glucose.

(TIF)

S1 Table. Random effects meta-analysis across four independent datasets. Note: qval, b,

seb_b, and var_b are the values extracted from Sleuth, which indicate the statistical signifi-

cance and level of differential expression of the corresponding gene. up/down indicates upre-

gulation/downregulation of the gene in symbiotic anemones in the comparison with

aposymbiotic ones. diff indicates statistically significant expression change, which was assigned

when the corresponding qval< 0.05.

(XLSX)

S2 Table. Experimental parameters used in each individual study.

(XLSX)

S3 Table. GO terms enriched by symbiosis-associated genes identified from meta-analysis.

(XLSX)

S4 Table. KEGG pathways enriched by symbiosis-associated genes identified from meta-

analysis.

(XLSX)

S5 Table. 13C-enriched metabolite identified by MIA from GC-MS data.

(XLSX)

S1 Text. Supplementary results and discussion.
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