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Objective: This study aims to detect the invisible metabolic abnormality in PET images of

patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis using amultivariate

cross-classification method.

Methods: Participants were divided into two groups, namely, the training cohort and

the testing cohort. The training cohort included 17 healthy participants and 17 patients

with anti-LGI1 encephalitis whose metabolic abnormality was able to be visibly detected

in both the medial temporal lobe and the basal ganglia in their PET images [completely

detectable (CD) patients]. The testing cohort included another 16 healthy participants and

16 patients with anti-LGI1 encephalitis whose metabolic abnormality was not able to be

visibly detected in the medial temporal lobe and the basal ganglia in their PET images

[non-completely detectable (non-CD) patients]. Independent component analysis (ICA)

was used to extract features and reduce dimensions. A logistic regression model was

constructed to identify the non-CD patients.

Results: For the testing cohort, the accuracy of classification was 90.63% with 13 out

of 16 non-CD patients identified and all healthy participants distinguished from non-CD

patients. The patterns of PET signal changes resulting from metabolic abnormalities

related to anti-LGI1 encephalitis were similar for CD patients and non-CD patients.

Conclusion: This study demonstrated that multivariate cross-classification combined

with ICA could improve, to some degree, the detection of invisible abnormal metabolism

in the PET images of patients with anti-LGI1 encephalitis. More importantly, the invisible

metabolic abnormality in the PET images of non-CD patients showed patterns that were

similar to those seen in CD patients.

Keywords: FDG-PET, anti-LGI1 encephalitis, independent component analysis, machine learning, multivariate

cross-classification

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.812439
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.812439&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jgliu@buaa.edu.cn
mailto:ailin@bjtth.org
https://doi.org/10.3389/fneur.2022.812439
https://www.frontiersin.org/articles/10.3389/fneur.2022.812439/full


Pan et al. Machine Learning in Anti-LGI1 Encephalitis

INTRODUCTION

Leucine-rich glioma-inactivated 1 (LGI1) antibody encephalitis
is one of the subtypes of autoimmune limbic encephalitis (ALE)
that is characterized by a rapid progression of neurological
and psychiatric deficits (1). It has been clinically demonstrated
that the outcomes of ALE can be improved by early diagnosis
and treatment (2–4). In the existing criteria, antibody testing
is necessary and effective in the diagnosis of autoimmune
encephalitis (1, 2). However, antibody testing is time-consuming
and not easily accessible and therefore, a diagnosis based
on antibody testing is likely to delay the treatment (2). In
fact, as suggested by a position paper (2), a preliminary
treatment can be initiated by an early assessment based on
some traditional clinical characteristics and commonly used
methods of diagnosis, such as magnetic resonance imaging
(MRI), electroencephalography (EEG), or cerebrospinal fluid
(CSF), before obtaining the results of antibody testing, which,
in turn, will refine the initial diagnosis and treatment. However,
the MRI results in some patients with anti-LGI1 encephalitis
were normal (5–7) and positron emission tomography (PET)
can increase the sensitivity to LGI1 encephalitis compared to
MRI (6, 8, 9). Therefore, PET may be a prospective imaging tool
for the early diagnosis of LGI1 encephalitis. Nevertheless, for a
proportion of patients with anti-LGI1 encephalitis, the metabolic
disorders were not yet perceptible (6). A recent study found
the abnormal intensity of the PET signal in some areas within
the medial temporal lobe and/or the basal ganglia for patients
with autoimmune encephalitis (including many patients with
anti-LGI1 encephalitis) who could not be identified by visual
inspection (10). This finding implied that quantitative analysis
may improve the identification of non-completely detectable
(non-CD) patients.

Machine learning (ML), a multivariate analysis method,
presents higher sensitivity than traditional univariate analysis
(11, 12) and it is increasingly applied to medical imaging analysis,
such as MRI, PET, and computed tomography (CT) (13–15).
However, for the analysis of medical images based on ML, the
number of samples is usually less than that of features, resulting
in “overfitting” (16). To address this problem, feature selection or
dimension reduction is conducted before training a classifier (17,
18). Independent component analysis (ICA) has been proved to
be an effective method for dimension reduction (18), particularly
for the multivariate analysis with a limited number of data
samples (e.g., PET images).

The aim of this study was to use the combination of ICA
and amethod of multivariate cross-classification (MVCC) (19) to
discriminate between patients with anti-LGI1 encephalitis whose
metabolic disorders within the medial temporal lobe and the
basal ganglia were not able to be visually detected from their PET
images (referred to as non-CD patients) and healthy participants.
We further aimed to explore the consistency in PET image
features between the non-CD patients and the patients with anti-
LGI1 encephalitis whose metabolic disorders within both the
medial temporal lobe and the basal ganglia could be visually
detected from their PET images [referred to as completely
detectable (CD) patients].

TABLE 1 | Demographics of participants.

Age (years) Gender

Range Mean ± SD Male Female

Patients with anti-LGI1

encephalitis (n = 33)

31–78 57.91 ± 11.91 22 11

Healthy participants (n = 33) 40–69 54.64 ± 7.44 23 10

p value 0.19a 1.00b

LGI1, leucine-rich glioma-inactivated 1; SD, standard deviation.
aTwo-sample Student’s t-test.
bFisher’s exact test.

MATERIALS AND METHODS

Participants
This study recruited 33 patients with anti-LGI1 encephalitis
(57.91 ± 11.91 years; 22 males), and part of them had been
recruited in the study by Lv et al. (10). These 33 patients
were in acute or subacute disease courses for in-patient care
and were confirmed by the neurology physicians based on
clinical symptoms and modified Rankin Scale score (all ≥3).
The inclusion criteria (10) for patients are as follows: (1) the
LGI1 antibodies were positive in serum and/or CSF; (2) patients
presented clinical symptoms of the medial temporal lobe damage
(such as drug-resistant epilepsy, cognitive impairment, and
behavioral abnormalities), sleep, and autonomic dysfunctions
(20); (3) PET/CT images were available; and (4) new-onset
seizures showing response to immunomodulatory therapies. The
exclusion criteria (10) for cases are as follows: (1) patients with
acute infectious encephalitis; (2) patients with seizures caused
by severe metabolic abnormalities, such as renal or hepatic
failure, malignant hypertension, or severe hypo/hyperglycemia;
(3) patients with seizures caused by brain structural lesions, such
as stroke and tumor. We also recruited 33 healthy participants
(54.64 ± 7.44 years; 23 men) without any neurologic diseases
or psychiatric illnesses, who had been recruited in the study
by Lv et al. (10). Table 1 summarizes the demographics of
the participants. There was no significant difference in age
or gender between patients with anti-LGI1 encephalitis and
healthy participants (p > 0.05). All participants underwent
18Fluorodeoxyglucose (18F-FDG) PET/CT scan in our tertiary
epilepsy center (May 2014 to November 2018). The Medical
Ethics Committee of Beijing Tiantan Hospital of Capital
Medical University approved this study in accordance with
the Declaration of Helsinki. All participants provided written
informed consent before participating in the study.

Image Acquisition
For each participant, a brain 18F-FDG PET/CT scan was
performed in order to evaluate the metabolism. Blood glucose
level was confirmed to be normal after a fast of at least 6 h.
Then, 0.10–0.15 mCi of 18F-FDG per kg of body weight was
injected. PET/CT images were acquired using a multidetector
helical PET/CT scanner (Discovery 690, GE Medical Systems)
after 30min of rest in a dark roomwith eyes opened. To avoid the
effect of seizures, video EEGwas used to monitor brain activity to
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ensure the absence of seizures 1–2 h before the PET/CT scanning.
In addition, before and after the PET/CT scanning, the physician
observed the participant’s status and confirmed the absence of
seizures. Thus, during the PET/CT image acquisition, none of the
patients presented seizures.

Visual Assessment
Anti-LGI1 encephalitis is reported to be related to abnormal
metabolism of the medial temporal lobe (left and/or right)
(2, 21, 22). Additionally, many previous studies found that the
metabolism of the basal ganglia was also abnormal for patients
with anti-LGI1 encephalitis (21–24). Therefore, in the PET image
of the patient with anti-LGI1 encephalitis, the medial temporal
lobe and the basal ganglia of the brain were reviewed blindly
and independently by an attending doctor of nuclear medicine
and two experienced neurology specialists to inspect whether or
not the glucose metabolism of these brain areas was abnormal.
Inconsistent diagnoses were reconciled by discussion among the

reviewers. Regardless of hemispheres, the patients with visible
metabolic abnormality in both the medial temporal lobe and the
basal ganglia in PET images were referred to as “CD patients” and
those without were referred to as “non-CD patients.”

Image Preprocessing
All image preprocessing was performed using Statistical
Parametric Mapping software (SPM12, Wellcome Trust Center
for Neuroimaging, London, United Kingdom; http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/). First, the CT images were
co-registered to the corresponding PET images, and then the
co-registered CT images were normalized into the Montreal
Neurological Institute (MNI) template. The CT normalization
was performed using an open-source Clinical Toolbox (https://
www.nitrc.org/projects/clinicaltbx/), which is used as a plug-in
in SPM12 (25). Second, using the transformation of CT image
spatial normalization, the PET images were normalized into the
MNI template. The PET images were then resampled to 2 ×

FIGURE 1 | Spatial ICA decomposition of original PET images. The left column indicates the original PET image for each participant. The images in each dash

rectangles indicate the corresponding independent component, which is invariant to all participants. The coefficients of each row are specific to the participant of the

same row, which is used in the subsequent construction of the classification model in place of the original PET image of the corresponding participant. The

coefficients of all participants, namely, ai,j (i = 1,2,…,34; j = 1,2,…,34), constitute the coefficient matrix (i.e., A). X denotes the original PET images, each row of which

corresponds to an original PET image reshaped into a vector. S denotes the independent components, each row of which corresponds to an independent component

reshaped into a vector. ICA, independent component analysis; IC, independent component.
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2 × 2 mm3. Third, the normalized PET images were spatially
smoothed using an 8-mm isotropic full width at half maximum
(FWHM). Fourth, each smoothed PET image was normalized
by dividing the intensity of each voxel by the average of the
intensities across the highest 20% of the voxels whose intensities
were greater than one-eighth of the mean of the PET image
(26, 27). Finally, the gray matter voxels in PET images were
reserved using a gray matter binary mask that was produced
based on a mask of gray matter included in SPM12.

Independent Component Analysis
In this study, the preprocessed PET image of each participant
was the original PET image. Spatial ICA decomposed the
original PET images of all participants into spatially independent
components with the same resolution and size as the original

PET images. As shown in Figure 1, each original PET image was
the summation of the products of the independent components
and their respective coefficients. The independent components
were invariant to all participants, whereas the coefficients were
specific to each of the participants. Thus, the original PET image
could be represented by the corresponding coefficients. Because
the number of these coefficients was less than the dimension
of the original PET image, these coefficients were used in the
subsequent construction of the classification model in place of
the original PET image. The coefficients corresponding to all
participants constituted the coefficient matrix (i.e., the matrix A

in Figure 1).
In this study, spatial ICA was performed using the ICASSO

toolbox included in GIFT (http://trendscenter.org/software/).
Specifically, in the training cohort, the original PET images

FIGURE 2 | The training and testing of the classification model. Xtraining and Xtesting denote the original PET images of training and testing cohorts, respectively, each

row of which corresponds to an original PET image reshaped into a vector. Atraining and Atesting are the coefficient matrixes for training and testing cohorts, respectively.

S denotes the independent components in the training cohort, each row of which corresponds to an independent component reshaped into a vector. S+, the pseudo

inverse of the S; SD, standard deviation; LOOCV, leave-one-out cross-validation; λ, the hyper-parameter of the logistic regression model.
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were decomposed into the coefficient matrix (Atraining) and 34
spatially independent components (S) by ICA (Figure 2). To
ensure the reliability of the spatially independent components,
the decomposition based on ICA was repeated 200 times. Then,
all independent components were clustered according to their
mutual similarities. For each cluster, the independent component
that showed the maximum similarity to the other independent
components in the same cluster was considered a more
reliable independent component. Thus, 34 reliable independent
components from 34 clusters were selected, respectively. Then,
the coefficient matrix of the testing cohort (Atesting) was
calculated by the production of the original PET images of the
testing cohort and the pseudo inverse of the S obtained in the
training cohort (Figure 2). The rows of Atraining and Atesting were
used as the feature vectors to train and test the classification
model, respectively.

The coefficients of each column of Atraining were normalized
by first removing their mean value and then dividing them by
their SD. In contrast, the coefficients of each column of Atesting

were normalized by first removing the mean value and then
dividing by the SD across the coefficients of the corresponding
column of Atraining.

For the normalized Atraining and Atesting, the coefficients of
each row were specific to the corresponding original PET images
in the training and testing cohorts and, therefore, were used in the
subsequent training and testing of classification models in place
of those corresponding original PET images, respectively.

Multivariate Cross-Classification
In this study, the logistic regression model was used to
discriminate between non-CD patients and healthy participants.
In total, 33 healthy participants were randomly divided into
two groups. There was no significant difference in age between
the two groups [t(31) = 1.59; p > 0.05]. The training cohort
included all CD patients (n = 17; 57.53 ± 11.76 years; 12
men) and one group of healthy participants (n = 17; 56.59 ±

9.80 years; 13 men) as controls. The testing cohort included all
non-CD patients (n = 16; 58.31 ± 12.45 years; 10 men) and
another group of healthy participants (n = 16; 52.56 ± 2.61
years; 10 men) as controls. There was no significant difference
in age between patients and healthy participants for the training
cohort [t(32) = 0.25; p > 0.05] or for the testing cohort [t(30)
= 1.81; p > 0.05]. Table 2 lists the clinical characteristics of the
CD patients in the training cohort and those of the non-CD
patients in the testing cohort. As summarized in Table 2, when
comparing CD patients of the training cohort with the non-
CD patients of the testing cohort, a significant difference was
observed only in the number of MRI abnormalities of the medial
temporal lobe (p < 0.05). In contrast, there was no significant
difference in each of the other clinical characteristics between
the CD patients of the training cohort and the non-CD patients
of the testing cohort (p > 0.05). Such differences in clinical
characteristics were assessed using the two-sample Student’s t-
test for continuous data and Fisher’s exact test for categorical
data. The two-sample Student’s t-test was performed using the
SPSS Statistics software (SPSS for macOS, version 26.0, Chicago,

TABLE 2 | Comparison of clinical characteristics between CD patients of the

training cohort and non-CD patients of the testing cohort.

CD patients Non-CD patients p value

Age (years) 57.53 ± 11.76 58.31 ± 12.45 0.85a

Gender (male) 12 (70.59%) 10 (62.50%) 0.72b

Interval time (weeks) 16.00 ± 15.45 17.56 ± 16.50 0.78a

Treatment, n (%) 7 (41.18%) 6 (37.50%) 1.00b

MRI abnormalities, n (%)

Total 12 (70.59%) 6 (37.50%) 0.08b

Only MTL 12 (70.59%) 5 (31.25%) 0.04b

Only BG 0 1 (6.25%) 0.48b

Both MTL and BG 0 0 1.00b

Clinical symptoms, n (%)

Seizures 17 (100%) 16 (100%) 1.00b

FBDS 7 (41.18%) 7 (43.75%) 1.00b

Temporal lobe seizures 9 (52.94%) 7 (43.75%) 0.73b

Other types 5 (29.41%) 6 (37.50%) 0.72b

Memory loss 3 (17.65%) 5 (31.25%) 0.44b

Sleep disorder 0 1 (6.25%) 0.48b

Headache 1 (5.88%) 0 1.00b

Psychiatric symptoms 1 (5.88%) 3 (18.75%) 0.34b

Hallucinations 0 1 (6.25%) 0.48b

MTL, the medial temporal lobe; BG, the basal ganglia; FBDS, faciobrachial dystonic

seizures; CD, completely detectable; non-CD, non-completely detectable.
aTwo-sample Student’s t-test.
bFisher’s exact test.

IL, United States), and Fisher’s exact test was performed using
Python, version 3.6.

As mentioned earlier, each row of the Atraining and the Atesting

was specific to the corresponding original PET image in the
training and testing cohorts, respectively. Thus, the rows of
Atraining and Atesting were used as the feature vectors to train and
test the logistic regression model, respectively. To determine the
optimal value of the hyperparameter (λ) of the logistic regression
model, leave-one-out cross-validation (LOOCV) was performed
for each of 21 potential values [i.e., λ = (2−10, 2−9,..., 29, 210)].
The optimal λ value with the highest area under the curve (AUC)
value was selected, with which a final logistic regression model
was constructed using all samples from the training cohort, and
then was tested by the testing cohort. The logistic regression
model was implemented using scikit-learn version 0.23.2 (https://
scikit-learn.org/stable/index.html).

Given the labels one and zero for patients and healthy
participants in the classification model, respectively, 0.5 was set
as a classification threshold. Thus, a sample with the prediction
probability > 0.5 was classified as a patient, and that with
the prediction probability ≤ 0.5 was classified as a healthy
participant. In the testing cohort, the accuracy was calculated
by dividing the number of correct predictions of the testing
cohort by the number of all samples of the testing cohort. The
sensitivity was calculated by dividing the number of correct
predictions of the non-CD patients by the number of all non-
CD patients. The specificity was calculated by dividing the
number of correct predictions of controls by the total number of
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controls. A receiver operating characteristic (ROC) curve, which
is independent of the classification threshold, was also used to
evaluate the performance of the classification model. The ROC
curve was plotted with the true-positive rate (i.e., sensitivity) and
false-positive rate (i.e., 1-specificity) as vertical and horizontal
coordinates, respectively, both of which varied as the functions
of the classification threshold. The AUC was defined by the area
under the ROC curve.

Significant Independent Components
Selection
In the logistic regression model, the weights corresponded to
the independent components one by one, respectively. The
absolute value of each weight indicated the contribution of the
corresponding independent component to discriminate between
patients and healthy participants. Thus, we first ranked all
weights according to their absolute values and then selected
the top two weights (i.e., about the top 5% or p < 0.05).
Two independent components corresponding to these top two
weights were selected as significant independent components,
which presented the difference in PET images between patients
and healthy participants. The significant regions of these two
independent components can be identified by converting them
to z-score maps.

However, in this study, the interpretation of the z-score maps
should be done by considering the signs of the weights in the
classification model to which these z-score maps corresponded,
respectively. This is because the sign of the weight in the
classification model indicated the association between the z-
score map and the signal of the PET image. For example,
if the weight was positive, then the positively significant
regions in the z-score map indicated increased PET signals and
therefore hypermetabolism, and the negatively significant regions
indicated hypometabolism for patients. However, if the weight
was negative, then the positively significant regions in the z-score
map indicated hypometabolism, and the negatively significant
regions indicated hypermetabolism for patients.

Thus, for ease of understanding, two significant independent
components were first multiplied by the signs of their respective
weights in the classification model. Then, these two sign-
corrected independent components were converted to z-score
maps, and the clusters with |z| > 2.58 (p < 0.01) and cluster
extent≥50 voxels were identified as significant clusters. Thus, for
the patients with anti-LGI1 encephalitis, the positively significant
and negatively significant regions in the z-score map indicated
hypermetabolism and hypometabolism, respectively.

RESULTS

Visual Assessment Results
For all 17 CD patients, abnormal metabolism was found in both
the medial temporal lobe and the basal ganglia in their PET
images. Table 3 summarizes the results of visual assessment for
non-CD patients. Among the 16 non-CD patients, the abnormal
metabolism was not able to be identified in the medial temporal
lobe or the basal ganglia for seven patients and was able to be

TABLE 3 | The patients with anti-LGI1 encephalitis who were non-completely

detectable by visual assessment (non-CD patients).

Patient no. Visual assessment

Medial temporal lobe Basal ganglia

Patient 1 Yes No

Patient 2 No Yes

Patient 3 No No

Patient 4 No Yes

Patient 5 No Yes

Patient 6 Yes No

Patient 7 Yes No

Patient 8 No No

Patient 9 No No

Patient 10 No No

Patient 11 Yes No

Patient 12 No No

Patient 13 No No

Patient 14 No Yes

Patient 15 No No

Patient 16 No Yes

Yes: the abnormal metabolism was able to be detected by visual assessment.

No: the abnormal metabolism couldn’t be identified by visual assessment.

identified only in the medial temporal lobe for four patients and
only in the basal ganglia for five patients.

Multivariate Cross-Classification
In the training cohort, 2−10 was selected as the optimal λ

value by using LOOCV. The accuracy was 100% in the training
cohort. In the testing cohort, the constructed classifier had good
generalization ability, with a sensitivity of 81.25%, a specificity of
100%, an overall accuracy of 90.63%, and an AUC value of 0.95.
Thus, four non-CD patients, whose abnormal metabolism was
able to be visually identified only in themedial temporal lobe, and
five non-CD patients, whose abnormal metabolism was able to be
visually identified only in the basal ganglia, were fully detected by
our model. In contrast, only four out of seven non-CD patients,
whose abnormal metabolism was not able to be visually identified
in the medial temporal lobe or the basal ganglia, were detected
by our model. The ROC curve of the testing cohort is shown in
Figure 3.

Significant Independent Components for
Classifier
There were a total of 34 weights in the logistic regression
model, which corresponded to the independent components
one by one, respectively (Supplementary Table 1). We ranked
all weights according to their absolute values. As shown in
Supplementary Figure 1, the absolute values of the first weight
and the seventh weight were evidently larger than those
of the other weights. Thus, IC1 and IC7 were selected as
significant independent components. Then, IC1 and IC7 were
multiplied by the signs of their respective weights in the
classification model. The z-score maps of the sign-corrected
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FIGURE 3 | The performance of the logistic regression model for the testing cohort was evaluated by the receiver operating characteristic (ROC) curve. AUC, the area

under the ROC curve.

IC1 and the sign-corrected IC7 were shown in Figure 4. For
each of these two z-score maps, all local peaks within each
significant cluster and their respective corresponding brain
regions are listed in Table 4. As shown in Figure 4 and
summarized in Table 4, significantly increased PET signals were
observed in the bilateral medial temporal lobe, the bilateral
basal ganglia, the left precuneus, the left medial part of the
superior frontal gyrus, the right postcentral gyrus, and the left
calcarine fissure and surrounding cortex, indicating that the
patients with anti-LGI1 encephalitis presented hypermetabolism
in these brain regions. In contrast, significantly decreased
PET signals were observed in the right supplementary motor
area, the bilateral calcarine fissure and surrounding cortex,

and the lobule III of the vermis, indicating that the patients
with anti-LGI1 encephalitis presented hypometabolism in
these brain regions. These findings suggest that abnormal
metabolism of these brain regions played an important role in
discriminating between the patients with anti-LGI1 encephalitis
and healthy participants.

Additionally, there was also an obvious cutoff of the absolute
value of weight between the top seven weights and the other ones.
The z-score maps of the sign-corrected independent components
corresponding to these weights (except the top two weights) are
shown in Supplementary Figure 2, and the significant regions of
these sign-corrected independent components are summarized
in Supplementary Table 2.
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FIGURE 4 | The significant regions in the z-score maps of sign-corrected IC1 (A) and sign-corrected IC7 (B) (|z| > 2.58, p < 0.01, cluster extent ≥ 50 voxels). Red

indicates the regions with a z value > 2.58 and a cluster extent ≥50 voxels, and blue indicates the regions with a z value < −2.58 and a cluster extent ≥50 voxels. The

positively significant regions (red) and the negatively significant regions (blue) indicate hypermetabolism and hypometabolism in patients with anti-LGI1 encephalitis,

respectively. The white number in the upper left of each sub-figure indicates the Montreal Neurological Institute coordinates of transversal slices. R/L, right/left.
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TABLE 4 | The significant brain regions (|z| > 2.58, p < 0.01, cluster extent ≥ 50 voxels) included in the two sign-corrected independent components corresponding to

the first two weights in the rank of the absolute values of all weights of the logistic regression model.

IC Cluster Peak level Brain regions

z value x (mm) y (mm) z (mm) L/R Name

IC1 101 3.73 20 −10 −18 R Medial temporal lobe (Hippocampus)

(−17.90*) 1,796 6.98 −16 16 4 L Basal ganglia (Caudate nucleus)

7.74 −32 −6 0 L Basal ganglia (Putamen)

7.94 −30 0 0 L Basal ganglia (Putamen)

8.18 −26 8 −4 L Basal ganglia (Putamen)

1,860 9.35 26 6 0 R Basal ganglia (Putamen)

IC7 51 3.21 −14 −58 54 L Precuneus

(14.93*) 59 3.41 −2 58 38 L Superior frontal gyrus (medial part)

62 3.65 −34 −2 38 – –

146 −4.15 8 −2 74 R Supplementary motor area

151 3.89 26 −44 72 R Postcentral gyrus

244 3.57 2 −102 10 L Calcarine fissure and surrounding cortex

3.64 2 −100 18 – –

4.03 4 −102 −8 – –

4.33 8 −98 −18 – –

4.44 4 −100 −14 – -

308 5.37 32 −18 −26 R Medial temporal lobe (Parahippocampal gyrus)

750 10.07 −24 −6 −26 L Medial temporal lobe (Hippocampus)

2,816 −6.34 0 −48 18 – –

−5.01 20 −56 8 R Calcarine fissure and surrounding cortex

−4.25 −18 −58 8 L Calcarine fissure and surrounding cortex

−2.74 −2 −46 −20 – Lobule III of vermis

IC, independent component; -, there were no relevant results; R/L, right/left.

*The weight corresponding to the independent component.

DISCUSSION

In this study, an MVCC method combined with ICA was used

to analyze the PET data to detect non-CD patients and explore

the consistency in PET image features between non-CD patients
and CD patients. To the best of our knowledge, this is the first

study in which the MVCC method combined with ICA was used
to analyze PET images of patients with anti-LGI1 encephalitis.
In the MVCC, a logistic regression model was first trained using
the PET images of CD patients and then tested using the PET
images of non-CD patients. By transferring the learning from the
former to the latter, the MVCC can detect the relatively weak
PET signal changes related to anti-LGI1 encephalitis of non-CD
patients and therefore discriminate between non-CD patients
and healthy participants with higher accuracy. Compared to
visual assessment, the MVCC increased the sensitivity of the
detection of non-CD patients and, at the same time, preserved
the highest specificity. However, it should be noted that for the
non-CD patients whose abnormal metabolism was not able to
be visually identified in the medial temporal lobe or the basal
ganglia, only four out of seven (about 57.14%) were detected
by our ML method. One probable reason for this relatively low
detection rate of this type of patient may be that there was
no such type of patient in the training cohort. Thus, in future
studies, more patients without visible metabolic abnormalities

in the medial temporal lobe or the basal ganglia should be
included in the training cohort to improve the performance of
the classification model.

In this study, the important roles of ICA were feature
extraction and dimension reduction. The PET image of the
patient with anti-LGI1 encephalitis is actually the compound
of multiple different patterns of PET signals resulting from
different sources, such as metabolic abnormality related to anti-
LGI1 encephalitis, other brain activities, noise, and background.
Among these patterns of PET signals, if the one related to anti-
LGI1 encephalitis metabolic abnormality is relatively strong, it
will be visible in PET images (i.e., CD patient). However, if this
pattern of PET signal is relatively weak, it will be covered by the
superposition of the other patterns of PET signals and therefore
is not able to be detected by visual assessment (i.e., non-CD
patient). In this study, these overlapping patterns of PET signals
related to different sources were separated by ICA into different
spatially independent components. As revealed by the results of
MVCC, the independent components with PET signal changes in
the medial temporal lobe and the basal ganglia provided the most
contribution to the discrimination between non-CD patients and
healthy participants. Thus, the important findings of the present
study were that non-CD patients presented similar patterns of
metabolic abnormality as those of CD patients, though the PET
signals related to anti-LGI1 encephalitis metabolic abnormality
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were unable to be detected in them. These findings are consistent
with previous studies about patients with anti-LGI1 encephalitis
(6, 28, 29), suggesting that anti-LGI1 encephalitis is closely
related to the metabolic abnormality in the medial temporal
lobe and the basal ganglia. A recent study (7) also found that
patients with anti-LGI1 encephalitis presented hypermetabolism
in the medial temporal lobe and the basal ganglia (i.e., including
the putamen and the caudate), consistent with the findings of
the present study. However, some other brain regions showing
metabolic abnormalities in the study (7) (e.g., angular gyrus,
olfactory, and pons) were observed as normal regions in the
present study. It should be noted that, in the study (7), the mean
of standardized uptake values across the regions of interest was
used to measure the metabolic abnormalities. In contrast, in this
study, the independent images related to anti-LGI1 encephalitis
were separated by ICA. This difference in the methods of
feature extraction may be one of the potential reasons for the
discrepancies in the findings between these studies.

In addition to the medial temporal lobe and the basal ganglia,
other brain regions of patients with anti-LGI1 encephalitis
were also revealed to present different PET signals from those
of the healthy participants (Table 4). A previous study found
that patients with anti-LGI1 encephalitis presented abnormal
metabolism in the precuneus (23). A recent study reported that
the supplementary motor area of two patients with anti-LGI1
encephalitis presented hypometabolism in their PET images (30).
This existing evidence along with our findings suggests that
the metabolic abnormality of the left precuneus and the right
supplementary motor area may also play important roles in
anti-LGI1 encephalitis.

As for the left medial part of the superior frontal gyrus,
the right postcentral gyrus, the bilateral calcarine fissure and
surrounding cortex, and the lobule III of the vermis, they are
rarely specifically reported by previous studies about anti-LGI1
encephalitis. These brain regions are a part of the frontal lobe, the
parietal lobe, the occipital lobe, and the cerebellum, respectively.
The existing studies using PET have reported that metabolic
abnormalities were observed in these lobes of the patients with
anti-LGI1 encephalitis, for example, the bilateral frontal lobe
(8), the bilateral (8) and right (31) parietal lobe, the occipital
lobe (8, 29) and the cerebellum (29). Thus, these brain regions
with abnormal PET signals in the present study may also be
related to the anti-LGI1 encephalitis. In the present study, the
mixed PET signals were separated by ICA and then analyzed
as a whole by the classifier. Additionally, as confirmed in the
present study, the multivariate analysis is more sensitive to the
changes in PET signals than visual assessment. Thus, compared
to conventional visual assessment, the MVCC method combined
with ICA can reveal more potential brain regions with metabolic
abnormalities related to anti-LGI1 encephalitis. However, the
roles of these brain regions in anti-LGI1 encephalitis need to be
further explored.

The present study still had some limitations. First, the number
of samples was small. This is because the prevalence and
incidence of anti-LGI1 encephalitis are relatively low (32, 33).
Further work will include as many as possible patients with anti-
LGI1 encephalitis, particularly the data from multiple institutes

to improve the performance of the classifier. Second, the good
performance may be partly due to the involvement of the patients
with visible abnormal metabolism either only in the medial
temporal lobe or only in the basal ganglia in the testing cohort.
Thus, more patients whose abnormal metabolism was not able
to be visually identified in either the medial temporal lobe or the
basal ganglia should be included in future studies to improve the
ability of the classification model to identify this type of patient.

In general, as a relatively new imaging methodology, 18F-
FDG-PET has presented a wide application prospect in the
diagnosis of autoimmune encephalitis (34). This study used an
MVCC method of PET imaging based on ICA and logistic
regression, which was able to take the best advantage of the
information of PET images to reveal the difference in PET signals
between the patients with anti-LGI1 encephalitis and healthy
participants, even in cases where this difference is not accessible
with visual assessment. Our method is helpful to promote the
application of PET imaging in the early diagnosis of autoimmune
encephalitis, whose clinical effectiveness needs to be further
validated by many prospective studies.

CONCLUSION

This study used an MVCC method combined with ICA to
detect non-CD patients and explore the consistency in PET
image features between non-CD patients and CD patients.
This method can improve, to some degree, the detection of
invisible abnormalmetabolism in the PET images of patients with
anti-LGI1 encephalitis. More importantly, this study suggested
that the patterns of PET signal changes caused by metabolic
abnormalities associated with anti-LGI1 encephalitis were similar
in CD patients and non-CD patients.
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