Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Genomic sequence data and single nucleotide polymorphism genotyping of *Bacillus anthracis* strains isolated from animal anthrax outbreaks in Northern Cape Province, South Africa

Kgaugelo Edward Lekota ^{a, b, *}, Ayesha Hassim ^a, Henriette van Heerden ^a

^a University of Pretoria, Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, Onderstepoort, 0110, South Africa

^b College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Florida, 1710, South Africa

ARTICLE INFO

Article history: Received 20 November 2019 Received in revised form 13 December 2019 Accepted 13 December 2019 Available online 24 December 2019

Keywords: Bacillus anthracis Whole genome sequencing (WGS) Canonical single nucleotide polymorphism (canSNP)

ABSTRACT

This report presents genomic data on sequence reads and draft genomes of Bacillus anthracis isolates from anthrax outbreaks in animals in an endemic region of South Africa as well as genotyping of the strains using canonical single nucleotide polymorphisms (canSNPs). It is derived from an article entitle "Phylogenomic structure of B. anthracis strains in the Northern Cape Province, South Africa revealed novel single nucleotide polymorphisms". Whole genome sequencing (WGS) of twenty-three B. anthracis strains isolated during 1998 and 2009 anthrax outbreaks in the Northern Cape Province (NCP), as well as a strain from Botswana (6102_6B) and one from Namibia-South Africa transfrontier conservation area (Sendlingsdrift, 6461_SP2) were obtained using both the HiSeq 2500 and MiSeq Illumina platforms. Mismatch amplification mutation assay (melt-MAMA) qPCR were used to identify the canSNP genotypes within the global population of B. anthracis. DNA sequencing data is available at NCBI Sequence Read Archive and GenBank database under accession NO. PRINA580142

* Corresponding author. University of Pretoria, Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, Onderstepoort, 0110, South Africa.

E-mail address: lekotke@unisa.ac.za (K.E. Lekota).

https://doi.org/10.1016/j.dib.2019.105040

2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

and PRJNA510736 respectively. A phylogenetic tree and CanSNP typing profiles of the isolates are presented within this article. © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

Specifications Table

Subject	Microbial genomics
Specific subject area	Comparative microbial genomics of <i>B. anthracis</i> strains for evolution and genetic diversity using single nucleotide polymorphisms (SNPs)
Type of data	Sequence files, Table, figure
How data were acquired	DNA extraction was performed on pure cultures using DNA Mini kit (Qiagen) purification kit. High-throughput DNA sequencing using Illumina HiSeq 2500 and MiSeq Sequencing system. De novo assemblies was performed using CLC-Genomic workbench version 11.1. Assembled genomes were annotated using NCBI Prokaryotic Genome Annotation Pipeline version 4.7. SNP genotyping Can SNP typing scheme was performed on LightCycler TM 96 (Roche Applied Science). MEGA version 7 was used to generate phylogenetic tree.
Data format	Raw and analysed data of whole genome sequences (Fastq and fasta)
Parameters for data collection	Samples were collected from animals that died of anthrax. Isolated pure cultures from sheep blood agar were used for DNA extractions, genotyping and sequencing.
Description of data collection	Pure culture isolates were identified using classical bacteriological methods including penicillin and bacteriophage sensitivity. DNA samples of these isolates were verified using <i>B. anthracis</i> plasmid and chromosomal gene targets using real- time PCR. Trimmed sequence reads were used for <i>de novo</i> assembly.
Data source location	University of Pretoria, Department of Veterinary and Tropical Diseases, Pretoria, South Africa
Data accessibility	The sequenced data were deposited to Sequence Read Archive (SRA) and GenBank in National Center for Biotechnology Information (NCBI). Accession numbers are included in this manuscript in a table format. BioProject numbers: PRJNA510736 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA510736) PRJNA50142 (https://www.ncbi.nlm.nih.gov/sra/PRJNA50142)
	With the article
Related research article	Lekota KE, Bezuidt OKI, Mafofo J, Rees J, Muchayeyi FC, Madoroba E, van Heerden H. Whole genome sequencing and identification of <i>Bacillus endophyticus</i> and <i>B. anthracis</i> isolated from anthrax outbreaks in South Africa. BMC Microbiology (2018) 18:67. doi: 10.1186/s12866-018-1205-9 [1]

Value of the Data

- The data sheds light of draft genomes and genetic diversity of *B. anthracis* strains from Northern Cape Province from two anthrax outbreaks during 1998 and 2009 in South Africa.
- The data serve as a benchmark for other researchers to determine the evolution and genetic diversity of *B. anthracis* globally.

• The data could be used to determine the relationship between *B. anthracis* strains from South Africa and other areas and to expand the canSNP typing scheme using melt-MAMA.

• The data might enable trace-back in and between anthrax cases/outbreaks, especially within the context of southern Africa.

1. Data description

We present the genomic data and analysis of whole genome sequences of *B. anthracis* strains isolated from animals anthrax outbreaks in Northern Cape Province. Sequence reads (in fastq format) and assembled genomes (in fasta format) were deposited at NCBI SRA and GenBank database under project accession No. PRJNA580142 and PRJNA510736 respectively. The information on the sample collection with accession numbers, SNP genotyping and genome assemblies is represented in Tables 1–3 respectively. Isolates were also grouped using canonical SNPs (Table 4) typing scheme [2] used for phylogenetic branches (Fig. 1).

Table 1

Whole genome sequences of *Bacillus anthracis* strains collection with their accession numbers submitted to GenBank and Sequence Reads Achieve (SRA).

Strain name	Host	Collection data	Location	Accossion number	Sociionco
					coverage
2949_1D	Ovine	10-May-2009	South Africa: Northern Cape Province	RXZW00000000	145
2991_1B	Ovine	10-May-2009	South Africa: Northern Cape Province	RXZV00000000	199
3008_1B	Bovine	10-May-2009	South Africa: Northern Cape Province	RXZU00000000	155
3122_2B	Oryx gazella	10-May-2009	South Africa: Northern Cape	RXZT0000000	168
3132_1B	Tragelaphus strepsiceros	10-May-2009	South Africa: Northern Cape	RXZS0000000	201
3275_2D	Soil	10-May-2009	South Africa: Northern Cape	RXZR00000000	267
3517_1C	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZQ00000000	166
3517_2C	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZP00000000	137
3631_4C	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZ000000000	187
3631_3D	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZN00000000	189
3631_8D	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZM00000000	300
2110	Ovis aries	1998	South Africa: Northern Cape	RXZL00000000	38
JB10	Equus burchellii	2009	South Africa: Northern Cape	RXZK00000000	60
JB25	Tragelaphus	2009	South Africa: Northern Cape	SDEF00000000	80
3618_2D	Tragelaphus	10-May-2009	South Africa: Northern Cape	RXZJ00000000	178
6461_SP2	Capra aegagrus	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151840;	20
6102_6B	Loxodonta	2009	Botswana	SRR10357978 SRP227303;	21
				SAMN13151841; SRR10357979	
3631_7C	Soil	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151842;	24
5838	Alcelaphus	1998	South Africa: Northern Cape	SRR10357981 SRP227303;	17
	buselaphus		Province	SAMN13151843; SRR10357980	
2991_2B	Ovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151844;	19
3080_3B	Bovine	2009	South Africa: Northern Cape	SRR10357985 SRP227303;	17
			Province	SAMN13151845; SRR10357983	
3079_1C	Oryx gazella	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151846;	25
3080 5A	Bovine	2009	South Africa: Northern Cape	SRR10357984 SRP227303:	26
			Province	SAMN13151847; SRR10357982	
3080_1B	Bovine	2009	South Africa: Northern Cape Province	SRP227303; SAMN13151848	12
3090 1P	Unknown	2009	South Africa: Northern Capo	SRR10357977	26
5050_10	Shkhowh	2005	Province	SAMN10614343; SRR10390628	20

Table 2	
Canonical SNPs used for genotyping of B. anthracis strains. SNP are in relation to B. anthracis Ames ancestor chromosome (NC_007530.)	2).

B. anthracis Strains	SNP-branch	A.Br.006	A.Br.007	A.Br.008	A.Br.005	A.Br.004	A.Br.003	A.Br.002	A.Br.001	A.Br.009	A.Br.011	A.Br.014	A.Br.013
										<u> </u>			
	Ancestral Template SNP	C	A	A	A	T	Т	C	Т	A	G	Т	A
	Derived Template SNP	A	G	C	G	C	C	T	C	G	A	C	G
Ames	A.Br.001 (Ames)	A	A	A	G	C	C	Т	C	A	G	Т	A
ancestor					~	6	6	-	-		~	-	
Sterne	A.Br.002 (Sterne)	A	A	A	G	C	C	Т	Т	A	G	Т	A
3080_5A	A.Br.002 (Sterne)	A	A	A	G	C	C	T	T	A	G	T	A
3080_1B	A.Br.002 (Sterne)	A	A	A	G	C	C	Т	Т	A	G	Т	A
6102_6B	A.Br.005/006 (Ancient A)	A	A	A	A	Т	T	C	T	A	G	T	A
6461_SP2	A.Br.005/006 (Ancient A)	A	A	A	A	Т	Т	C	Т	A	G	Т	A
2110	A.Br.003/004 (A.Br.101)	A	A	A	G	С	С	С	Т	Α	G	С	A
5838	A.Br.003/004 (A.Br.101)	A	A	A	G	С	С	С	Т	A	G	С	A
3631_1C	A.Br.003/004 (A.Br.101)	A	А	A	G	С	С	С	Т	A	G	С	A
3080_3B	A.Br.003/004 (A.Br.101)	Α	А	А	G	С	С	С	Т	А	G	C	A
3079_1C	A.Br.003/004 (A.Br.101)	A	А	А	G	C	С	С	Т	A	G	С	A
3090_1B	A.Br.003/004 (A.Br.101)	Α	Α	Α	G	С	С	С	Т	Α	G	С	Α
JB10/NC14	A.Br.003/004 (A.Br.101)	Α	Α	Α	G	С	С	С	Т	Α	G	С	Α
JB25/NC_29	A.Br.003/004 (A.Br.101)	Α	Α	Α	G	С	С	С	Т	Α	G	С	Α
2991_2B	A.Br.003/004 (A.Br.101)	Α	А	Α	G	С	С	С	Т	Α	G	С	Α
3618_2D	A.Br.003/004 (A.Br.101)	Α	Α	А	G	С	С	С	Т	Α	G	С	А
3517_1C	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	Α	G	С	А
3631_4C	A.Br.003/004 (A.Br.101)	Α	А	Α	G	С	С	С	Т	А	G	С	А
3631_7C	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	Α	G	С	А
3275_2D	A.Br.003/004 (A.Br.101)	Α	А	Α	G	С	С	С	Т	А	G	С	А
3122_2B	A.Br.003/004 (A.Br.101)	Α	Α	А	G	С	С	С	Т	Α	G	С	Α
3008_1B	A.Br.003/004 (A.Br.101)	Α	А	А	G	С	С	С	Т	Α	G	С	Α
2949_1D	A.Br.003/004 (A.Br.101)	Α	А	А	G	С	С	С	Т	Α	G	С	А
2991_1B	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	А	G	С	А
3517 2C	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	А	G	С	А
3132 1B	A.Br.003/004 (A.Br.101)	А	А	А	G	C	C	C	Т	А	G	C	А
3631 3D	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	А	G	С	А
3631 8D	A.Br.003/004 (A.Br.101)	А	А	А	G	С	С	С	Т	А	G	С	А
Aust94	A.Br.003/004 (Aust94)	А	А	А	G	С	С	С	Т	А	G	С	G
Vollum	A.Br.007 (Vollum)	А	G	А	G	Т	Т	C	Т	А	G	Т	A

Genomic features of the <i>de novo</i> assemblies <i>B</i> , <i>anthracis</i> strains $(n = 15)$ using CLC Genomic workbench.										
Strain name	Sequence coverage	Number of contigs	N50	Minimum contig size (bp)	Maximum contig size (bp)	GC content	Genome Size	Total coding sequences (CDSs)	Total number of RNAs	
2949_1D	145	441	28 406	423	125 072	35.1	5 147 319	5 764	65	
2991_1B	199	378	38 630	316	185 192	35.1	5 395 612	5 736	54	
3008_1B	155	442	34 402	406	226 189	35.1	5 418 987	5 763	63	
3122_2B	168	431	34 419	361	175 230	35.1	5 401 847	5 740	54	
3132_1B	201	170	74 712	146	335 422	35.1	5 350 330	5 611	97	
3275_2D	267	751	14 738	509	89 998	35.1	5 352 180	5 463	59	
3517_1C	166	121	203 477	354	343375	35.1	5 416 293	5 692	68	
3517_2C	137	1194	9 613	352	55 932	35.1	5 265 628	5 869	37	
3631_4C	187	385	35 768	418	177 852	35.1	5 402 081	5 718	68	
3631_3D	189	513	22 221	415	108 007	35.1	4 654 382	5 766	52	
3631_8D	300	882	14 279	401	98 835	35.1	5 252 949	5 717	68	
2110	38	856	7 046	517	77 020	35.0	3 843 425	5 906	74	
JB10	60	1856	6 493	153	50 654	35.1	5 180 538	5 861	34	
JB25	80	136	91 967	519	646 630	35.1	5 422 668	5 695	88	
3618_2D	178	72	154 041	2803	489 427	35.1	5 417 873	5 674	62	

2. Experimental design, materials, and methods

Table 3

2.1. Diagnostic real-time PCR for chromosomal and plasmids markers of B. anthracis

The identification of *B. anthracis* isolates was performed as described by WHO [3]. The 20 µl PCR reaction consisted of 10 µl of FastStart Essential master mix (Roche Applied Science), 0.5 µM of each primer, $0.2 \,\mu$ M of probe for each chromosomal and plasmid target pairs with fluorescein on the one and LCRed640 on the other (Tib MolBiol GmbH, Germany) and 2.5 µl of template DNA. The PCR conditions on a LightCyclerTM Nano (Roche Applied Science) were used as described in WHO [3]. The PCR conditions on a LightCycler™ Nano (Roche Applied Science) consisted of an initial cycle at 95 °C for 10 minutes, slope at 20 °C/second, followed by 40 cycles of 95 °C for 10 seconds; 57 °C for 20 seconds; 72 °C for 30 seconds, slope 20 °C/second with one single signal acquisition at the end of annealing cycle. Denaturation at 95 °C for 3 seconds with a slope 20 °C/second; 40 °C for 30 seconds, slope 20 °C/ second; 80 °C for 3 seconds at a slope of 0.1 °C/second with continuous acquisition of the signal. Cooling to 40 °C for 30 seconds, slope 20 °C/second.

2.2. Genotyping of B. anthracis strains using Melt-MAMA assays

Melt-MAMA assays of the canSNP markers were used to amplify the DNA of the NCP B. anthracis strains. The panel included 12 canSNPs that were used for the grouping of the *B. anthracis* strains (n = 26) using existing Melt-MAMA primers (Table 4) derived and ancestral controls were created as described by Birdsell et al. [2]. The reaction included 2.5 μ l DNA diluted in 1× FastStart DNA Green Master (Roche Applied Science) with an ancestral forward and a derived forward SNP target primer (GC-clamp: no-GC-clamp) and a common reverse primer (Ingaba Biotec[™]) (Table 2) with a starting concentration of 0.2 µM depending on the ratio indicated which allowed for separation of melt peaks by at least 5 °C. Thermocycling parameters on the LightCycler™ 96 (Roche Applied Science) were 95 °C for 10 minutes, followed by 35 cycles at 95 °C for 15 seconds and 55 °C-60 °C (oligonucleotide dependent for 1 minute) for 35 cycles. End-point PCR amplicons were subjected to melt analysis using a dissociation protocol comprising of 95 °C for 15 seconds, followed by incremental temperature ramping (0.1 °C) from 60 °C to 95 °C. SYBR Green fluorescence intensity was measured at 530 nm at each ramp interval and plotted against temperature and observed as the separate melt peaks for each SNP. Controls included in every run were DNA from *B. anthracis* Ames, Vollum and Sterne 34F₂ strains. Phylogenetic relationships between 26 B. anthracis strains were determined in the MEGA version 7 [4]

Table 4

Melt-MAMA primers targeting canonical SNPs of the existing Birdsell et al. (2012) primers used in this study for the phylogenetic branches.

	dp. c				
Assay name	genome position	Derived MAMA 5'-3'	Ancestral MAMA 5'-3'	Common reverse 5'-3'	Annealing Temperature (°C)
Existing prin					
A.Br.001	182 106	cggggcggggcggggcgggc AGAAGGAGCAAGTAATGTTATAGGTTTAaGT	GGAGCAAGTAATGTTATAGGTTTAcGC	ACCTAAAATCGATAAAGCGACTGC	55
A.Br.002	947 760	cggggcggggcggggcgggc AGAAGGAGCAAGTAATGTTATAGGTTTAaGT	GGAGCAAGTAATGTTATAGGTTTAcGC	ACCTAAAATCGATAAAGCGACTGC	55
A.Br.003	1 493 280	cggggcggggcggggcgggc AATTTAGATTTTCGTGTCGAATTAtGC	AATTTAGATTTTCGTGTCGAATTAgGT	TGTATAAAAACCTCCTTTTTCTACCTCAA	55
A.Br.004	3 600 786	cggggcggggcggggcgggc CGCCGTCATACTTTGGAAaGC	CGCCGTCATACTTTGGAAcGT	GAATTGGTGGAGCTATGGAAGGATTA	60
A.Br.005	3 842 864	cggggcgggggggggggggg GAAAGATATATAAAAATGTTTTTTTATTTCGTtTG	GAAAGATATATAAAAATG TTTTTTTATTTCGTcTA	GCTGCGTTTAGTTATGCAAATC	55
A.Br.006	162 509	cggggcggggcggggcgggc AATATGTTGTTGATCATTCCATCGCtTA	TATGTTGTTGATCATTCCATCGCgTC	TAGCGTTTTTAAGTTCATCATACCCATGC	55
A.Br.007	266439	cggggcggggcggggcgggc ACAAGGTGGTAGTATTCGAGCTGAtTG	AATTACAAGGTGGTAGTATTCGAGCTGAcTA	CGAGACGATAAACTGAATAATACCATCCT	62.5
A.Br.008	3947375	cggggcggggcgggcgggc GTTACAAATATACGTTTAACAAGCcGC	AAAAGTTACAAATATACGTTTAACAAGCtGA	CTACGCTATACGTTTTAGATGGAGATAATTC	55
A.Br.009	2589947	cggggcggggcgggcgggc CCACTGTTTTTGAACGGCTcTG	GCCACTGTTTTTGAACGGCTaTA	TTTTAGGTATATTAACTGCGGATGATGC	60
A.Br.011	1455402	cggggcggggcggggcgggc CATAAAAGAAATCGGTACAATAGAAtAG	CATAAAAGAAATCGGTACAATAGAAcAA	TCGGATATGATACCGATACCTTCTTATC	55
A.Br.014	5078168	ggggcggggcggggcggggcgggc AATGGTAAATTGTAATGTTGAGCTtC	AATGGTAAATTGTAATGTTGAGCTgT	ТТТТТАСТААААААТТАСТТТТТТТБАААА	57
A.Br.013	2465446	ggggcggggcggggcggggcgggc TTGTAAAAATTCTATGTGAATCACATtG	TTGTAAAAATTCTATGTGAATCACATcA	TTATCCACCTTCTTATAATTATTATTACTAT	57

GC-clamp (cggggcggggcggggc). ^a Bacillus anthracis Ames ancestor reference genome (NC_007530.2).

Fig. 1. Maximum likelihood phylogeny of the major canonical single nucleotide polymorphism (canSNP) groups for the 26 *B. anthracis* strains as well as *B. anthracis* Ames ancestor, Vollum and Sterne control sequences. Most of the *B. anthracis* strains (n = 21) grouped in the canSNP A.Br 003/004 (Aust94) clade (red), while two strains, 3080_1B and 3080_5A, isolated from bovine grouped in A.Br.001/002 (Sterne) group (green) and isolates from Botswana (6102_6B) and Sendlingsdrift (6461_SP2) grouped in the A.Br.005/006 (Ancient a) group (purple).

using the maximum likelihood method based on the Tamura three-parameter model. The tree was generated with a bootstrap replication value of 500.

2.3. High-throughput sequencing and bioinformatics analysis

The DNA samples that were extracted from *B. anthracis* were subjected to library preparation by using the Nextera XT DNA Sample Prep kit (Illumina-compatible, Epicentre Biotechnology). Different sequence reads of *B. anthracis* genomes were generated on HiSeq 2500 and MiSeq instruments platforms. Clusters were generated on the flow cell using HiSeq Paired-End Cluster Generation kit (Illumina, USA) for the HiSeq 2500 platform. Sequencing of paired end libraries were performed on the Illumina MiSeq and HiSeq 2500 sequencer using the 200-cycle SBS (sequencing by synthesis) sequencing v3 kit (Illumina, USA) and HiSeq Sequencing Kit (200 cycles) (Illumina, USA) respectively. Quality of the genome sequenced reads were assessed using FastQC software 0:10.1 [5]. Trimommatic version 0.33 [6] was used to remove the sequenced adapter, and ambiguous nucleotide reads. *De novo* assemblies of the paired end reads were performed using CLC Genomics Workbench version 11.1 (CLC, Denmark). The

assembled contigs were ordered by Mauve tool version 2.3.1 [7] using *B. anthracis* Ames ancestor (GenBank accession numbers NC_007530.2, NC_007322.2 and NC_007323.3) in order to assess the accuracy and efficiency of the contigs. All trimmed sequence reads were also mapped to the reference using Burrows-Wheeler Aligner (BWA) version 0.7.12 [8] to determine *B. anthracis* replicons i.e. chromosome and the two plasmids. Assembled genomes were annotated using the NCBI Prokaryotic Genome Annotation pipeline. Sequenced reads were deposited to NCBI under Sequence Reads Archive (SRA), and assembled genomes to GenBank.

Acknowledgments

The authors would like to thank the farmers of the Northern Cape for their wholehearted participation in the study of anthrax in the region. We also wish to extend our appreciation to the Northern Cape Provincial government and State Veterinary Services for allowing us to conduct this study and improve our understanding of this zoonotic pathogen. We would like to thank the Institute of Tropical Medicine (ITM), Belgium, National Research Foundation and AgriSETA (Agriculture Sector Education Training Authority) in South Africa for funding.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105040.

References

- K.E. Lekota, O.K.I. Bezuidt, J. Mafofo, J. Rees, F.C. Muchayeyi, E. Madoroba, H. van Heerden, Whole genome sequencing and identification of *Bacillus endophyticus* and *B. anthracis* isolated from anthrax outbreaks in South Africa, BMC Microbiol. 18 (2018) 67.
- [2] D.N. Birdsell, T. Pearson, E.P. Price, H.M. Hornstra, R.D. Nera, N. Stone, J. Gruendike, E.L. Kaufman, A.H. Pettus, A.N. Hurbon, J. L. Buchhagen, N.J. Harms, G. Chanturia, M. Gyuranecz, D.M. Wagner, P.S. Keim, Melt analysis of mismatch amplification mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models, PLoS One 7 (2012), e32866.
- [3] World Health Organization (WHO), Anthrax in Humans and Animals, 4th edition, World Health Organization, 2008.
- [4] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.
- [5] S. Andrews, FastQC: a Quality Control Tool for High Throughput Sequence Data, 2010.
- [6] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.
- [7] A.C. Darling, B. Mau, F.R. Blattner, N.T. Perna, Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res. 14 (2004) 1394–1403.
- [8] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.