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	 Background:	 Almost all hepatic cancer cells have resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-
induced apoptosis. c-FLIPL and RIP-1 are apoptotic negative regulatory factors. This study investigated the role 
of c-FLIPL and RIP-1 in hepatic cancer cell resistance to TRAIL-induced apoptosis.

	 Material/Methods:	 HepG2 cells were treated by TRAIL, RIP-1 siRNA, and/or BY11-7082. Cell viability was detected by MTT assay. 
Cell apoptosis was tested by flow cytometry. DISC component proteins, RIP-1, and p-p65 were measured by 
Western blot. Caspase-8 and caspase-3 were determined by spectrophotometry.

	 Results:	 Single TRAIL treatment showed no significant impact on cell proliferation and apoptosis. HepG2 cells expressed 
high levels of RIP1 and c-FLIPL, while a high concentration of TRAIL upregulated RIP-1 and c-FLIPL expression 
but not DR4 and DR5. Single TRAIL treatment did not obviously activate caspase-8 and caspase-3. RIP-1 or c-
FLIPL siRNA markedly induced cell apoptosis and enhanced caspase-8 and caspase-3 activities. Combined trans-
fection obviously increased apoptotic cells. TRAIL markedly upregulated RIP-1 expression and enhanced p-p65 
protein. Downregulating RIP-1 and/or BAY11-7082 significantly reduced NF-kB transcriptional activity, blocked 
cells in G0/G1 phase, weakened proliferation, elevated caspase-8 and caspase-3 activities, and promoted cell 
apoptosis.

	 Conclusions:	 TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. High expression of RIP1 and c-FLIPL is an impor-
tant reason for TRAIL resistance. Downregulation of RIP1 and c-FLIPL can relieve caspase-8 suppression, acti-
vate caspase-3, and promote cell apoptosis. TRAIL mediates apoptosis resistance through upregulating RIP-1 
expression, enhancing NF-kB transcriptional activity, and weakening caspase activity.
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Background

Primary hepatic cancer is a common malignant tumor in clinic. 
In incidence, it is the fifth among malignant tumors, and is the 
third leading cause of mortality in cancer [1]. Hepatocellular 
carcinoma (HCC) is the main pathological type, which accounts 
for more than 85~90% in all primary hepatic cancers [2]. There 
are numerous hepatitis B virus carriers in our country that ac-
count for about 10% of the world, leading to the incidence 
of up to 52/100,000. There are more than 600,000 new cas-
es around the world every year, while China has more than 
340,000, which amounts to more than 55%. Hepatic cancer 
causes serious harm to the patient’s life and health [3]. Tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) is 
considered to be one of a new generation of highly selective 
antineoplastic drugs that can induce tumor cell apoptosis but 
does not significantly damage normal cells [4]. However, al-
most all of the HCC cell lines present different degrees of re-
sistance to TRAIL-induced cell apoptosis. After surgical resec-
tion, the minimal residual hepatic cancer cells have resistance 
to TRAIL-induced cell apoptosis as shown by exhibiting drug 
insensitivity and easy metastasis and recurrence [5]. c-FLIPL 
and RIP-1 are the two extremely important negative regula-
tory factors of death-inducing signaling complex (DISC) and 
apoptosis signaling transduction [6]. It was found that c-FLIPL 
and/or RIP-1 are highly expressed in hepatic cancer cells [7,8]. 
Therefore, we hypothesized that RIP-1 and/or c-FLIPL abnor-
mal expression induced DISC formation and apoptosis signal-
ing transduction blockage, which may be the important mech-
anism of hepatic cancer cell resistance to TRAIL-induced cell 
apoptosis. This study explored the role and potential mecha-
nism of RIP-1 and/or c-FLIPL in hepatic cancer cell resistance 
to TRAIL-induced apoptosis.

Material and Methods

Main reagents and materials

HepG2 cells were purchased from the American Type Culture 
Collection (ATCC). High glucose Dulbecco’s Modified Eagle’s me-
dium (DMEM), fetal bovine serum (FBS), and penicillin-strepto-
mycin were obtained from Gibco. Human recombinant TRAIL 
was from Peprotech. Trizol and Lipofectamine 2000 were from 
Invitrogen. PrimeScript RT reagent kit was from Takara. SYBR 
Green real time PCR kit was from Toyobo. PCR primers were 
designed and synthetized by Genepharma. Rabbit anti-human 
c-FLIP antibody, mouse anti-human RIP-1 antibody, and rabbit 
anti-human phosphor-NF-kB p65 (S536) antibody were from 
Abcam. Mouse anti-human death receptor 4 (DR4) and DR5 
antibodies were from Santa Cruz. Rabbit anti-human cleaved 
caspase-8 and cleaved caspase-3 antibody were from CST. 
HRP-coupled goat anti-mouse and goat anti-rabbit secondary 

antibodies were from Jackson. BAC protein quantification kit, 
Annexin V/PI apoptosis reagent, and caspase-8 and caspase-3 
activities detection kit were from Beyotime. NF-kB specific in-
hibitor BAY11-7082 was from Selleck.

Cell culture and TRAIL treatment

HepG2 cells were cultured in high glucose DMEM supplement-
ed by 10% FBS, penicillin 100 U/mL, and streptomycin 100 μg/
mL, and maintained at 37°C and 5% CO2. The cells in 80% fu-
sion were passaged or used for experiments. The cells were 
treated by different concentrations of TRAIL (0, 5, 10, 20, 50, 
and 100 ng/mL) for 24 h.

MTT assay

The cells in logarithmic phase were digested by enzyme and 
seeded in a 96-well plate at 2000 cells/well. After 24 h, the 
cells were treated by different concentrations of TRAIL (0, 5, 
10, 20, 50, and 100 ng/mL) for 24 h. After addition of 10 μL 
of MTT for 4 h, the cells were treated with 150 μL of dimeth-
yl sulfoxide (DMSO) for 15 min. At last, the plate was read at 
490 nm to test absorbance. Each group was repeated with six 
replicates. Cell proliferation rate (%)=experimental group mean 
value/control mean value ×100%.

Cell apoptosis

The cells were collected after digestion and centrifuged at 1000 
g for 5 min. The cells were resuspended in 195 μL of Annexin 
V-FITC buffer and 5 μL of Annexin V-FITC. After mixing, 10 μL 
of propidium iodide (PI) was added to the cells, and they were 
incubated at room temperature avoiding light for 10~20 min. 
At last, the cells were tested by flow cytometry.

siRNA transfection

c-FLIP and RIP-1 siRNA were transfected to the cells. The cells 
were used for transfection when the density reached 50~60%. 
siRNA and Lipofectamine 2000 were diluted by Opti-MEM and 
incubated for 5 min at room temperature, respectively. Then 
they were gently mixed and added to the cells for 20 min at 
room temperature. Next, the cells were cultured in an incu-
bator for 6 h, and the mediums were changed. After 48 h, the 
cells were treated by TRAIL at 100 ng/mL for 24 h and collect-
ed for the following experiments. The sequences were list-
ed as follows:
si c-FLIP forward, 5’-GCAGUCUGUUCAAGGAGCATT-3’.
si c-FLIP reverse, 5’-UGCUCCUUGAACAGACUGCTT-3’.
c-FLIP NC forward, 5’-UUCUCCGAACGUGUCACGUTT-3’.
c-FLIP NC reverse, 5’-ACGUGACACGUUCGGAGAATT-3’.
si RIP-1 forward, 5’-GCAAAGACCUUACGAGAAUTT-3’.
si RIP-1 reverse, 5’-AUUCUCGUAAGGUCUUUGCTT-3’.
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RIP-1 NC forward, 5’-TTCTCCGAACGTGTCACGTTT-3’.
RIP-1 NC reverse, 5’-ACGTGACACGTTCGGAGAATT-3’.

The cells were divided into five groups, including control: c-
FLIP NC group, si c-FLIP group, RIP-1 NC group, si RIP-1 group, 
and si c-FLIP + si RIP-1 group.

qRT-PCR

Total RNA was extracted using the Trizol method and quanti-
fied on an Eppendorf protein nucleic acid detector. Then the 
RNA was reverse transcripted to cDNA using the ReverTra Ace 
RT Kit. The reverse transcription system in 20 μL contained 
2 μL of total RNA, 1 μL of dNTP (10 mmol/L), 4 μL of RT buf-
fer (5×), 2 μL of RT primer (1 μmol/L), 1.5 μL of reverse tran-
scriptase, 0.5 μL of RNase inhibitor, and ddH2O. Reverse tran-
scription was performed at 16°C for 30 min, 42°C for 15 min, 
and 85°C for 5 min. The cDNA was stored at –20°C. Then the 
cDNA was used for the PCR reaction, and the primers used 
were as follows:
RIP-1PF: 5’-GCACTGTTGTGACTCGTTGG-3’;
RIP-1PR: 5’-GACACCCGACCATACTTTCAG-3’;
c-FLIPLPF: 5’-GTCTGCTGAAGTCATCCATC-3’;
c-FLIPLPR: 5’-ACTACGCCCAGCCTTTTGG-3’;
b-actinPF: 5’-GAACCCTAAGGCCAAC-3’;
b-actinPR: 5’-TGTCACGCACGATTTCC-3’.

The PCR reaction system in 10 μL contained 4.5 μL of 2×SYBR 
Green Mixture, 0.5 μL of primer (2.5 μm/L), 1 μL of cDNA, and 
3.5 μL of ddH2O. The PCR reaction was performed on an ABI 
ViiA7 amplifier at 40 cycles of 95°C for 15 s, 60°C for 30 s, 
and 74°C for 30 s. U6 and b-actin were adopted as internal 
references for miRNA and mRNA. Each sample was repeated 
three times. The comparative Ct method (2–DDCT) was applied 
for quantitative analysis.

Western blot

Total protein was extracted and quantified by the BCA meth-
od. A total of 40 μg of protein was separated by sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to PVDF membrane. After blocking in 5% skim 
milk at room temperature for 60 min, the membrane was in-
cubated in primary antibody at 4°C overnight. After washing 
with phosphate buffered saline with Tween 20 (PBST) three 
times, the membrane was further incubated in HRP-tagged 
secondary antibody at room temperature for 60 min. At last, 
the membrane was treated with ECL chemiluminiscence and 
scanned on Epson to collect data. The band was analyzed by 
Image J. Relative protein level = target band gray value/b-ac-
tin band gray value.

Spectrophotometry detection of caspase-8 and caspase-3 
activity

Caspase-8 and caspase-3 activity was detected using the kit 
according to the manual. pNA (10 mM) provided by the kit 
was diluted to 0, 10, 20, 50, 100, and 200 µM as the standard 
substance. The standard substance was tested at 405 nm to 
prepare the standard curve. The cells were digested by en-
zyme and centrifuged at 600 g and 4°C for 5 min for collec-
tion. After washing with PBS, the cells were treated by lysis at 
100 μL/2,000,000 cells on ice for 15 min. After centrifugation 
at 18,000 g and 4°C for 15 min, the supernatant was moved 
to the pre-cooled Ep tube to test caspase-3 activity. The cells 
were treated with 10 μL of Ac-DEVD-pNA (2 mM) and incu-
bated at 37°C for 120 min. At last, the cells were read at 405 
nm to measure the concentration.

Cell cycle

The cells were digested by 0.25% enzyme and 70% ethanol was 
added at 4°C overnight. After washing twice with PBS, the cells 
were resuspended in 500 μL of PBS and treated with Rnase A 
50 μg/mL at 37°C for 30 min. Next, the cells were incubated on 
ice for 5 min to stop the reaction. Then the cells were treated 
by 0.1% Triton X-100 for 30 min, and PI 100 μg/mL was added 
for staining at 4°C for 30 min. At last, the cells were detected 
by flow cytometry to calculate G0/G1, S, and G2/M cell ratio.

Statistical analysis

All data analysis was performed with SPSS 18.0 software. 
Measurement data are presented as mean ± standard deviation. 
One-way analysis of variance (ANOVA) was applied for group 
comparison. P<0.05 was considered as statistical significance.

Results

TRAIL showed no significant impact on cell apoptosis and 
proliferation

MTT assay showed that single TRAIL treatment slightly reduced 
the HepG2 cell survival rate following concentration increase 
(P>0.05), suggesting that HepG2 cells have resistance to TRAIL 
(Figure 1A). Flow cytometry revealed that cell apoptosis did not 
present obvious changes (P>0.05), indicating that HepG2 cells 
show resistance to TRAIL-induced cell apoptosis (Figure 1B, 1C).

TRAIL induced RIP-1 and c-FLIPL elevation in DISC

Caspase-8 and caspase-3 activity in DISC was observed after 
TRAIL treatment. Spectrophotometry demonstrated that com-
pared with control, different concentrations of TRAIL failed to 
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effectively enhance caspase-8 and caspase-3 activity in HepG2 
cells (P>0.05), suggesting that TRAIL did not produce a signifi-
cant impact on caspase-3 activation and triggering apoptosis 
(Figure 2A, 2B). HepG2 cells expressed a high abundance of 
RIP-1 and c-FLIPL proteins. Low concentrations (5, 10, 20 μg/mL) 
of TRAIL did not affect protein expression, while high concen-
trations (>50 μg/mL) of TRAIL markedly upregulated RIP-1 and 
c-FLIPL protein expression in cells and reached the top at 100 
μg/mL (Figure 2C). We failed to detect cleaved caspase-8 and 

cleaved caspase-3 protein expression, which may be related 
to high abundance of RIP-1 and c-FLIPL protein expression in 
HepG2 cells. TRAIL treatment showed no significant impact on 
DR4 and DR5 expression.
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Figure 1. �TRAIL showed no significant impact on cell apoptosis and proliferation. (A) MTT assay detection of cell proliferation. 
(B) Relative cell apoptosis rate. (C) Flow cytometry detection of cell apoptosis.
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si RIP-1 and si c-FLIP obviously downregulated RIP-1 and 
c-FLIPL protein expression

Western blot showed that RIP-1 and c-FLIPL mRNA and protein 
expression markedly declined after si RIP-1 and si c-FLIP trans-
fection (Figure 3A, 3B), suggesting good transfection efficacy.

RIP-1 and c-FLIPL interference promoted cell apoptosis

HepG2 cells showed a high abundance of RIP-1 and c-FLIPL, 
while a high concentration of TRAIL obviously induced RIP-1 

and c-FLIPL expression. Therefore, this study discusses the role 
of RIP-1 and c-FLIPL in HepG2 cell resistance to TRAIL-induced 
apoptosis. Compared with a single 100 ng/mL TRAIL treatment, 
RIP-1 NC or c-FLIP NC transfection failed to enhance cell apop-
tosis. si RIP-1 or si c-FLIP transfection obviously elevated cell 
apoptosis, and combined transfection further increased cell 
apoptosis, indicating that interfering with RIP-1 and c-FLIP ex-
pression can reverse HepG2 resistance to apoptosis and en-
hance sensitivity to TRAIL-induced apoptosis (Figure 4A). RIP-1 
or c-FLIP knockdown significantly enhanced caspase-8 and cas-
pase-3 activity, while combined transfection further enhanced 
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Figure 2. �TRAIL-induced RIP-1 and c-FLIPL elevation in DISC. (A) Spectrophotometry detection of caspase-8 activity. 
(B) Spectrophotometry detection of caspase-3 activity. (C) Western blot detection of proteins in DISC.
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their activities (Figure 4B, 4C). The results demonstrated that 
high expression of RIP-1 and c-FLIPL in DISC was an important 
reason for HepG2 cell resistance to TRAIL. Downregulating 
RIP-1 and c-FLIPL can relieve caspase-8 suppression and acti-
vate caspase-3, thus triggering the apoptosis signaling path-
way and promoting cell apoptosis.

RIP-1 knockdown reduced NF-kB activity, activated 
caspase, and induced apoptosis

Except for binding with Fas-associated death domain (FADD) 
and procaspase-8 to form DISC and activate the apoptosis 
signaling pathway, after binding with DR4 or DR5, TRAIL can 
recruit and bind with TRADD and RIP-1 to activate the NF-kB 
signaling pathway, thus promoting cell proliferation and sur-
vival. This study explored whether high abundance of RIP-1 
expression was related to NF-kB activation and apoptosis re-
sistance. The results showed that phospho-NF-kB p65 pro-
tein was expressed in HepG2 cells, suggesting NF-kB activa-
tion. TRAIL treatment at 100 ng/mL significantly upregulated 
p-p65 protein expression and NF-kB transcriptional activity 
(Figure 5A). si RIP-1 transfection obviously reduced the RIP-1 
protein level and NF-kB transcriptional activity, while the NF-
kB specific inhibitor BAY11-7082 markedly downregulated 
the p-p65 level and NF-kB transcriptional activity but not RIP-
1 expression (Figure 5A). Both RIP-1 interference and BAY11-
7082 significantly suppressed caspase-8 and caspase-3 activ-
ity (Figure 5B, 5C), and promoted cell apoptosis (Figure 5D). 
Their simultaneous treatment showed a stronger effect on cas-
pase-3 and cell apoptosis. Moreover, suppressing RIP-1 expres-
sion and/or weakening NF-kB transcriptional activity obvious-
ly reduced cell rate in S phase and G2/M phase, blocked cells 
in G0/G1 phase (Figure 5E), and restrained cell proliferation 
(Figure 5F), indicating that RIP-1 promoted HepG2 cell surviv-
al through upregulating NF-kB transcriptional activity and en-
hanced cell resistance to apoptosis.

Discussion

Primary hepatic cancer is one of the common malignant tumors 
in our country with high morbidity and mortality [9]. It usually 
occurs in young male patients, featuring a high degree of ma-
lignancy and rapid development. Most patients are in an ad-
vanced stage when diagnosed, resulting in poor curative effect 
and prognosis [10]. TRAIL, belonging to tumor necrosis factor 
(TNF) superfamily, is an endogenous protein molecule target-
ing death receptor (DR) [11]. TRAIL can highly selectively induce 
tumor cell, transformed cell, and virus-infected cell apoptosis, 
and effectively avoid killing normal cells [4]. Apoptosis mainly 
includes the exogenous mitochondrial independent pathway 
mediated by DR and the endogenous mitochondrial dependent 
pathway [12]. Death receptor-mediated apoptosis signaling 
pathway suppression leads to imbalance in a variety of apop-
tosis regulatory factors, resulting in tumor cell insensitivity to 
apoptosis and drug resistance. Apoptosis resistance not only 
can improve the survival ability of tumor cells and their abil-
ity to escape immune surveillance, but also can enhance tu-
mor cells’ resistance to chemotherapy and other treatments. 
It is considered to be one of the most common and important 
reasons for malignant tumor occurrence and progression [13]. 
The unique biological characteristic of TRAIL brings new hope 
for tumor treatment, and it is considered to be a safe and ef-
fective new-generation antitumor drug. It is now in phase II 
clinical trials [14]. Although TRAIL shows a significant apopto-
sis-inducing effect on numerous tumor cells, almost all HCC 
cell lines present resistance to TRAIL-induced apoptosis, lead-
ing to a limited effect of single TRAIL therapy [15]. Even after 
radical resection, the minimal residual hepatic cancer cells still 
can escape immunological surveillance and cause rapid recur-
rence. This is mainly caused by hepatic cancer cells’ resistance 
to TRAIL-induced cell apoptosis, though the specific mecha-
nism is still unclear [5].
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Figure 3. �si RIP-1 and si c-FLIP obviously downregulated RIP-1 and c-FLIPL protein expression. (A) qRT-PCR detection of RIP-1 and 
c-FLIPL mRNA expression. (B) Western blot detection of RIP-1 and c-FLIPL protein expression.
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After binding with DR4 or DR5 on the cell membrane, TRAIL 
forms a ligand-receptor trimerization compound that induc-
es the death domain (DD) on DR cytoplasmic domain binding 
with the DD on the C terminal of Fas-associated death domain 
(FADD). The death effector domain (DED) on the N-terminal 
of FADD combines with procaspase-8 to form DR4/DR5-FADD-
procaspase-8 death induced signal complex, which triggers 
procaspase-8 self-splicing into the active apoptosis starter 
caspase-8. The latter activates the caspase cascade reaction, 

including caspase-3, -6, and -7, to degrade structural protein 
and functional protein in the cells directly, eventually trigger-
ing apoptosis [16]. DISC is a key regulatory factor in the TRAIL 
apoptosis signaling pathway, while c-FLIPL and RIP-1 are the 
two important negative regulatory proteins on DISC and the 
apoptosis signaling pathway [6]. Anti-apoptotic protein c-FLIPL 
is a key regulatory factor in the TNF family to induce apopto-
sis tolerances [17]. c-FLIPL is a natural inhibitor of caspase-8 
protein (containing a structure and sequence similar to those 
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Figure 4. �RIP-1 and c-FLIPL interference promoted cell apoptosis. (A) Flow cytometry detection of cell apoptosis. (B) Spectrophotometry 
detection of caspase-8 activity. (C) Spectrophotometry detection of caspase-3 activity.
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of caspase-8), but it lacks the cysteine structure necessary for 
enzyme catalytic activity [18]. c-FLIPL competitively combines 
with FADD and/or caspase-8 and -10 through its two DEDs on 
the N-terminal, leading to blockage of the caspases’ cascade 
reaction and TNF, TRAIL, FasL, and corresponding DR-mediated 
apoptosis [19]. c-FLIPL and/or RIP-1 are overexpressed in vari-
ous tumors, such as prostate cancer [20], colorectal cancer [21], 
and melanoma [22]. It was also found that c-FLIPL and/or RIP-1 
overexpression existed in hepatic cancer cells [7,8]. Thus, we 
hypothesized that RIP-1 and/or c-FLIPL abnormal expression 
induced DISC formation and apoptosis signaling transduction 
blockage, which may be the important mechanism of hepat-
ic cancer cell resistance to TRAIL-induced cell apoptosis. This 
study explored the role of RIP-1 and/or c-FLIPL in hepatic can-
cer cell resistance to TRAIL-induced apoptosis.

MTT and apoptosis detection showed that different concen-
trations of TRAIL had no obvious impact on HepG2 cell pro-
liferation activity and apoptosis, confirming that HepG2 cells 

had strong resistance to apoptosis induced by TRAIL [23]. In 
view of the negative regulatory effect of RIP-1 and c-FLIPL 
within DISC on the apoptosis signaling pathway, we exam-
ined DISC component protein expression in HepG2 cells 
treated by TRAIL. The results showed that HepG2 presented 
a high abundance of RIP-1 and c-FLIPL, and high concentra-
tions of TRAIL treatment can significantly increase RIP-1 and 
c-FLIPL expression. It might be one of the reasons for hepat-
ic cancer cells acquiring TRAIL resistance [24]. TRAIL failed 
to cause obvious caspase-8 and caspase-3 activation, or in-
duce obvious changes in DR4 and DR5 expression, suggesting 
that RIP-1 and c-FLIPL overexpression may play a role in cas-
pase-8 suppression and TRAIL resistance. Ganten et al. [25] 
observed the inhibitory effect of TRAIL on caspase-8 activity 
in hepatic cancer cells, and considered that caspase activi-
ty suppression by c-FLIP overexpression in DISC was the rea-
son for hepatic cancer cell resistance to TRAIL. However, in 
the Shin et al. [15] study, c-FLIP expression showed no lin-
ear relationship with hepatic cancer cell resistance to TRAIL; 
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Figure 5. �RIP-1 knockdown reduced NF-kB activity, activated caspase, and induced apoptosis. (A) Western blot detection of protein 
expression. (B) Spectrophotometry detection of caspase-8 activity. (C) Spectrophotometry detection of caspase-3 activity. 
(D) Flow cytometry detection of cell apoptosis. (E) Flow cytometry detection of cell cycle. (F) MTT assay detection of cell 
proliferation.

thus, the relationship between c-FLIP and TRAIL resistance 
was still unclear. Moreover, we discuss that high expression 
of RIP-1 and c-FLIPL played a role in HepG2 cells’ resistance 
to apoptosis induced by TRAIL. With use of the siRNA tech-
nique to silence endogenously RIP-1 and c-FLIPL expression, 
HepG2 cells’ apoptosis obviously increased, and caspase-8 
and caspase-3 enzyme activities also were significantly en-
hanced. They reached the top when both RIP-1 and c-FLIPL 

were suppressed, indicating that high expression of RIP-1 and 
c-FLIPL plays a critical role in HepG2 TRAIL resistance.

Except for binding with FADD and procaspase-8 to form DISC 
and activate the apoptosis signaling pathway, after binding 
with DR4 or DR5, TRAIL can recruit and bind with TNF receptor 
type 1-associated DEATH domain protein (TRADD) and RIP-1 to 
activate the NF-kB signaling pathway. RIP-1 recruitment is the 
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key in NF-kB activation induced by TRAIL. RIP-1 recruitment 
and NF-kB activation are extremely important in promoting cell 
survive and proliferation. The latter mediates cell resistance 
to TRAIL-induced cell apoptosis [26]. At present, most stud-
ies considered that RIP expression can activate NF-kB, where-
as the relationship between its elevation and caspase activity 
suppression is controversial. This study found that TRAIL up-
regulated RIP-1 expression and enhanced phospho-NF-kB p65 
protein expression to elevate NF-kB transcriptional activity in 
HepG2 cells, revealing that RIP-1 elevation and NF-kB activa-
tion may play a role in apoptosis resistance. RIP-1 downregu-
lation reduced NF-kB transcriptional activity, blocked the cell 
cycle in G0/G1 phase, weakened cell proliferation, enhanced 
caspase-8 and caspase-3 activity, and increased cell apopto-
sis. As the specific inhibitor of NF-kB, BAY11-7082 showed a 
similar effect with RIP-1 interference. Their simultaneous treat-
ment presented a stronger effect, suggesting that TRAIL en-
hanced NF-kB transcriptional activity, reduced caspase activity, 

and mediated apoptosis resistance through upregulating RIP-
1 expression.

Conclusions

TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. 
High expression of RIP1 and c-FLIPL is an important reason for 
TRAIL resistance. Downregulation of RIP1 and c-FLIPL can re-
lieve caspase-8 suppression, activate caspase-3, and promote 
cell apoptosis. TRAIL mediates apoptosis resistance through 
upregulating RIP-1 expression, enhancing NF-kB transcription-
al activity, and weakening caspase activity.
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