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Abstract: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phos-
phatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of
substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has
been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand
break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood.
Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs
contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation
sites and conformational changes associated with autophosphorylation of DNA-PKcs are important
for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the
phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of
DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophospho-
rylation in differentiation and development. Furthermore, there has been notable progress in the
high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual
insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress
in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.

Keywords: DNA-dependent protein kinase; autophosphorylation; non-homologous end-
joining; differentiation

1. Introduction

Cells regulate the cell cycle and gene expression rapidly in response to both intracel-
lular and extracellular stresses, during which signal transduction is primarily regulated
via phosphorylation [1–3]. Within these signal transduction pathways, members of the
PI3K-related kinase (PIKK) family, including ataxia-telangiectasia mutated (ATM), ataxia
telangiectasia and Rad3-related (ATR), the DNA-dependent protein kinase catalytic subunit
(DNA-PKcs), the mammalian target of rapamycin (mTOR), the suppressor with morpho-
logical effect on genitalia-1 (SMG-1) and the TRAF and TNF receptor-associated protein
(TTRAP), are known to play central roles [4]. Although TTRAP lacks serine/threonine
kinase activity, all of these proteins are characterized by the presence of HEAT, FAT and ki-
nase domains [5–7]. Phylogenetic analyses of DNA-PKcs have recently indicated that many
metazoans and plants have putative gene encoding DNA-PKcs. However, many model or-
ganisms such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans,
Drosophila melanogaster and Arabidopsis thaliana lack an ortholog of DNA-PKcs. Therefore,
DNA-PKcs appears to have been lost or its functions may have been diversified as or-
ganisms adapted to their environment during the course of evolution [8]. DNA-PKcs
has been established as playing a central role in non-homologous end-joining (NHEJ), a
DNA double-strand break (DSB) repair pathway, and its activation is dependent on its
interactions with the Ku complex [9–11]. DNA-PKcs binds rapidly to DNA in the presence
of Ku and it has been reported that the interaction of Akt1 and/or EGFR with DNA-PKcs
promotes the activation of DNA-PK [12]. During NHEJ, the Ku70/Ku80 complex rapidly
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binds to DNA ends in response to DSBs; DNA-PKcs then binds to these DNA ends followed
by the recruitment of NHEJ factors such as Artemis and DNA polymerase λ/µ, which
subsequently process the DNA ends to generate ligatable ends [11,13]. In organisms that
lack the gene encoding for DNA-PKcs, such as fission yeast (Schizosaccharomyces pombe),
the Mre11/Rad50/Xrs2 complex interacts with NHEJ factors such as DNA ligase IV, is in-
volved in the end-resection step of NHEJ and ensures NHEJ fidelity [14–16]. It has also been
suggested that PAXX interacts with the Ku complex and stabilizes DNA ends [10,17,18] and
that XRCC4/XLF filaments are formed within the vicinity of DNA ends to protect the DNA
ends from further degradation [10,19–22]. However, the order and timing of DNA-PKcs
binding and recruitment of these NHEJ factors have yet to be sufficiently established.

NHEJ is also involved in V(D)J recombination, which is responsible for the diversity
of antigen recognition sites in antibodies and T-cell receptors [23]. In particular, DNA-
PKcs is essential for opening the hairpin DNA formed after cleavage by the RAG1/RAG2
complex [24]. Artemis, which is the enzyme responsible for opening the hairpin DNA,
has endonuclease activity [11,24]. However, when it forms a complex with DNA-PKcs
and undergoes phosphorylation by DNA-PKcs, it acquires structure-specific exonuclease
activity [11,24]. Therefore, an abnormality in the gene encoding DNA-PKcs results in
radiosensitive severe combined immunodeficiency (RS-SCID) [23].

It is known that DNA-PKcs undergoes autophosphorylation and phosphorylates
other NHEJ factors including Ku70, Ku80, Artemis, PNKP and XRCC4 and the roles of
DNA-PKcs substrates and DNA-PKcs autophosphorylation in the DSB repair process have
been well analyzed [25]. For example, it has been reported that autophosphorylation
of DNA-PKcs is involved in end-processing, the pathway choice for DSB repair and
normal mitotic progression [26–29]. Moreover, the phosphorylation status of DNA-PKcs
is associated with a conformational change, which is required for self-activation [30–35].
The three-dimensional structure of the Ku complex was reported in detail in 2001 [36].
A visualization of the three-dimensional structure of DNA-PKcs was attempted by cryo-
electron microscopy (Cryo-EM) in 1998 although the resolution was low [37–39]. More
recently, there have been a number of higher resolution structural characterizations of
DNA-PKcs using X-ray and Cryo-EM analyses [40–43]. Based on this information, in this
review, the current understanding of autophosphorylation and the activation of DNA-PKcs
has been summarized.

2. Self-Activation of a DNA-Dependent Protein Kinase Catalytic Subunit

DNA-PKcs primarily recognizes serine/glutamine and threonine/glutamine motifs
in substrate proteins and phosphorylate serine and threonine residues in the presence
of the Ku complex and double-stranded DNA (Figure 1) [44]. As shown in Figure 2,
DNA-PKcs consists of the HEAT, FAT and kinase domains. The HEAT domain contains
two major autophosphorylation clusters referred to as the S2056 (S2023–S2056) and T2609
(T2609–T2647) clusters, also known as the PQR and ABCDE clusters, respectively [7,26,33].

Based on the Cryo-EM analysis, the conformations of DNA-PKcs can be classified into
three major groups based on its binding to the Ku complex and DNA and its corresponding
activation state: (i) the DNA-PKcs-DNA complex, (ii) the DNA-PK holoenzyme in the
inactivated state and (iii) the DNA-PK holoenzyme in the activated state [40]. In the
DNA-PKcs-DNA complex, it was found that DNA-PKcs binds to DNA alone, although
weakly; this is consistent with the weak kinase activity of DNA-PKcs in the absence of Ku
but in the presence of DNA [45,46]. In addition to forming a DNA-PK holoenzyme, the
self-activation of DNA-PK requires the physical interaction between Ku80 and DNA-PKcs
as well as conformational changes in the FAT and kinase domains of DNA-PKcs. When
the DNA-PK holoenzyme is in the activated state, a putative inositol 6-phosphate (IP6)
binding site appears [40]. IP6 was reported by Hanakahi and West in 2000 as a factor that
promotes end-joining in vitro [47]. Interestingly, IP6 binds to the Ku complex rather than
to DNA-PKcs [24,48]. Consistent with this, it has been suggested that DNA-PKcs lacks an
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IP6 binding site unlike other PI3KKs [49]. To verify this contradiction, it is necessary to
assess in detail whether IP6 binds to DNA-PKcs or the Ku complex.
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DNA-PKcs acquires kinase activity in the presence of the Ku complex and double-stranded DNA. 
DNA-PK holoenzymes preferentially phosphorylate the serine (S) and threonine (T) of serine /glu-
tamine (Q) and threonine/glutamine motifs in target proteins. 
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one autophosphorylation site in the HEAT domain. There is an autophosphorylation site in the FAT 
(S3205) and KD (T3950) domains, respectively. 
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and S2053 in mice), including the locations and structural changes associated with phos-
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well analyzed. S2056 is phosphorylated in trans, at least in vitro, in response to ionizing 
radiation (IR) [50]. Phosphorylation of S2056 influences the pathway choice by restricting 

Figure 1. DNA-dependent protein kinase. DNA-PK holoenzyme consists of a DNA-dependent
protein kinase catalytic subunit (DNA-PKcs), the Ku complex (Ku70/Ku80) and double-stranded
DNA. DNA-PKcs acquires kinase activity in the presence of the Ku complex and double-stranded
DNA. DNA-PK holoenzymes preferentially phosphorylate the serine (S) and threonine (T) of serine
/glutamine (Q) and threonine/glutamine motifs in target proteins.
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Figure 2. DNA-PKcs consists of the HEAT domain, FAT domain and kinase domain (KD). There are
four autophosphorylation clusters (N terminal, leucine zipper, S2056/PQR and T2609/ABCDE) and
one autophosphorylation site in the HEAT domain. There is an autophosphorylation site in the FAT
(S3205) and KD (T3950) domains, respectively.

With respect to autophosphorylation, there is yet to be a comprehensive characteriza-
tion of PQR clusters (S2029, S2041, S2053 and S2056 in humans and S2026, S2038, S2050
and S2053 in mice), including the locations and structural changes associated with phos-
phorylation [40]. Of these phosphorylation sites, autophosphorylation of S2056 has been
well analyzed. S2056 is phosphorylated in trans, at least in vitro, in response to ionizing
radiation (IR) [50]. Phosphorylation of S2056 influences the pathway choice by restrict-
ing the end-processing by Artemis during the NHEJ reaction. It has been reported that
the autophosphorylation efficiency of S2056 is related to the balance with O-linked β-N-
acetylglucosamine (O-GlcNAc) modification, a post-translational modification of proteins,
and the interaction of DNA-PKcs with casein kinase II and/or Akt1 [12,51,52]. How-
ever, even though all phosphorylation sites in the PQR cluster are replaced with alanine
(hereafter referred to as DNA-PKcsPQR), phosphorylation of KAP-1 by DNA-PKcs occurs
normally in response to IR. Furthermore, mouse embryonic fibroblasts (MEFs) and B-cells
derived from DNA-PKcsPQR/PQR mice exhibited a mild sensitivity to IR [53]. Collectively,
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these findings indicate that phosphorylation at the PQR cluster is dispensable for the
activation of DNA-PK.

In contrast to the PQR cluster, the ABCDE cluster plays an important role in the
self-activation of DNA-PKcs [30,33,54]. Within the ABCDE cluster, six (in humans) or five
(in mouse) serine and threonine residues (T2609, S2612, T2620, S2624, T2638 and T2647
in humans and T2605, S2614, S2616, T2634 and T2643 in mice) undergo phosphorylation
in vitro. Four of these amino acids (T2609, S2612, T2638 and T2647) have also been found
to undergo phosphorylation in vivo [32]. Mammalian cells and transgenic mice expressing
DNA-PKcs with all phosphorylation sites or five (excluding the non-S/Q motif S2645 in all
ABCDE clusters) or three threonine residues (T2609, T2638 and T2647 in humans; T2605,
T2634 and T2463 in mice) of the ABCDE cluster replaced with alanine (hereinafter referred
to as DNA-PKcs6A, DNA-PKcs5A and DNA-PKcs3A, respectively) are often used to analyze
the role of the ABCDE cluster [30–32,34,35]. For example, analyses using V3 CHO cells
expressing human DNA-PKcs6A and in vitro NHEJ assays using autophosphorylation
mutant DNA-PKcs proteins revealed that DNA-PKcs remains bound to DNA ends in a
Ku-dependent manner and that the NHEJ reaction does not proceed any further if the
ABCDE cluster does not undergo phosphorylation [30,32]. Interestingly, two distinct types
of conformational changes associated with phosphorylation have been reported in the
ABCDE cluster. Briefly, in one scenario, the ABCDE cluster extends from within the HEAT
domain to the DNA binding site and autophosphorylation at the ABCDE cluster occurs
in trans. An alternative view suggests that the ABCDE cluster is located externally to the
HEAT domain, adjacent to the substrate binding groove of the kinase domain, and that
autophosphorylation at the ABCDE cluster occurs in cis (Figure 3) [32,40,55]. Consequently,
it would be desirable to verify the precise location of the ABCDE cluster in future studies.
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Figure 3. Schematic representation of a putative ABCDE cluster. (a) A putative ABCDE cluster is
located inside the HEAT domain. Autophosphorylation occurs in trans; (b) Another putative ABCDE
cluster is located outside the HEAT domain. Autophosphorylation occurs in cis. A blue oval indicates
the ABCDE domain; a P in white on a pink circle indicates the phosphate group.

In addition to these clusters, it has been reported that autophosphorylation of the
N-terminal cluster (S56 and S72) is involved in the inactivation of DNA-PKcs. In particular,
phosphorylation of S72 has been suggested to destabilize the binding of DNA-PKs to
DNA [28,40,56]. It has also been suggested that phosphorylation of the JK clusters (T946
and S1004) does not affect enzyme activity but is involved in the pathway choice [56].
Phosphorylation of the leucine zipper clusters (S1470 and S1546) and T1865 appears to
have little effect on DNA-PK functions such as radiosensitivity, V(D)J recombination,
the inhibition of homologous recombination and the assembly into Ku-bound DNA [56].
S3205 undergoes autophosphorylation modification by DNA-PKcs in vitro. However, it is
phosphorylated by ATM in response to DNA damage in vivo [56]. Regarding T3950, as
this residue is located within the activation loop of the kinase domain, its phosphorylation
and dephosphorylation have been suggested to play a switching role with respect to kinase
activity [40,42,57].
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3. Effects of DNA-PKcs on Development and Differentiation Determined by
Comparing Knockout and Mutant Mice

The importance of DNA-PKcs phosphorylation in the development of tissues and cells
has been demonstrated using mouse models. For example, it has been found that while
DNA-PKcs-/- mice develop normally, a DNA-PKcs kinase-dead mutant (DNA-PKcskd/kd),
in which the aspartic acid at position 3922 of mouse DNA-PKcs is replaced by alanine, is
embryonic lethal [58–60]. A histological analysis of the E14.5 brains of these DNA-PKcskd/kd

mice revealed severe neuronal apoptosis, which was similar to that observed in Xrcc4
knockout mice. Neuronal apoptosis is primarily detected in the post-mitotic intermediate
zone, thereby indicating that apoptosis occurs during the G0/G1 phase of the cell cycle
in which NHEJ repair is predominant [59]. In addition, an accumulation of chromosomal
breaks was detected in ES cells and MEFs derived from DNA-PKcskd/kd mice. Although ES
cells derived from DNA-PKcs-/- were found to be only moderately sensitive to IR, those
derived from DNA-PKcskd/kd mice were notably more sensitive. Although DNA-PK is also
implicated in the pathway choice, a homologous recombination repair in ES cells derived
from DNA-PKcskd/kd mice has been observed to be comparable with that in wild-type
ES cells, thereby indicating that genomic instability caused by the kinase-dead mutation
in DNA-PK is attributable to NHEJ defects. Although extrachromosomal end-ligation
does not proceed in B-cells derived from DNA-PKcskd/kd mice, this end-ligation failure can
be rescued by Ku deletion, consequently indicating that unphosphorylated DNA-PKcs
blocks ligation [59]. Considering the fact that DNA-PKcsPQR/PQR mice are healthy and the
aforementioned importance of the ABCDE cluster in DNA-PK activation, it appears that the
fetal lethality observed in DNA-PKkd/kd mice is associated with an aberrant phosphorylation
of the ABCDE cluster. Moreover, DNA-PKcs3A/3A mice, wherein three amino acids in the
ABCDE cluster are replaced with alanine, have been found to have bone marrow and
telomere abnormalities and die approximately 10 days after birth [35,61]. Accordingly, this
phenotypic difference between DNA-PKcs3A/3A and DNA-PKcskd/kd mice would appear to
indicate that in addition to phosphorylation of the ABCDE cluster, autophosphorylation
of DNA-PKcs is an important process for the development (at least neurogenesis) of
individual mice. Furthermore, given that the embryonic lethality characterizing DNA-
PKkd/kd mice can be rescued by Ku deficiency, the effects of autophosphorylation such as
those of S72 and T2950 (in human DNA-PKcs), which are required for the dissociation of
DNA-PKcs from DNA, would not be negligible.

Gene knockout and kinase-dead mutations in DNA-PKcs also give rise to further
phenotypic differences. Recently, it has been reported that DNA-PKcs is involved in rRNA
processing and hematopoiesis in a Ku-dependent manner [34]. In mice, the loss of cNHEJ
factors other than DNA-PKcs leads to the development of pro-B lymphoma in a TP53-
deficient background [62–64], whereas, in the same background, most DNA-PKcs kinase-
dead mutant mice die within 40 days without developing lymphoma [34]. An analysis
of the bone marrow and spleen from DNA-PKcskd/kd TP53-/- mice revealed that these mice
developed myelodysplastic syndrome. Studies focusing on autophosphorylation of DNA-
PKcs have indicated that while DNA-PKcsPQR/PQR mice were healthy, DNA-PKcs5A/5A and
DNA-PKcs3A/3A mice showed bone marrow failure [34,53]. The fact that Ku binds to both
DNA and RNA [65,66], and that the Ku complex and DNA-PKcs localize in the nucleolus
in the absence of DNA damage [67], suggests that DNA-PK may act in an RNA-dependent
manner in the nucleolus. Indeed, an analysis using v-ABL kinase-transformed pro-B cell
lines from DNA-PKcskd/kd and DNA-PKcs3A/3A mice revealed that translation is reduced
in these cells [34]. Furthermore, the findings of a ChIRP-MS analysis indicated that the
DNA-PK holoenzyme binds to U3 small nucleolar RNA (snoRNA), which is involved in
the maturation of the 40S ribosomal subunit. Further in vitro phosphorylation assays have
revealed that DNA-PKcs binds to the snoRNA stem-loop structure in a Ku-dependent
manner, thereby causing autophosphorylation of the ABCDE cluster. Accordingly, these
observations indicate that DNA-PKcskd/kd, DNA-PKcs5A/5A and DNA-PKcs3A/3A mice show
Ku-dependent aberrant 18S rRNA processing, which results in an overall reduction in
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protein synthesis in hematopoietic cells [34]. However, although the role of the ABCDE
cluster in rRNA processing remains to be conclusively established, Shao et al. speculated
that the conformation of DNA-PKcs may differ depending on the identity of the binding
nucleic acid (i.e., DNA or RNA) [34]. Indeed, an elucidation of the three-dimensional
structure of DNA-PKcs bound to RNA is presumably the most important issue to be
resolved regarding the role of DNA-PKcs in rRNA processing.

4. Conclusions

In this review, how the activation of DNA-PKcs is accompanied by autophosphoryla-
tion and conformational changes as well as the binding of IP6, the Ku complex and DNA
have been described. The evidence also indicates that autophosphorylation of DNA-PKcs
is important for protein synthesis in hematopoietic cells as well as in the development
of neuronal and lymphoid cells. The findings reported herein highlight the continuing
importance of studies based on animal models to clarify the roles of DNA-PKs. Although
there have been notable advances in the structural analysis of macromolecular proteins by
Cryo-EM, the structures of DNA-PKcs have yet to be sufficiently clarified. Consequently,
the precise locations of the ABCDE and PQR clusters and the conformation of DNA-PKs in
the ATP-bound state remain to be determined. In conclusion, it is envisaged that a com-
plementary combination of cellular, molecular, biochemical and structural analyses will
contribute to gaining a more comprehensive understanding of the mechanisms underlying
DNA-PK activation, thereby facilitating a further elucidation of the multiple functions of
DNA-PKcs.
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