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Gene expression data obtained in large studies hold great promises for discovering disease

signatures or subtypes through data analysis. It is also prone to technical variation, whose

removal is essential to avoid spurious discoveries. Because this variation is not always known

and can be confounded with biological signals, its removal is a challenging task. Here we

provide a step-wise procedure and comprehensive analysis of the MINDACT microarray

dataset. The MINDACT trial enrolled 6693 breast cancer patients and prospectively validated

the gene expression signature MammaPrint for outcome prediction. The study also yielded a

full-transcriptome microarray for each tumor. We show for the first time in such a large

dataset how technical variation can be removed while retaining expected biological signals.

Because of its unprecedented size, we hope the resulting adjusted dataset will be an

invaluable tool to discover or test gene expression signatures and to advance our under-

standing of breast cancer.
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Gene (mRNA) expression data of tumor tissue biospeci-
mens that are collected over an extended period of time
during for instance large clinical trials, are susceptible to

variation due to factors such as adjustments in protocols,
equipment, or batches of reagents. Transparency and managing
the potential influence of these technical factors on expression
profiles are critical to avoid spurious conclusions1.

The largest trial that collected full-transcriptome expression
data is the MINDACT trial2,3, an international, multi-center,
prospective, phase III randomized trial whose main objective was
to prospectively validate the 70-gene MammaPrint signature as a
prognostic tool for the clinical evaluation of patients to help avoid
chemotherapy4. Trial results showed that the 70-gene expression
signature enables a reduction of 46% in the use of chemotherapy
for clinically high-risk patients4, a finding that was adopted in
various international breast cancer guideline recommendations5–
9.

During the 5-year enrollment phase of MINDACT, the mea-
surement of the 70-gene expression signature was performed

under US Food and Drug Administration Quality System Reg-
ulation (FDA/QSR)-compliant protocols, which included tech-
nical adjustments and improvements (Fig. 1a). As such, technical
variations were controlled to provide a robust MammaPrint test
result based on the built-in normalization genes specific for
MammaPrint and quality control methods4,10–12. In addition, the
risk classification using the 70 genes is binary and is a result of the
combination of the expression of the 70 genes. Here, we are
studying all other genes and the procedures to monitor and
guarantee the risk classification of MammaPrint, however, did
not monitor or guarantee that the full-transcriptome data was
unaffected by technical variation.

Initial steps in standard microarray procedures and as
employed for this dataset based on a two-color method, convert
raw feature extracted image data to biological significant data on a
per gene-probe measurement at full-transcriptome level. This
includes a multi-step process involving quality control per probe,
as well as normalization steps that correct for differences in
sample labeling efficiency or the amount of RNA used. These

Fig. 1 MINDACT timeline and full-transcriptome dataset analysis procedure. a contains a timeline overview of the MINDACT enrollment and gene
expression microarray technical adjustments and improvements. The MINDACT trial enrolled 6693 patients from February 2007 until September 2011 and
samples were processed at Agendia’s central laboratory. During this time, some standard operating procedures underwent FDA/QSR-compliant technical
adjustments and improvements. Evaluation and calibration were performed to ensure accuracy of the MammaPrint test. The technical changes listed here
were the main factors included in the assessment of variance on full-transcriptome data of the MINDACT samples, further detail and other factors
evaluated are described in detail in the “Methods” section and Supplementary Table 1. The x-axis on top represents the years and the number of days
between January 1st of 2007 (reference date) and the isolation date of the sample. This reference date was chosen to make the plots easier to read.
Indicated are the first day (55) and the last day (1719) of patient sample isolation. Isolation buffer: commercial solution to extract RNA from (tumor) tissue,
RNAbee (Teltest, TX, USA), and Qiazol (Qiagen, Germany), respectively. Reference is a standard RNA sample hybridized to the microarray together with
each tumor RNA sample. Three different ones were used: MRP, Mamma Reference Pool, and BP1, Breast Pool 1, both made by Agendia from RNA isolated
from a custom series of breast cancer samples and UHR, Universal Human Reference, a commercial RNA from human tumor reference samples (Agilent,
USA). b shows the step-wise procedure of the MINDACT analysis pipeline for evaluating and managing technical variation in the gene expression levels
representing the full-transcriptome of the MINDACT patients. For more detail see “Methods” and Supplementary Table 1. ER estrogen receptor, HER2 erb-
b2 receptor tyrosine kinase 2, IQR interquartile range, knn k-nearest neighbor, n number, RUV remove unwanted variation, TIFF tagged image file format,
QC quality control.
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processes are performed per array (“within-array normal-
ization”), however, they do not correct for variation caused by
technical changes over time (such as changes in reagent batches,
or equipment). Statistical methods13–16 could be used that handle
the unwanted technical variation when studying a factor of
interest (e.g., therapy response prediction), however, one should
be aware that analyses (e.g., investigating new subtypes) can be
misled by unwanted variation, and prior adjustment of the data is
warranted. Deciding what should be adjusted for is, however, a
challenge, as yet unknown subtypes may be confounded with
some technical factors and adjusting for the technical factors may
discard the unknown subtypes. Identifying the technical variation
is a non-trivial task, as part of it may be caused by undetected
factors17–26. Accordingly, the objective of this paper is twofold.
First, we aim to describe the unwanted variation affecting the
expression data of this large MINDACT dataset. Principal com-
ponent analyses suggested that time-varying technical factors
affected the measured gene expression, but still showed the
expected biological signals related to the main breast cancer
subtypes. Secondly, our aim was to build an adjusted version of
the expression dataset for future analysis purposes. We relied on
an adaptation of the random naive RUV algorithm27 to remove
variation related to time-localized technical factors and mediate
the variation caused by unobserved technical factors, without
losing biological signals.

After adjustment, the top principal components are stable over
time, and correlate with expected biological signals. The analysis
pipeline is entirely reproducible as we provide the R scripts that
were used to generate the tables and figures of this paper. The
adjusted and unadjusted breast cancer datasets with unprece-
dented sample sizes are available through the trial sponsor, the
MINDACT committee of European Organization for Research
and Treatment of Cancer (EORTC), and ready-to-use for trans-
lational research, including discovery of new classifiers or testing
of proposed signatures. Additionally, the step-wise analysis
pipeline we describe provides guiding principles for the analysis
and management of technical variation and big data processing of
other large cohort studies spanning extended time periods of
patient enrollment.

Results
Tumor samples from breast cancer patients from 112 institutes
located in nine countries who were enrolled in the MINDACT
trial4 (6693 patients) were processed at Agendia between Feb-
ruary 2007 and September 2011, using customized full-
transcriptome two-color Agilent microarrays that contained the
MammaPrint probes (Fig. 1a and “Methods”). Technical adjust-
ments and improvements made during the study, shown in
Fig. 1a and in further detail described in the “Methods”, were in
compliance with FDA/QSR regulation for accurate MammaPrint
readout. Here, we describe the management of variation observed
in the full-transcriptome data and evaluate which factors could
explain a substantial proportion. The effect of the technical fac-
tors (the unwanted technical variation) can be corrected, while
the biological signals are preserved. The adjusted dataset we
present is a prospectively collected gene expression dataset from a
representative stage I and II breast cancer patient population that
is normalized and available for further translational research.

The analysis pipeline that we used to manage the technical
variation consists of data preparation of the raw data in pre-
possessing steps (QC, “within-array normalization”), and
successive steps as depicted in Fig. 1b, which created the data-
set adjusted for technical variation. The procedures of each step
are described in the next paragraphs, as well as in the “Methods”
section.

Data preparation and quality control. The basis of the gene
expression measurements are TIFF files, scanned microarray
images. Data preparation of the 6693 samples included standard
feature extraction procedures, annotation and quality control (see
“Methods”). Expression values of the dual channel patient plus
reference sample microarray hybridizations are presented as
log10-ratio values. During the MINDACT study three different
RNA pools were used as reference (“Methods”, data preparation).
The full-transcriptome expression data of five patients was
excluded based on poor quality, resulting in 6688 full-
transcriptome study samples. In addition, between patient sam-
ple correlations were calculated to assess whether some samples
may have been accidentally repeated (see “Methods” and Sup-
plementary Note 1). Two patient samples with a high correlation
to other patient samples were identified. Reprocessing of the
samples showed that they were subjected to mix-ups preceding
the hybridization step (the unadjusted and adjusted datasets of
this study contain the corrected reprocessed versions of these two
samples). Thirteen other patient samples with high between
sample correlation to at least one other patient sample were also
reprocessed for quality review. Their correlation remained high in
the reprocessed data, and their distinct MammaPrint indices were
consistent with their original versions, which confirms that they
are not subject to a mix-up, and suggests that high correlations do
not always indicate sample repeats (see Supplementary Note 1).

Missing value imputation (step 1). For the 6688 patient samples
(40,793 probes per microarray), the number of missing values was
determined (see Supplementary Fig. 1). Probes that were missing
in >20% of the samples were omitted (n= 5182); more precisely
as three different RNA references were used, missing values were
determined per RNA reference group (see “Methods”), leaving
35,611 probes per patient for further analysis. The remaining
missing values were imputed, and the data were zero-centered for
each probe in each of the three reference groups to allow for
combining the three sets of samples with different references for
further analyses (see “Methods”). The total dataset after missing
value imputation consists of 6688 samples with 35,611 data
points.

Analysis of the unadjusted expression data (step 2). The next
step was to assess the effect of known technical changes (listed in
Supplementary Table 1) and to investigate expected biological
variation (see “Methods”). Factors that strongly affect gene
expression, such as different RNA isolation buffers used, may
account for a substantial proportion of the total variance and are
typically associated with the top principal components (PCs). In
this dataset, the first PC (PC1) accounted for 12% of the total
variance in the unadjusted dataset (Fig. 2a). The top four PCs
(PC1–PC4) together accounted for 28% of the variance observed,
while each following PC explained <3 additional percent of var-
iance. Thus, we felt confident that the top four PCs summarize all
major effects that could contribute to technical variance. We
plotted the PCs against the isolation date of the samples in Fig. 3.
Biological signals were expected to be more stationary over time,
while technical signals could fluctuate, and be related to the time
period when change was implemented.

The first PC (PC1) of the unadjusted data showed a sharp
variation over time (Fig. 3a–c) and this suggested that it was
mainly represented by technical rather than biological variation.
As expected, most of this variation could be explained by a
combination of technical factors related to RNA labeling, labeling
yield, automated labeling, and the combination of which isolation
buffer and reference was used. The two peaks in the distribution
correspond to time periods when the labeling yield was stronger,
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Fig. 2 Proportion of variance explained by principal components before and after data adjustment. Principal components (PCs) were computed across
the n= 6688 patient samples over the 35,611 probes that remained after imputation of missing values (for further details see “Methods” section). Dots
represent the variance explained by the respective PCs for each of the datasets (e.g., PC1 explains ~12% of the variance in the unadjusted dataset (a) and
5% of the variance in the adjusted dataset (b)). Data adjustment was aimed at removing the effect of technical factors from the gene expression while
preserving biological signals. The figure shows that the proportion of variance explained by the top four PCs was reduced after the data adjustment (a vs.
b). PC principal component.

Fig. 3 Variation over time of the top four principal components and their association with technical and biological factors in the unadjusted dataset.
Factors that strongly affect the observed gene expression account for a substantial proportion of the total variance and are typically associated with the top
principal components (PCs). With the PC analysis we captured the largest proportion of variance across all arrays represented by all their probes in the
unadjusted dataset. PC scores for the 6688 patient samples before data adjustment were plotted against time to visualize any variation of the technical or
biological factors over time. Each dot represents one patient sample. The x-axis represents the number of days between January 1st of 2007 and the
isolation date of the sample. The y-axis represents the projection of the samples onto one of the top four principal components. a–c show the projection of
PC1 and are color-coded by labeling yield (blue intensity), the combination of the labeling buffer and the RNA reference used (see legend box), and the use
of the robot for labeling or manual labeling (see legend box). PC2 projections are color-coded for ER signal (d; mRNA expression level from microarray),
PC3 projections are color-coded for automated labeling (e), and PC4 for BRCA signal (f; mRNA expression level from microarray). For plots without color
coding legends, the color intensity of the blue dots represents the value of the plotted signal, with high color intensities corresponding to high signals
(“Methods”). BRCA breast cancer gene expression, ER estrogen receptor, PC principal component.
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which can be deduced from the more intense blue coloring of the
dots representing the individual samples in Fig. 3a. The two peaks
also correlated automated labeling with PC1 (Fig. 3b) and the
combination of isolation buffer and reference RNA (Fig. 3c).
Samples with previously defined MammaPrint scores that were
used as technical and experimental controls within each batch
run of MammaPrint were processed on the same array type
(methods). Their projections to PC1 follow the same fluctuation
patterns, thereby confirming their technical nature (see Supple-
mentary Fig. 2). Moreover, Pearson correlations between PC1 and
BRCA and ER expression were 0.43 and 0.2, respectively, and
showed no clear time structure confirming that variation in PC1
was mainly carried by technical factors.

The PC2 of the expression data mainly corresponded to
biological signals that are more regular over time than the PC1
projections (Fig. 3d). This can also be seen in Fig. 4, where the
samples were plotted towards combinations of the top four PCs
and color-coded for estimates of relevant biological signals such
as ER, HER2, CLDN, and BRCA (see “Methods”). PC2 separated
samples with low and high ER signals, thereby indicating the
presence of the expected ER- and ER+ subgroups28 (Fig. 4a, light
vs. dark blue dots). The Pearson correlation between PC2 and the
ER signal was −0.85. The control samples that were known to be
ER- or ER+ had PC2 projections consistent with this interpreta-
tion (Fig. 4a, red and green dots). Additionally, a separation by
HER2 signal and an ER-/HER2+ group—another expected
biological signal—was visible at the border between the ER

subgroups (Fig. 4b, light vs. dark blue dots). A large part of PC2
therefore corresponded to the main molecular breast cancer
subtypes as described by Perou28.

PC3 projections, similarly to PC1, showed sharp variation over
time (Fig. 3e) that was consistent with the behavior of control
sample projections (Supplementary Fig. 2), suggesting the
influence of technical signals. The two fluctuations corresponded
with the use of automated sample labeling (Fig. 3e). Additionally,
PC3 projections were associated with the CLDN signal (Fig. 4c)
with a Pearson correlation of −0.5, and a Pearson correlation of
0.26 with ER signals, (data not visualized).

Projections of PC4 suggest an association with mainly
biological factors (Figs. 3f and 4c, d). This PC showed a Pearson
correlation of 0.46 with the BRCA signal, and −0.29 with the
CLDN signal.

Overall, the distribution of both PC1 and PC3 fluctuated
sharply over time. While projections for PC2 and PC4 also
fluctuated somewhat over time, their variation was smoother than
for PC1 and PC3. The three time-localized technical factors
explaining PC1 and PC3 (labeling yield, automated labeling, and
the combination of isolation buffer and reference RNA used)
were also the ones with largest overall association with the four
PCs (0.66, 0.58 and 0.53, respectively, Table 1(A)) quantified by
their canonical correlation29 (see “Methods”).

The first four PCs were also associated with a milder extent
with other technical factors (Supplementary Data 1) such as
tumor cell percentage (r= 0.51) and RNA integrity number (r=

Fig. 4 Principal component projections of the samples before and after adjustment and their association with biological signals. A factor that strongly
affects the observed gene expression accounts for a substantial proportion of the total variance across all arrays and is typically associated with the top
principal components (PCs), as these are ordered by the proportion of variance they catch. We calculated the PCs separately in the unadjusted and the
adjusted dataset. Because of the substantial data transformation performed by the adjustment procedure, the PC scores cannot be compared in a one to
one fashion. The plots serve to show that the association between the biological signals and the PCs changes as a result of the data adjustment. In
particular, due to the disappearance of technical variation, the association of the biological signals shift to more prominent PCs, as expected. Scatterplots of
the 6,688 patient samples projected onto two-dimensional PC planes (PC1 vs PC2, PC2 vs PC3 or PC3 vs PC4) are shown before (a–d) and after (e–h) data
adjustment, with color intensity, indicating the value of the plotted biological signal and high color intensities corresponding to high signals (see
“Methods”). Individual plot titles indicate the PC that is most associated with the particular biological signal, as indicated by a gradient of blue color
intensity along the PC. Biological variation in the data was not lost by the adjustment, as the gradient remained visible in the adjusted data and associated
with a more prominent PC (e–h). This is also shown by the 562 control samples (see “Methods”) that were not used to calculate the PCs but were added
to the plots. The yellow dots represent three different MammaPrint low-risk controls, the purple dots five different high-risk controls. These eight controls
also differ in the breast cancer subtype they belong to; they are separated well by PC2 before adjustment, and by PC1 after adjustment and they show a
high consistency of the biological signals unaffected by the adjustment. BRCA breast cancer gene expression, CLDN claudin, ER estrogen receptor, HER2
erb-b2 receptor tyrosine kinase 2, PC principal component.
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0.42). Importantly, these other factors were not time-localized,
making it impossible to decide if they were confounded with
unobserved biological factors of interest (tumor cell percentage
for example could be higher in subtypes characterized by denser
tumors). In general, PC1 and PC3 mainly corresponded to known
technical variations and to some extent to biological signals, while
PC2 and PC4 mainly corresponded to expected biological
variations and seemed to be affected by smaller time-localized
signals.

Removal of technical variation (step 3). Linking PC1 and PC3 to
known technical factors helped to understand possible causes of
the observed technical variation. However, adjusting the data
based on these PCs could possibly lead to removing biological
signals as well (see Supplementary Note 2), since PCs are not
guaranteed to correspond to independent biological or technical
signals only. We, therefore, adapted the naive random RUV
method27 to adjust for technical variation while preserving bio-
logical signals.

Our procedure fits a linear model to the expression data, with
two separate terms representing unwanted variation. A first one
encodes the identified time-localized factors. The second one is
estimated from low-variation probes and intends to capture other
sources of technical variation27. We shrink the estimated effects
of the latter, as they could be confounded with unmodeled cancer
biology. By contrast, time-localized factors are unlikely to be
confounded with cancer biology and we estimate their effect with
a regular regression (see “Methods” for more information). Since
these technical factors clearly fluctuated over time, removing their
effect was unlikely to accidentally remove biological signals. For
the same reason, we chose not to explicitly adjust for other
technical factors, which were not time-localized. In comparison,
the regular method27 led to less satisfactory results and poor
adjustment of data (Supplementary Notes 2 and 3).

Analysis of the adjusted dataset (step 4). To show that the
approach succeeded in removing technical variation while pre-
serving the biological signals, we re-computed the PCs and re-
analyzed their association with the known technical and biolo-
gical factors. The new PC1 accounted for 5% of the total variance
(Fig. 2b), while the top four PCs now explained a total variance of
15%. This relatively low percentage reflects the homogeneity of
this dataset, where all tumors are from early stage breast cancer
patients. After adjustment, the association of known technical
factors with the top four PCs decreased substantially (Table 1
(A)). The canonical correlations29 of the top four PCs with the
technical factors of automated labeling and the combination of
isolation buffer and reference RNA were reduced to zero as a
direct consequence of the adjustment procedure. As labeling yield
may be confounded with biological signals, we did not explicitly
adjust for its effect and did not necessarily expect it to fully
disappear. Data adjustment nevertheless reduced the first cano-
nical correlation between the top four PCs and labeling yield by
half to 0.27. Association with factors that we choose not to adjust
for such as tumor cell percentage, and different RNA quality
measurements (RIN, 28S/18S ratio, and concentration) were still
present (Supplementary Data 1) and future analyses relying on
our adjusted data could take these factors into account when
necessary. Importantly, the projection of samples onto combi-
nations of the top four PCs after data adjustment showed that the
known biological signals were still present (Fig. 4e–h). At the
same time, our adjustment removed all (isolation/labeling/scan)
time-related effects, and strongly decreased all technician-related
effects, without explicitly supervising any of these factors (Sup-
plementary Data 1).

The distribution of projections onto the top four PCs
computed on the adjusted dataset was also more stationary over
time (Fig. 5) than the ones computed over the unadjusted dataset
(Fig. 3), further indicating that the adjusted data was less affected
by time-varying technical factors (also see Supplementary Fig. 3).
In addition, the projections of control samples were rather
constant over time in contrast to what we observed in the
unadjusted data (Supplementary Fig. 2).

Correlation with ER and HER2 status was used to assess
whether biological signals were indeed preserved after adjustment
for unwanted technical variation. TargetPrint (TP) (log10 ratios of
dedicated ER and HER2 probes as reported by Roepman et al.30)
of the unadjusted dataset was used as a proxy for the
immunohistochemical staining. We compared TP-readout of
the dataset with ER and HER2 signals before and after data
adjustment. Analyses showed high and similar correlations
(Table 1(B)), indicating that their biological effect was retained
in the adjusted dataset.

After adjusting for technical variation, we expected the known
biological signals to explain most of the variance, which should be
reflected by an increased association with the top PCs in the
adjusted dataset. Consistent with this, we observed an increased
Pearson correlation between PC1 and both ER- and HER2 TP-
readouts (Table 1(B)). Similarly, the ER and HER2 signals (see
“Methods”) showed increased association with the top PCs. The
Pearson correlation of ER signal and PC1 increased >4-fold to
0.85 in the adjusted data (Supplementary Fig. 3). The projection
of PC1 showed a clear separation in ER signal (Fig. 4e),
corresponding to ER- and ER+ subgroups that are consistent
with the position of the low- and high-risk control sample
projections. An ER-/HER2+ subgroup could also be distin-
guished in the PC1 vs. PC2 projection of the HER2 signal in the
adjusted dataset (Fig. 4f), thereby explaining the limited
correlation between PC1 and TP-HER2 readout (Table 1).
Additionally, PC1 is correlated with the TP53 signals (0.34) and
the expression signals of CLDN-associated genes (−0.36). The

Table 1 Statistical association of technical factors or
biological signals before and after data adjustment.

Association Unadjusted dataset Adjusted dataset

(A)
Canonical correlation of
technical factors with PC1–4
Automated labeling/PC1–4 0.66 0
Labeling yield/PC1–4 0.58 0.27
Reagent × reference RNA/PC1–4 0.53 0
(B)
Pearson correlation of
biological signals–associations
with TargetPrint (TP) readout
ER/TP-ER 0.98 0.95
HER2/TP-HER2 0.79 0.80
PC1/TP-ER 0.31 0.80
PC1/TP-HER2 0.09 0.16

Part A lists the canonical correlation of technical factors with the top four principal components
(PC1–4) before and after data adjustment. Canonical correlations are a multivariate
generalization of Pearson correlation that finds the strongest possible association between two
sets of variables (between linear combinations of the variables in each set). The change in
statistical association between the unadjusted and adjusted data shows the disappearance or
decrease of the effect of technical factors on gene expression as a result of the data adjustment.
Part B gives the correlation of gene expression with ER and HER2 status that was used to assess
whether biological signals were preserved after adjustment. TargetPrint (TP)-scores of the
unadjusted dataset was used as a suitable substitute for the immunohistochemistry status that
was not available to us at the time of analyses. The absolute Pearson correlations between ER
and HER2 gene expression signals and their respective TargetPrint scores (ER/TP-ER and HER2/
TP-HER2, respectively) are shown for the unadjusted and adjusted datasets. Additionally, the
absolute Pearson correlations between the first principal component (PC1) and TargetPrint
scores for ER and HER2 (PC1/TP-ER and PC1/TP-HER2, respectively) are shown for the
unadjusted and adjusted datasets.
p-values are non-informative (see “Methods” for more information) and therefore not given.
ER estrogen receptor, HER2 erb-b2 receptor tyrosine kinase 2, PC principal component, TP-ER
TargetPrint for ER, TP-HER2 TargetPrint for HER2.
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CLDN signal is even stronger on PC2 (−0.41) as illustrated in
Fig. 4g. Overall, the top two PCs of the adjusted data contain large
effects related to well documented breast cancer subtypes (ER
+/ER–, HER2+/HER2–, CLDN low/high). The expression of
BRCA is associated with PC2 (0.34) and PC3 (0.35) as illustrated
in Fig. 3h, while the expression of TP53 is associated with PC3
(−0.43). Projections of the 6688 samples against the first four PCs
and color-coded for BRCA, CLDN, ER, HER2, and TP53 are
presented in Supplementary Fig. 4.

In summary, variation introduced by time-localized technical
factors was largely removed after adjustment while biological
signals were preserved.

Discussion
Gene expression data from studies that span multiple years
naturally include variation due to technical factors, even when
sources of variation are minimized by standardizing laboratory
procedures and using the same batch of reagents for the duration
of the study. The MINDACT study spanned several years and
here we describe the MINDACT full-transcriptome microarray
expression dataset and show for the first time that such a large
dataset is adjusted for technical variation while preserving bio-
logical signals.

This technical variation is corrected for in the result of diag-
nostic tests such as MammaPrint or BluePrint10,12 that are under
diagnostic quality schemes, by using specific procedures and
validations. However, its management for gene expression of the
full-transcriptome is of utmost importance to avoid spurious
discoveries in future analysis that may be the result of technical
variation. Accordingly, the goal of this paper was to describe this
technical variation, and to prepare a ready-to-use dataset for
future breast cancer relevant projects by adjusting explicitly for
the technical variation that could be safely modeled. Adjustment
using a modified version of the naive random RUV method27

implicitly removes technical variation due to known as well as
unidentified sources, while preserving biological signals.

The adjusted data revealed a clear clustering of the samples in
ER+, ER-/HER2+ and ER–/HER2-groups along the PC1, and the
next principal components had a high correlation with the

expression of TP53, BRCA, and CLDN-associated genes. While it
is impossible to guarantee that all unknown signals of interest
were preserved by the adjustment, it is encouraging to see that
known important signals, which were not modeled in the
adjustment were preserved nonetheless. The top four principal
components of the adjusted data were also much more stationary
than the top PCs of the unadjusted data, suggesting that no
unknown-for time-localized event had a strong influence on
variance after adjustment.

The resulting dataset is representative of an early stage breast
cancer population and is now available (unadjusted and adjusted)
together with patient characteristics and clinical outcomes for
future translational research by submitting proposals to the
EORTC for access to the gene expression data as well as the
clinical and patient data (https://www.eortc.org/data-sharing/),
and if granted can be used for analysis and discovery science31,32,
datamining or creating new signatures of clinically relevant
questions33.

Our adjusted dataset is an ideal base for tasks such as subtype
discovery34 or inference of regulation networks35 where the sig-
nals that should be preserved are not specified. Albeit, tasks
involving a known factor of interest, e.g., creating gene sig-
natures36, performing differential37 or survival analyses38, can be
addressed using either the adjusted dataset that is already con-
trolled for technical variation, or if desirable, the unadjusted
dataset, using specific procedures that deal with the unwanted
variation simultaneously13–16. In both cases, our description of
technical variation will guide future analyses to decide which
additional factors should be taken into account. Not only for this
dataset, but also for the analysis of future large cohort studies
spanning long time periods for patient enrollment can this pro-
cedure be used as a guideline. The code that we provide is specific
to the MINDACT study, but could be easily recycled on new
datasets. The general pipeline described in Fig. 1 would remain
identical. We recommend to always check for potential sample
duplicates, and to inspect the raw data with some matrix fac-
torization approach such as principal component analysis. In
particular, we found it useful to rely on the stationarity of PCs as
a proxy to their association with technical factors that only

Fig. 5 Variation over time of the top three principal components and their association with technical and biological factors in the adjusted dataset.
With the principal component (PC) analysis we captured the largest proportion of variance across all arrays in the adjusted dataset. The top four PC
projections of the unadjusted data and the adjusted data cannot be compared one to one as consequence of the adjustment itself. PC scores for the 6688
patient samples after data adjustment were plotted against time to visualize the disappearing of time-localized variation. Each dot represents one patient
sample. The x-axis represents the number of days between January 1st of 2007 and the isolation date of the sample. The y-axis represents the projection of
the samples onto one of the top three principal components. Color intensity of the blue dots represents the value of the plotted signal, with high color
intensities corresponding to high signals (see “Methods”). The projections no longer show the fluctuations over time that were seen in the unadjusted data
in Fig. 3, indicating that the technical variance causing these fluctuations was adjusted for. The biological signals remain, as indicated by a blue color
intensity gradient along the PC (along the y-axis) that is especially evident for ER signal in the PC1 scores. ER estrogen receptor, PC principal component,
TP53 tumor protein p53.
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affected gene expression over a short time window (such as
automated labeling in our case, see e.g., Fig. 3). We then advise to
adjust for unwanted variation, and to quantify how well the
adjustment preserves known biological signals once this adjust-
ment has been performed. Technical factors affecting expression
over short time windows are unlikely to be confounded with
biological signals of interest, provided that the study was homo-
geneous along time. Regardless of the chosen method, they can be
explicitly adjusted for. By contrast, explicitly adjusting for other
technical factors could also discard important, yet undescribed
biological signals of interest. Instead, we relied on negative con-
trol genes to estimate unwanted variation factors, summarizing
both described and potentially additional unobserved sources of
technical variation, and shrank the effect of these factors to
preserve biological signals. Specific points of our pipeline could be
adapted, depending on the technology, existence of control
samples, or the availability of technical information on the
samples. The actual adjustment method is probably the most
technology-dependent element of the pipeline. The technique that
we used here is appropriate for microarray expression data.
Extensions to metabolomic data were recently introduced39.
Extension to count data, arising from sequencing and often
modeled by Poisson or Negative Binomial (NB) distributions, is
also possible. Gaussian linear models are typically used for
microarray intensities, allowing the presented algorithm to rely
on a least square objective, which can be derived as the maximum
likelihood estimator of the linear parameter in the Gaussian
model. Poisson or NB models would lead to different objectives,
which could be minimized using existing toolboxes assuming the
unwanted variation factor W was known. In the Gaussian case,
the maximum likelihood estimator of W can be obtained by
taking the singular value decomposition (SVD) of the expression
matrix restricted to its control genes. When dealing with
sequencing data, a simple option to estimate W is to use SVD on
the log-transformed counts for the negative control genes40.
Alternatively, methods to compute the maximum likelihood
estimate of W under non-Gaussian distributions were recently
introduced41 and can be used instead.

For the gene expression dataset described in this paper, we
expect the exceptional sample size and homogeneity of the data to
bring an unprecedented power to differential and survival ana-
lysis, to help reveal finer subtypes and create new genomic sig-
natures relevant to management of breast cancer.

Methods
Study samples
MINDACT patients. The MINDACT trial3,4, sponsored by the European Organi-
zation of Research and Treatment of Cancer (EORTC) and country-associated
clinical trial groups, enrolled women aged ≥18 years that were diagnosed with
histologically proven operable TNM stage I–II invasive breast cancer and 0–3
positive lymph nodes. Patients were eligible to enroll in the MINDACT trial when a
frozen tumor sample, containing at least 30% tumor cells, was available for gene
expression analyses by microarray. For further clinical eligibility and exclusion
criteria see Viale et al.42 and Cardoso et al.4. Patients were enrolled in 112 parti-
cipating institutions in nine European countries between February 2007 and
September 2011. Tumor samples were processed in Agendia’s central laboratory
(Amsterdam, The Netherlands). Subsequent MammaPrint test failure rate, defined
as the percentage of samples that did not finish the laboratory test procedure due to
quality control failure was 1.7%.

The MINDACT trial protocol was approved by the protocol review committee
of the European Organization for Research and Treatment of Cancer (EORTC) and
the ethics committee at each participating site. The trial was conducted in
accordance with the Declaration of Helsinki and good clinical practice guidelines.
A written informed consent was obtained from all patients4.

Control samples. Following diagnostic standards (FDA, ISO), multiple control
samples with previously defined MammaPrint scores were used as technical and
experimental controls within each batch run of samples. Data from these Mam-
maPrint control samples were continuously monitored in the clinical diagnostic
setting to ensure quality and safety10–12 and used for quality control assessment.

This included the use for positional monitoring of array hybridization to control
for potential mix-up of samples: control samples with known outcome were
hybridized in a certain order and positioned on the arrays within the patient
sample batches. During the time of the MINDACT trial three different Mamma-
Print low-risk controls and five different MammaPrint high-risk controls were used
for the purpose of assessment and control of technical variations of MammaPrint
procedures over time. The full-transcriptome data of the n= 562 control samples
were only used to support visualization of the results, e.g., to show that the bio-
logical signal was still present after removal of technical variation from the dataset
(see below and Fig. 4 and Supplementary Fig. 2).

Microarray
Microarray design. For the MINDACT trial, a full-transcriptome microarray design
was used that is based on Agilent’s 4 × 44 k format (Catalog #: G2514F). This
customized Agilent microarray (Agendia array 15746) was designed using anno-
tation from genome build NCBI35. The array was customized in such a way that
the MammaPrint 70 probes were added as well as additional Agendia features,
counting to a total of 40,793 unique probes targeting 28,655 transcripts. The 40,793
unique probes are a combination of Agendia probes and Agilent human genome
catalog probes available at the time of platform design (January 2007).

Sample preparation and microarray hybridization. RNA was isolated from a
patient’s fresh frozen tumor sample and was amplified as described previously11.
As shown in Fig. 1a, one of the FDA/QSR-compliant technical changes involved
the use of two different batches of RNA-Bee isolation reagent (Tel Test; RNA-Bee
batch 1 and RNA-Bee batch 2) and one batch of Qiazol (Qiagen). A manufacturer’s
change in the RNA-extraction solution RNA-Bee (that was not communicated by
the manufacturer) caused a temporary shift in the MammaPrint risk calculation
(for more information see Cardoso et al.4) from May 24, 2009, to January 30, 2010,
at which time the issue rectified with the use of a new reference RNA (see below).
All samples of study patients (n= 6693) were evaluated and passed all criteria for
RNA quality and RNA yield following the diagnostic MammaPrint assay-specific
quality control assessment.

Cy-dyes were directly incorporated into the cRNA during in vitro transcription.
A total of 750 ng of Cyanine-3 labeled patient sample RNA was co-hybridized with
a Cyanine-5 labeled standard reference (dual channel hybridization) to Agendia
array 15746 as described previously11. cRNA labeling was either performed
manually or automated by use of a robot (see Fig. 1a). Arrays were subsequently
washed according to the Agilent standard hybridization protocol (Agilent Oligo
Microarray Kit, Agilent Technologies) and scanned with a dual laser scanner (type
B, Agilent Technologies). During the study, three different reference samples were
used for co-hybridization with the patient samples (see Fig. 1a). The use of MRP
(Mamma Reference Pool11) and BP1 (Breast Pool 1), both locally assembled
reference pools, was followed by the use of a commercially available UHR
(Universal Human Reference; Agilent). MRP and BP1 consisted of pooled and
amplified RNA of >100 primary breast tumors11. Samples used for MRP were
isolated using RNA-Bee batch 1 and samples that were used to create BP1 consisted
of samples isolated with RNA-Bee batch 2 (see Fig. 1a). BP1 was used to rectify the
change in RNA-extraction solution.

Quality control. Agendia maintains a quality system in compliance with inter-
national regulations as FDA and the EU in vitro diagnostics directives.

Feature extraction. RNA expression was measured by quantifying fluorescent
intensities of the scanned array TIFF-images using Feature Extraction software,
version 9.5 (Agilent Technologies). Subsequent within-array normalization was
performed with the lowess correction method using a linear polynomial (locally
weighted linear least square regression), which was the default method for nor-
malizing dual color Agilent microarrays. Expression values are presented as the
log10-ratio expression values (reverted to sample/reference format). Positive and
negative controls were excluded, and only positive and significant signals were used
without background correction in the normalization procedure.

Probe quality. Only fluorescent intensities of high-quality probe measurements
were used in the analysis pipeline. Probe quality was calculated by the standard
Feature Extraction Software using the built-in “universal error model”, and indi-
cated by several factors including p-values, errors and non-uniformity indicators,
and are provided in the individual sample text files.

In case the normalized red or green signals are ≤0 then the normalized Log10-
ratios were excluded from further analysis as these probes have a high inaccuracy
level due to the negative value in either channel. Some probes were flagged as
“Feature Non-uniformity Outliers” (FNO) in the individual sample text files and
subsequently excluded from further analysis. Probes that are labeled by the
software as FNO usually have a high and uneven intensity. This can be caused by a
scratch, contaminant, or some manufacturer imperfection on the array, which can
cause deviating ratios and is an indicator of poor quality.

Overall full-transcriptome hybridization quality of array. Hybridization quality was
assessed, and five study samples were excluded from further analysis based on poor
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quality full-transcriptome hybridizations (non-uniform hybridization). Diagnostic
MammaPrint readout was not affected and passed the stringent quality assessment
that was FDA/QSR controlled for accurate MammaPrint readout11,12. As a result,
the full-transcriptome dataset contains data for 6,688 patients.

Data preparation
Missing value imputation. For the 6688 patient dataset containing 40,793 probes,
the number of missing values was determined. A missing value is the result of
probes flagged by a poor quality as described above.

During the MINDACT study three different standard references were used (see
Fig. 1a and above) in the dual channel hybridization (patient+ reference sample).
However, by using three different reference samples, the expression values
(presented as Log10-ratios) are not meant to be compared across the different
references. Expression values were calculated based on the ratio of the sample-/
reference-intensities and can give different log10-ratios. The number of missing
values was determined and imputed for the three references (MRP, BP1, UHR)
separately.

Probes missing in >20% of any of the three groups of patient arrays defined by
their reference samples were omitted from further analysis (n= 5182) and no
values were imputed, leaving 35,611 probes per patient for further analysis. Missing
values were imputed for the remaining probes using a k-nearest neighbor approach
based on other probes that behave similarly across the patient samples43. A
separate imputation procedure was done specifically for control arrays (see
Supplementary Fig. 1 for more information). Subsequently, a mean centering of the
gene expression values was performed to have a mean of zero across each set of
samples with the same reference, to allow for combining the three sets of samples
with different references for further analyses.

Analysis of sample correlations. The processing of tumor samples from 6688 breast
cancer patients treated in one of the 112 institutes located in nine countries
involved a large number of operational steps, thereby increasing the possibility of a
potential sample mix-up. Control samples with known outcome were added to
each MammaPrint run and hybridized in a certain order to be able to identify
potential sample mix-ups. However, possible duplication of samples cannot be
identified using these positional controls. To assess whether a multiple of the
reported arrays corresponded to the same sample or another sample with a highly
similar profile, we studied pairwise Pearson correlations among all arrays. These
correlations were computed across the probes that were not missing in any of the
arrays (n= 4703 probes) to avoid potential introduction of artifacts from the
missing value imputation procedure. To determine if a high correlation was caused
by repeated processing of the same sample we reprocessed available RNA for a
selected number of samples. Their MammaPrint indices were compared to the
original indices (discussed in Supplementary Note 1).

Calculation of biological signals
Calculating gene expression signals from probe combinations. Throughout the
paper, we measure the association between principal components and expected
biological signals related to the main breast cancer subtypes. The estrogen receptor
(ER) signals were calculated as the average of log10-ratios for all probes corre-
sponding to ESR1, FOXA1, SCUBE2, and PTPRT genes. Claudin (CLDN) signals
were calculated as the average expression of all probes corresponding to CD14,
VAV1, IL6, and VEGFC genes. Erb-b2 receptor tyrosine kinase 2 (HER2) signals
and breast cancer gene signals were calculated as the average expression of all
probes corresponding to the HER2,or BRCA1, and BRCA2 genes, respectively.

Proxy for ER and HER2 immunohistochemistry status. TargetPrint (TP)-readout
(log10-ratios of dedicated ER and HER2 probes30) of the unadjusted dataset was
used as a proxy for the immunohistochemical staining. This TP-readout showed a
concordance of 95% with the immunochemistry status of the unadjusted samples
after binarization in Roepman et al.30. Viale et al.42 showed in the first 800
MINDACT samples that the concordance between TargetPrint and immunohis-
tochemistry was 98%, and 96% for ER, and HER2, respectively. Therefore, TP-read
out is a suitable substitute for the immunohistochemistry status that was not
available to us at the time of analyses.

Statistics and reproducibility. Analyses and visualization of data was performed
in R (version 3.4.4, https://www.r-project.org/44).

We used principal component (PC) analysis45,46 to assess the effect of identified
known technical changes and expected biological variation on mRNA expression
values in the unadjusted and the adjusted dataset. PCs were computed over the
patient samples across the 35,611 probes represented by their Log10-ratios.

Pearson correlations and canonical correlations29 were used to evaluate the
association between technical or biological factors and the four PCs. Canonical
correlations are a multivariate generalization of Pearson correlations that define an
association between sets of variables rather than single variables. Although all
associations were significant, we chose not to provide p-values. Indeed, the large
sample size of this study makes all observed associations significant, even for very
small size effects. We are interested in identifying factors, which explain a large
proportion of the variance rather than testing for non-zero associations. Since we

do not perform any inference, we do not assess the normality of the factors, which
is only a necessary condition to build valid inference procedures, not to use
Pearson correlations as a measure of linear correlation. It is important however to
assess that these associations are not affected by outliers, and that no major non-
linear effect is missed. The scatter plots that we provide and discuss in the
manuscript show no evidence of strong outliers. We specifically address some cases
of notable non-linear associations, such as the peaks in the PC projections (section
Analysis of the unadjusted expression data (step 2)), and the association between
PCs and HER2 expression (section Analysis of the adjusted dataset (step 4)).

Analyses for visualization
Color encoding of continuous biological or technical signals. We encoded biological
signals and labeling yield using shades of blue in Figs. 3–5 (and Supplementary
Figs. 3 and 4). For each encoded variable, all values were sorted, and each array was
assigned a shade corresponding to its rank, with darker shades corresponding to
larger values. An important consequence of using the ranks is that the proximity of
colors cannot be translated into a proximity in values. This is a minor concern for
our figures since we are interested in visualizing trends and clusters, not comparing
pairs of arrays. We chose ranks over values because the latter was not always able to
represent the full range of the variable as a single outlier value would make all the
other arrays have similar color intensities.

Data adjustment for removal of unwanted technical variation. Normalization
was performed to remove technical, and not biological, variation. Data were
adjusted using a procedure derived from the “naive random effect” version of
remove unwanted variation (RUV) described by Jacob et al.27. RUV relies on a
linear model of the expression data, including a factor of interest X and k unwanted
variation factors stored in a matrix W:

Y ¼ XβþWaþ ε;

where (α, β) are the effects of the factor of interest and unwanted variation,
respectively, and ε is a Normal centered random variable. To estimate W, RUV
methods rely on negative control genes, defined as genes whose expressions are not
expected to be influenced by biological signals of interest. Jacob et al.27 describe a
procedure to estimate Wα when X is unobserved, e.g., to adjust a dataset for future
analyses with no specific factor of interest in mind. The “naive” procedure uses Xβ
= 0. The “naive random” method additionally does a ridge regression of the gene
expression matrix Y against these k factors instead of an ordinary regression to
estimate α. It refers to the fact that ridge regression provides a maximum a pos-
teriori estimator of α when it is modeled as a random effect. Ridge regression limits
the amount of variation captured by α, which is crucial if there is a risk that W is
confounded with some unobserved factor of interest X, especially in the naive
procedure, which models Xβ= 0. In this study, we further regress the expression
matrix against a few identified technical factors stored in a matrix Z: specifically, Z
includes an interaction factor representing all combinations of reference RNA and
isolation reagent (as represented in Fig. 3c), and another one representing all
combinations of isolation reagent and automated labeling. We are confident that
the time-localized variation caused by these factors is not confounded with bio-
logical signals. Consequently, we choose not to ridge the regression against these
two time-localized factors, as we want to remove their effect entirely from the data.
We rely on the estimatedW to capture all sources of unwanted variation, which are
not modeled in Z, including the non-time-localized technical variables described in
the manuscript and other potentially unobserved technical variables. Since its effect
α is estimated by ridge regression, the procedure only adjusts for a fraction of non-
time-localized unwanted variation, leaving us the opportunity to control this
fraction and assess that it does not affect known signals of interest. Formally, we
jointly estimate unwanted variation by solving:

minα;γ Y �Wa� Zyk k2 þ v αk k2;
which has a closed form solution, then remove the estimated Wα+ Zγ term from
Y.

Of note, Fig. 3 and Table 1 discuss the effect of the automated labeling factor. By
contrast, our matrix Z represents the interaction of automated labeling with
isolation reagent: as the two groups of arrays for which automated labeling was
used were isolated at different time periods and with different reagents, the latter
was more suited for removing the time-localized effect on gene expression.

We utilized the 1000 genes of lowest interquartile range as negative controls.
We used k= 100 and tried several values of the ν parameter of the ridge regression
by exploring a grid of values nu.coeff (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 10) multiplied
by the squared largest singular value of W. We then picked the nu.coeff, leading to
the largest correlation between TargetPrint–ER30 (see previous section) computed
before adjustment and the corresponding ER probe after adjustment (nu.coeff=
0.2). We emphasize that the TargetPrint readouts were only used to choose the
amount of variance removed, not to determine the unwanted factors W and Z in
our adjustment procedure. A more detailed explanation of the choice of nu.coeff is
provided in Supplementary Note 3.

The data adjustment procedure was applied to the 6688 patient samples but
without the 562 control samples as the latter could bias the estimation. The data of
the 562 control samples were adjusted separately using the same procedure, except
that their W matrix was estimated on both patient and control samples, as we
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wanted the adjustment of the control sample data to be closer to the one applied to
the patient sample data. By construction of the Z matrix, both the 6688 patient
sample data and 562 control sample data are mean centered by the adjustment
procedure.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Both the unadjusted full-transcriptome dataset and the adjusted full-transcriptome
dataset of the 6688 patients, including probe annotation, as well as a list of the technical
factors per patient and TP-readout are available through the EORTC (https://www.eortc.
org/data-sharing/). The MINDACT clinical trial sponsor can also provide patient
characteristics and clinical outcomes. Following a successful data request procedure, the
EORTC can share all or a selection of the full-transcriptome and/or clinicopathological
data for future translational research.

Code availability
A code reproducing our analysis is available along with this manuscript and is also
available through the EORTC (https://www.eortc.org/data-sharing/).
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