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Abstract: Biosensors for proteins have shown attractive advantages compared to traditional
techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection
techniques, various immunosensing platforms have been reported on basis of the specific recognition
between antigen-antibody pairs. In addition to profit from the development of nanotechnology
and molecular biology, diverse fabrication and signal amplification strategies have been designed
for detection of protein antigens, which has led to great achievements in fast quantitative and
simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination
of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will
categorize recent immunosensors for proteins by different detection techniques. The basic conception
of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are
introduced. Since antibodies and antigens have an equal position to each other in immunosensing,
all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations.
Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory
diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an
evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective
space for future antibody-detection-based disease serodiagnosis.

Keywords: immunoassay; biosensors; protein biomarker; serodiagnosis

1. Introduction

The laboratory immunoassay is an extension of immunological techniques for laboratory
diagnosis. It was developed as a consequence of the discovery of various immune substances. In 1894,
J. Bordet, a Belgian serologist reported the discovery of alexin [1], which tremendously supported
the development of humoral immunity. Based on an in vitro antigen–antibody reaction, serology
further formed and developed, and gradually became mainstream in immunology development in the
following decades. Basically, according to the various immunological mechanisms and techniques,
targets of laboratory immunoassay can be categorized into two groups: (1) immune substances,
such as active cells, antigens, antibodies, alexins, cytokines, and cell adhesion molecules; (2) trace
substances, such as hormones, enzymes, proteins, and cyclic drugs. In clinical laboratories, qualitative
and quantitative determinations of these targets are carried out using proper analytical methodologies,
providing significant references for clinical diagnosis. Serodiagnosis, as a noninvasive diagnosis
path, compared to tissue biopsy or radiology diagnosis, has shown a competitive status for clinical
precaution, especially for early diagnosis, recurrence, and metastasis of tumor, the real-time evaluation
of disease development, and curative effects.
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As known, antibody expression in human blood can be considered as an indicator of disease
generation, development and recovery [2–4]. In some circumstances, serum antibodies show better
stability and higher concentrations in early stages than the relevant original virus, antigens, and cells [5]
and thus could be considered as more efficient biomarkers for disease diagnosis and real-time
monitoring. The determination of a specific antibody or combination of several types of antibodies
could provide strong evidences of disease existence. Up to now, serodiagnosis has always been the
easiest, the most effective, and the most popular analysis method for HIV infection [6]. Between 1968
and 1972, the World Health Organization (WHO) and the International Federation of Immunological
Societies (IUIS) decided that a series of globulins, which possessed activity or chemical structures
similar to antibodies, were collectively defined as immunoglobulin (Ig). For some infectious diseases,
IgM shows an acute increase in early stages of infection, usually around 1 week, and can be used
as a biomarker for early laboratory diagnosis [7,8]. The specific IgG shows an increase about four
weeks after infection and lasts for the long term, years sometimes, and could be used as a biomarker
for the evaluation of recovery [9,10]. In addition, the Igs are always involved in hypersensitivity
of the body [11,12]. For example, IgE can induce type I hypersensitivity, and specific IgEs are
detected for the determination of allergens. Autoimmune diseases (AIDs) are a series of diseases that
occur as a result of the loss of immunologic tolerance to self-antigens, showing various cases with
common characteristics [4]. Each AID has a characteristic antibody spectrum that can be objectively
evaluated as an indicator for disease prediction, early diagnosis, and prognosis [13]. Furthermore,
antibody immunoassays based on various techniques have also been widely used for vaccine immunity
evaluation in clinical laboratories [14]. Thus, serological antibody analysis has shown great significance
for clinical laboratory diagnosis.

According to the biological properties of targets, several methodologies have been used in
laboratory immunoassays [15–17], such as precipitation-reaction-based assays, radio-immunoassays,
fluorescent immunoassays, enzyme-based immunoassays, and chemiluminescent (CL) immunoassays.
Especially, enzyme-linked immunosorbent assay (ELISA)-based methods are the most widely used
in clinical laboratories [18]. Although these heterogeneous-reaction-based methods have been
providing acceptable support for clinical diagnosis, antibody/antigen determination still requires
novel methodologies that are more applicable for early molecular event detection with better sensitivity
and easier operation [19]. Biosensors are bioanalytical devices integrating biorecognition elements and
suitable transducers, which could be further designed with various signal amplification strategies to
obtain extremely high sensitivity [2]. With plenty of advantages, such as strong specificity to targets,
rapid analysis, high accuracy, easy operation, and low cost, biosensors have expansive applications for
diverse targets, including cyclic drugs [20], proteins [21–23], nucleic acids [24–27], and cyclic tumor
cells [28–30]. Immunosensors have played a crucial role in the determination of tumor markers [31–33],
significantly improving early diagnosis and prognosis of various cancers. Molecular identification unit
is the basis of specific determination, which specifically recognizes and captures the target, and then
induces a series of physical or chemical changes. These changes could be converted to detectable optical
or electrical signals by the transducers. Modern electrical and optical techniques have shown unique
properties for the construction of biosensing platform. With a combination of diverse nanomaterials,
more and more novel biosensors have shown excellent properties, which can well meet the demands
of clinical diagnosis. Moreover, the portability of biosensors even further enables the development of
point-of-care (POC) devices [34], which is proficient for home use, as well as the continuous monitoring
of treatment efficiency.

In this review, we will focus on the development of biosensors for protein detection, including
fabrication procedures, combination of signal amplification, utilization of various detection techniques
and methodologies (Section 2). Protein biosensing platforms are always universal for all kinds of
proteins based on proper optimization. Antibody biosensors with potential applicability for clinical
diagnosis for the detection of biomarkers of infectious diseases and AIDs and for the evaluation of
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vaccine immunity are then summarized (Section 3). In the conclusion section, the development of
next-generation biosensors for serodiagnosis is briefly discussed.

2. Biosensors for Protein Immunoassays

To further improve the performances of biosensors for proteins, great efforts have been made
in fabrication procedures, supporting materials, signal amplification strategies, detection techniques,
and so on. In this section, typical techniques and methodologies for protein biosensing are summarized.
These strategies may be applicable for antibody detection in the following section.

2.1. Fabrication of Immunosensors

In order to develop a highly sensitive and specific immunosensor, a molecular recognition
element (MRE) with a high affinity must firstly be immobilized onto the sensing interface. Specific
antibodies/antigens [33,35] and aptamers [36] are two kinds of well-established MREs (Figure 1).
The antigen–antibody reaction is the basis of immunoanalysis in clinical laboratories, and modern
immuno-labeling techniques using highly sensitive substances as labels have further broadened
the scope of immunological techniques. In recent years, oligonucleotide aptamers have exhibited
high affinity and specificity, as well as high speed in selection, synthesis, and scale-up, which
has attracted great attention in terms of diagnosis and therapeutics [37–39]. These specific MREs
are firstly immobilized on the transducer’s surface as capture probes, and the target proteins
can then be specifically recognized by capture probes, linking to the interface of biosensors.
The recognition reaction may be accelerated by external driving forces, such as stirring and
electricity [40]. The transducer converts the biological response generated by the interaction of
specific recognition pairs into a measurable signal to the receptor [41].
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Figure 1. (A) The antibody works as an MRE to recognize and capture the specific antigen in
sandwich-mode immunosensing. (B) Antigen works as an MRE to recognize and capture the specific
antibody in sandwich-mode immunosensing. (C) Aptamer works as an MRE to recognize and capture
the specific protein.

Generally, to further increase the stability and reaction efficiency of biosensors, biocompatible
matrices are needed to immobilize capture probes and to provide the circumstances appropriate for
heterogeneous biological reactions [37,42]. Many nanomaterials have been used for the construction of
biocompatible matrices, and the matrices could also act as electron transfer media or tracing signal
emitters (Figure 2).
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Figure 2. (A) Quantum dots (QDs) acted as biocompatible matrices for the immobilization of alpha
fetoprotein (AFP) and photoactive materials to increase the photoelectrochemical (PEC) signals.
(B) Chitosan-modified magnetic oxide graphene composite (CS@Fe3O4@GO) worked as supporting
matrices for thrombin aptamer. Reproduced from [37,42] with permission from Elsevier.

2.2. Electrochemical (EC) Immunosensors

An efficient EC transducer matrix for a biosensing device requires specific characteristics, such
as fast electron transfer, high stability and surface area, good biocompatibility, and the presence of
specific functional groups, to facilitate biomolecule attachment. EC immunosensors have dramatically
developed in recent decades, showing high sensitivity, ease of operation and a low cost, and only
requiring a small dose of analytes [34]. Nanomaterial-based EC immunosensors have shown extensive
advantages, leading to a greater loading amount of MREs, a faster electron transfer speed, and a
more convenient combination of signal amplification strategies [2]. For example, Au nanoparticles
(NPs) [43,44], carbon nanotubes (CNTs) [21], and graphene [36] have been widely used to preserve
the activity of biomolecules and to enhance the electron transfer between redox species, increasing
sensitivity. In addition, modern EC immunosensors exhibit an excellent detection performance for
whole blood tests in a fast and simple way [31,45], with remarkable sensitivity and selectivity, offering
EC biosensors with a benefit for transition toward POC application [34].

Plenty of EC immunosensors have been constructed for early diagnosis with different EC
techniques. A cyclic voltammogram (CV)-based immunosensor using directly grown ZnO nanorod
(NR)–AuNP nanohybrids as supporting material for immobilizing antibodies as capture probes
(Figure 3) was developed for the specific detection of ovarian cancer antigen CA125, showing a limit
of detection (LOD) of 2.5 ng µL−1 under CV measurements [46]. These in-situ grown nanohybrids
provided an efficient means of immobilizing capture probes. Although the LOD was not extremely
high compared with other EC biosensors, these results were sufficient for the potential application for
clinical diagnosis with simple operation. Recently, viologen-single-walled CNTs (SWCNTs) hybrids
were synthesized for an enrichment in antibodies and enzymes and for an increase in electron transfer
between transducer and electroactive materials. Based on the dual amplification efficiencies, only a
trace sample was needed, and dramatically enhanced sensitivity for TGF-β1 cytokine detection was
achieved, with a linear range of 2.5~1000 pg mL−1 and an LOD of 0.95 pg mL−1 [21]. An immunosensor
for POC enterovirus 71 detection was proposed for both colorimetric and EC measurements, which was
proved to possess good performance for early diagnosis and control of the related epidemics [22]. Using
an AuNP-coated indium tin oxide (ITO) electrode as the substrate, a concentration of 1.0 ng mL−1

could be read directly with the naked eye, enabling POC application for virus detection. On the other
hand, CV-based determination in the same detection cell showed an LOD of 0.01 ng mL−1. Although
a lower LOD was found via CV measurement, colorimetric measurements that have an acceptable
resolution are more beneficial for potential POC applications. Besides CV, other electric techniques
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such as differential pulse voltammetry (DPV) [47] and square wave voltammetry (SWV) [48] have also
been widely used for protein immunosensing.

In clinical diagnosis, a small sample volume, a high sensitivity, and multi-channels for
simultaneous tests meet the potential requirements precisely. A disposable microfluidic immunoarray
device was designed for the rapid and low-cost detection of CA15-3 (Figure 4), a biomarker for breast
cancer, based on a double-sided adhesive card with a microfluidic channel and a screen-printed
array with 8 electrodes, as well as an inexpensive home cutter printer and some low-cost materials.
This device showed an LOD of 6 µU mL−1, requiring as little as 2 µL of serum samples and allowing
8-channel simultaneous detections [23].
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Figure 3. (A) SEM surface micrographs of ZnONR–AuNP nanohybrids from top view. Inset: Schematic
model of a ZnONR–AuNP nanohybrid immunosensor for CA125 detection. (B) Cyclic voltammograms
of ZnONR–AuNP-hybrid-modified electrodes immobilized with cystamine (Cyst), glutaraldehyde
(Glut), Ab, and 0.25 or 0.50 µg µL−1 of CA125 antigen. Reproduced from [46] with permission
from Elsevier.
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Figure 4. Construction of a disposable microfluidic immunoarray device: (a) working electrode;
(b) microfluidic channel and (c) reference and counter electrodes; (d) pattern and size of the working
electrode array; (e) the formation of the immunosandwich structure; (f) EC detection strategy;
(g) amperometric responses of CA15–3 standard solutions at −0.2 V vs. Ag/AgCl after the injection of a
mixture of H2O2 and HQ. Reproduced from [23] with permission from the American Chemical Society.

Besides antibodies/antigens, aptamers have also been widely used as capture probes for the
construction of immunosensors, named aptasensors, with good selectivity and stability. For example,
based on bridged rebar graphene, a novel label-free aptasensor was built for pathogenic bacteria
E. coli O78:K80:H11 detection using a screen-printed electrode and an impedance detection
technique [36]. The specific anti-E. coli DNA aptamer with Kd~14 nM was immobilized on a



Sensors 2017, 17, 2805 6 of 23

bridged-rebar-graphene-nanostructured electrode and used as a capture probe, showing an LOD
as low as ~10 cfu mL−1.

To enhance detection sensitivity, various signal amplification strategies have been combined
with biosensing platforms [2,21,32,33,43,44]. For example, a dual signal amplification strategy was
employed in fabricating ultrasensitive EC immunosensor for alpha fetoprotein (AFP) detection [32].
A ZnONR/AuNP-hybridized reduced graphene nanosheet was utilized to significantly increase the
loading capacities of Ab1. Then, a horseradish-peroxidase (HRP) bioconjugated detection antibody
(Ab2)-functionalized Au@ZnO composite increased the amount of peroxidase-like catalytic activity,
thus largely enhancing the response signals.

2.3. Photoluminescent (PL) Immunosensors

The analytical performance of PL immunosensors, similar to that of EC biosensing, has been
largely improved by a combination of nano-techniques [33,35,49,50]. Lima et al. [33] reported a sensing
platform for an anti-hepatitis C virus (HCV) antibody using YVO4:Eu3+ luminescent NPs as a PL
probe (Figure 5). The peptide NS5A-1 derived from HCV NS5A protein together with the NPs was
immobilized layer by layer (LbL) onto silk fibroin, by which the anti-HCV antibody was detected in
the range of 0~0.01 µg mL−1. The sensing platform showed advantages of easy operation and high
sensitivity. However, the platform lacked a discussion of sensing mechanism and selectivity, which
limited the extension application of the immunosensor. Bhatnagar et al. [35] designed a “switch off”
Förster resonance energy transfer (FRET)-based biosensor using graphene quantum dots (GQDs) as
a donor for early detection of heart attacks. In the presence of the target cardiac Troponin I (cTnI)
antigen, the FRET path was blocked, and the PL signal of the GQDs then recovered with the increase
in target concentration, showing a linear response to cTnI from 0.001 to 1000 ng mL−1. The rapid
detection was also well catered to the clinical detection requirements of the target cTnI.
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Figure 5. Schematic representation and PL spectra of the as-prepared biosensor. The LbL film of
SF/NS5A-1+YVO4:Eu3+ NPs showed specific recognition in the presence of anti-HCV antibodies.
PL spectra obtained for the LbL film containing five bilayers of fibroin/NS5A-1+YVO4:Eu3 NPs in the
presence of different concentrations of anti-HCV. Reproduced from [33] with permission from Elsevier.

With the assistance of various nanostructures, PL immunosensors with luminophores immobilized
on proper substrates showed a much higher detection sensitivity than traditional detection systems
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in aqueous solutions. For example, a rapid, sensitive, and low-cost PL immunosensor for the
determination of aflatoxin B1 (AFB1) was developed [49] based on porous silicon covered by a
thin layer of gold, where anti-AFB1 acted as an MRE. The crystalline AuNPs uniformly coated the
surface of the porous silicon pores to form an Si/Au structure. The immunosensor was tested in a
wide range of AFB1 concentrations, from 0.001 to 100 ng mL−1. A PL biosensor for grapevine virus
A-type proteins (GVA-antigens) was developed based on ZnO thin films deposited via atomic layer
deposition (ALD) [50]. The GVA-antigen detection was performed via an evaluation of the changes
and behavior of the corresponding luminescence band. The sensitivity of the as-formed label-free
biosensor showed a linear range from 1 pg mL−1 to 10 ng mL−1.

2.4. Photoelectrochemical (PEC) Immunosensors

PEC biosensing couples photoirradiation and EC detection techniques together and benefits from
simple operation, inexpensive equipment, and good portability, providing a novel analytical strategy
for protein analysis and attracting worldwide attention [51]. Owing to the different energy forms of
the excitation source and readout signal, the PEC method, compared with traditional EC methods,
shows a lower background and a higher sensitivity [52]. Nanostructures usually possess preferable
thermal and chemical stabilities and have been widely used as photoanodes in PEC sensors [52].
In order to determine comprehensive design guidelines for more advanced PEC sensors, the previous
review categorized recent PEC biosensor examples into three signaling principles [53], i.e., reactant
determinants, electron transfer, and energy transfer. To further increase the photocurrent, many
nanomaterials and nanostructures were incorporated into the construction of PEC biosensors to
accelerate charge transfer [38,51,54–56] and increase the accessible surface [57].

Semiconductors have been widely used in PEC immunosensors, exhibiting a high detection
sensitivity and an LOD at the pg mL−1 level when combined with proper signal amplification
strategies. Zhang et al. [51] reported a PEC immunosensor based on Mn-doped CdS (CdS:Mn
QDs) on graphitic carbon nitride (g-C3N4) nanosheets as a photoactive material for the sensitive
detection of a prostate-specific antigen. The signal was amplified through DNAzyme concatamers on
AuNPs accompanying enzymatic biocatalytic precipitation, showing an LOD as low as 3.8 pg mL−1.
These nanohybrids highly improved sensing sensitivity and showed results comparable to those
attained via ELISA methods. A visible-light-driven PEC method for the detection of shrimp allergen
tropomyosin was constructed using g-C3N4 and TiO2 as photoactive nanomaterials [38]. Ascorbic acid
worked as an electron donor, and Ru(NH3)6

3+ was adsorbed on the specific aptamer to enhance the
photocurrent signal (Figure 6). After recognition between tropomyosin and the capture aptamers was
established, the absorbed Ru(NH3)6

3+ were released from aptamers and prevented the electron donor
from scavenging photogenerated holes to the photoactive-material-modified electrode, based on which
the quantitative detection of the target obtained a concentration range of 1~400 ng mL−1, with an LOD
of 0.23 ng mL−1. This sensing process could be performed in the absence of antibodies and enzymes,
overcoming the drawbacks of the clinically used ELISA method for tropomyosin detection. A p-type
semiconductor, p-CuBi2O4, was used as a photocathode with hemin as the photocurrent enhancer to
design a split-type PEC immunosensor for AFP detection [54], where AuNPs were immobilized on the
fluorine-doped tin oxide electrode as a front contact of p-CuBi2O4 to enhance the efficiency of charge
separation. The hemin-based G-quadruplex was labeled on the AuNP and acted as the signal probe,
showing a wide linear dynamic range from 50 pg mL−1 to 20 ng mL−1, with an LOD of 14.7 pg mL−1.
Neto et al. [55] reported a PEC platform for the immunodiagnosis of canine leishmaniasis using
two kinds of peptides from two different proteins, and high specificity and selectivity toward the
recognition of L. infantum antibodies were demonstrated. The sensing platform was firstly constructed
by a double-layer electrodeposition of ZnO and CdS QDs, providing a more sensitized photocurrent
response. The immunosensor was able to discriminate between positive and negative canine serum
samples at low cost. Recently, a PEC immunosensor based on CdAgTe QDs and dodecahedral AuNPs,
stabilized by ionic liquid, was fabricated for the specific detection of cTnI [56]. Under the enhancement
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of AuNPs, the photocurrent showed a more than 10-fold amplification. The relative photocurrent
variation upon the formation of the antibody–antigen complex was used for quantitative detection.
The PEC immunosensor showed a relative photocurrent variation directly proportional to the logarithm
of cTnI concentration between 5.0 pg mL−1 and 20.0 ng mL−1, with an LOD of 1.756 pg mL−1.
Ge et al. [58] proposed an interesting PEC technique using CL as the internal light source for a sandwich
immunoassay of CA 125. Hybrids of N-aminobutyl-N-ethylisoluminol, HRP, and CA 125 antibodies
were immobilized on graphene oxide and showed excellent CL activity. The ZnONRs grew on a
reduced-graphene-oxide-modified paper working electrode with the deposition of CdS QDs, resulting
in an enhanced excitation and photo-to-electric conversion efficiency. The immunosensor exhibited a
linear range from 5.0 × 10−4 to 500 U mL−1, with an LOD of 2.0 × 10−4 U mL−1.
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As is well known, many cancers show more than one tumor marker overexpressed in the serum
of a patient, so the simultaneous and accurate testing of multiple tumor markers may improve
the diagnosis of certain types of tumors. A light addressing strategy-based label-free PEC sensing
platform was designed for multiple tumor marker detection at the same time on a single electrode [59]
(Figure 7). Uniform photovoltaic material Bi2S3 with a high conversion efficiency in visible light ranges
was firstly modified on an ITO electrode by a novel two-step constant potential deposition method.
By immobilization of three specific antibodies on the sensor interface, the PEC immunosensor achieved
rapid and sensitive simultaneous detection for AFP, carcinoembryonic antigen (CEA), and cancer
antigen 19-9 (CA19-9), showing very similar analytical performances, with calibration ranges of
0.01~100 ng mL−1 for CEA and AFP and 0.1~1000 U mL−1 for CA19-9.
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2.5. Electrochemiluminescent (ECL) Immunosensors

ECL is a process that converts EC energy to radioactive energy. A coreactant-type ECL process
involves the production of reactive intermediates from the reaction between luminophores and
appropriate coreactants at the surface of an electrode under a certain potential [60]. The ECL emission is
then produced by the excited states obtained from intermediate reaction under a variety of conditions.
With the advantages of a lower background signal, a higher sensitivity, and a strong tolerance against
interferences, ECL-based biosensors have been widely used for immunoassays in recent years. Based
on traditional coreactant–ECL systems of Ru(bpy)3

2+ and its derivatives/ammonium salt [61,62]
and luminol/H2O2 [63], ECL biosensors have been constructed for various targets. Due to their
excellent stability, their wide application range of pH, and their EC reversibility, Ru(bpy)3

2+-based
ECL immunoassay systems have been widely used in clinical laboratory diagnoses.

Recently, QDs [64,65] have shown competitive ECL properties for biosensing, with approaches
of further bio-functionalization and tunable ECL emission potentials tuned by surface
microstructures [66]. As the ECL emission from pure QDs, compared to the conventional ECL emitters
of Ru(bpy)3

2+ or luminol always show relatively low intensity, some effective signal amplification
strategies for QDs based ECL have been selected to overcome this limit and further promote
their applications in analytical fields [65,66]. Because of their combination of various QDs [66] or
QDs–Ru(bpy)3

2+–luminol ECL systems [67–69], sensing platforms for multiple analytes have attracted
great attention for potential clinical laboratory diagnoses. Furthermore, immunomagnetic-ECL sensing
platforms have also been developed by loading nano-ECL luminophores or recognition elements
inside the magnetic porous materials, providing an effective separation and enrichment tool for signal
amplification with very easy operation [67,68].

Increasingly, rather than developing new mechanisms or signal amplification strategies for
single target analysis, ECL immunosensors have been used for the simultaneous detection of
multiple targets. These achievements are more consistent with clinical application requirements,
so fundamental research has moved on to practical applications. An ECL potential-resolution
dual-target immunosensor was constructed by using two kinds of QDs for the simultaneous detection
of AFP and its subtype, AFP-L3. A difference in ECL peak potential of 360 mV was produced via
different surface microstructures (Figure 8). The immunosensing was completed in one CV scan,
showing a detection linear range of 3.24 pg mL−1~32.4 ng mL−1 and 1.0 pg mL−1~20 ng mL−1 for
AFP and AFP-L3, with LODs of 3.24 pg mL−1 and 1.0 pg mL−1, respectively [66]. Babamiril et al. [67]
reported a potential-resolution ECL immunoassay for the simultaneous determination of tumor
markers AFP and CEA, using QDs and luminol as signal probes. Polyamidoamine dendrimer
(PAMAM) and magnetic Fe3O4–SiO2 beads were used as the carrier for immobilizing CdTe@CdS
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QDs and luminol, forming a dual signal amplification strategy. In the presence of H2O2, ECL signals
were generated at potentials of −1.12 V and +0.6 V (vs. Ag/AgCl), respectively. Both tumor markers
could be detected by this method with extremely high sensitivity in the concentration range of
0.25 fg mL−1~20 pg L−1, with an LOD as low as 0.10 fg mL−1. Another multiplex ultrasensitive ECL
immunoassay for the simultaneous determination of CA 15-3 and CA 125 was constructed using
QDs and Ru(bpy)3

2+ as ECL probes via a wavelength-resolution mechanism [68]. In the presence
of tripropylamine as a coreactant, ECL emission occurred at +1.2 V (vs. Ag/AgCl) and could be
split into two different wavelengths of 500 and 620 nm, respectively. The immunosensor also used
PAMAM and magnetic Fe3O4–SiO2 beads as the carrier to realize dual signal amplifications, showing
a wide linear range of 1 µU mL−1~1 U mL−1 and 0.1 mU mL−1~100 U mL−1, with very low LODs of
0.1 µU mL−1 and 10 µU mL−1, respectively. In a recent work, Zhou et al. [69] reported a triple-channel
ECL immunosensor for the simultaneous determination of latent tuberculosis infection markers based
on three ECL emitters—CdS QDs, carbon QDs, and luminol—integrated together onto AuNPs and
magnetic beads. Interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin
(IL)-2 specific antibodies were separately immobilized on three spatially resolved areas of a patterned
ITO electrode to capture the corresponding targets, and the ECL intensities reflected the concentrations
of IFN-γ, TNF-α, and IL-2 in the concentration range of 1.6~200 pg mL−1.
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Figure 8. (A) ECL curves of simultaneous scan of DMSA-CdTe QDs and TiO2-GSH-CdTe QD
composites; individual scan of (a) DMSA-CdTe QDs, (b) TiO2-GSH-CdTe QD composites, and (c)
modified ITO electrodes. Inset: Continuous cyclic simultaneous scans of DMSA-CdTe QDs and
TiO2-GSH-CdTe QD composites modified ITO electrodes. (B) Linear calibration plots for detection of
AFP-L3 (left) and AFP (right). (C) Sandwich immuno-structure of HRP-labeled antibody–antigen
biotinylated antibody on the immunosensor and detection procedures of analytes (green arrow:
luminescence; gray arrow: quenching). Reproduced from [66] with permission from the American
Chemical Society.

2.6. CL Immunosensors

CL detection does not require external light sources but a simple optical system, which has
low background signals and high sensitivity, simple equipment and operation, wide linear range,
good reproducibility, and no pollution [70]. Luminol/H2O2 luminescence is the most widely used
system for CL detection [71]. As one of the most sensitive means of detection, CL detection has been
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widely used for fluidic immunoassay (FIA) [70–72], forming a combined technique of CL-FIA that has
high sensitivity due to the CL and high selectivity due to the FIA. Moreover, CL detection is also a
benefit for the construction of ultrasensitive immunosensors [3,17,37].

A CL-based fiber-optic biosensor was constructed for the detection of crimean-congo hemorrhagic
fever (CCHF) IgG antibodies [3] and is 10 times more sensitive than the colorimetric ELISA method.
The capture biomolecules were firstly immobilized at the enface tip of an optical fiber and worked via
sandwich mode for detection. The fiber-optic immunosensors with a small size and relatively high
detection sensitivity present an alternative means for POC applications. The analytical performance
was evaluated by the detection of sera from two CCHF patients in Turkey. The detection results
indicated that small amounts of antibodies could be detected at early stages of infection, providing a
capacity for use as a POC diagnostic system of CCHF. Aptamers also enable good performances in
terms of high stability and detection sensitivity. Sun et al. [37] reported an ultrasensitive CL aptasensor
prepared for thrombin detection based on iron porphyrin catalyzing luminol/H2O2 luminescence,
showing a linear concentration range of 5.0 × 10−15~2.5 × 10−10 M, with an LOD of 1.5 × 10−15 M.

Zong et al. [17] developed a CL-array-based disposable immunosensor for the determination of
cardiac troponin T (cTnT). AgNPs loaded with guanine-rich DNA sequences and capture antibodies
functioned as tracing tags that could catalyze the CL reaction of a luminol-p-iodophenol/H2O2

system after the formation of a sandwich immunocomplex on the array. The method showed a wide
linear range from 0.003 to 270 ng L−1, with an LOD down to 84 fg L−1 and a throughput as high as
44 tests h−1.

2.7. Immunosensors Based on Other Techniques

Besides the methods described above, surface plasmon resonance (SPR) [73–76], microcantilever
(MCL) [77,78], and piezoelectric [79–81] techniques have also been used for the construction of
immunosensors. Subject to the drawbacks of the techniques themselves, such as interference and
the low applicable range, immunosensors based on these techniques are not as widely used as those
immunosensors mentioned above.

Briefly, SPR is an optical detection technique based on reflection and refraction, showing highly
stable biomolecules and high light intensity, which is beneficial for immunosensing. In the SPR sensing
system, one side of the chip is modified with capture probes, and the other side contains a thin metal
film, usually made of gold. When the solution containing targets flows by, the mass of the molecules
bound on the gold film varies, leading to a proportional change in SPR angles. As there are no other
procedures such as labeling required for the sensing system, SPR has a significantly easier process than
other optical techniques. Magneto-plasmonic NPs have also been employed to enhance the signals of
SPR spectroscopy to obtain higher detection sensitivity [76].

MCL-based biosensors are also gaining importance for bioanalysis. When targets such as
antibodies or antigens bind to the cantilever surface, there will be a change in the resonance frequency
and amplitude of the cantilever, which is the basis for biosensing. MCL-based sensors generally
operate in two modes: static mode and dynamic mode. The dynamic mode detects the change of
resonant frequency caused by mass-loading, with an ultrahigh sensitivity ranging from femtogram to
attogram, which is much better than that of the static mode.

Quartz crystals are the most commonly used piezoelectric transducers in biosensing
applications [81]. The produced charges by piezoelectric transducers are in direct proportion to the
surface mass variation. The sensitivity of piezoelectric biosensors depends on the oscillating frequency
as well as the area of the electrodes on the resonator. Quartz crystals are usually manufactured for
frequencies from a few tens of kilohertz to tens of megahertz, which is related to the thickness of the
resonator, and are a benefit for the construction of immunosensors as quartz crystals are conducive to
label-free, low-cost, and direct detection.
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3. Potential Applications of Antibody Biosensing for Clinical Laboratory Diagnoses

Due to the advantages obtained from the combination of various nanomaterials, detection
techniques, and signal amplification strategies mentioned above, biosensors for antibody detection
have shown unique specificities and high sensitivities toward the corresponding analytes. This has
allowed for the analysis of highly complex matrices such as blood and other physiological fluids with
easy operation and high accuracy.

3.1. Biosensors for Markers of Infectious Disease

Because of the WHO’s goal to increase the global capacity to monitor and control the major
epidemics and pandemic threats, sensitive, rapid, and predictable detection of specific antibodies by
biosensors has become particularly important for clinical serodiagnosis [3,5,6,55,82–90].

An electrochemical impedance spectroscopy (EIS)-based biosensor was reported to detect
antibodies against plasmodium vivax, a causing agent of malaria [82]. The biosensing procedures for
this method of detection can be done within minutes, and only a drop of unmodified blood serum
was needed. Using the specific antigen as an MRE and CNTs to enhance the electric properties,
electrical changes could be measured at antibody concentration as low as 6~50 pg L−1, and as high
as ~70 µg L−1. Recently, another EIS-based immunosensor was also developed based on CNTs
deposits [83]. The bioreceptor unit, biotin-modified cholera toxin B subunit, was immobilized with
the nitrilotriacetic acid-Cu(II) complex. After optimization, the resulting EIS cholera sensor showed
excellent reproducibility, increased sensitivities, and achieved a satisfying LOD of 10−13 g mL−1.

A universal biosensor based on an antibody-catalyzed water oxidation pathway was constructed
for the detection of antibodies [84]. The singlet oxygen (1O2

*) could be produced by a photosensitizer
immobilized on the electrode at the first place. A polymer brush-haptens-modified surface was
constructed to recognize specific antibodies with high affinity and specificity. The catalytic activity
of these antibodies produced multiple mole equivalents of H2O2 per antibody, and the antibody
quantitative was performed via the SWV-based detection of H2O2. Although this biosensor was not
built specially for the detection of infectious disease biomarkers, as the author mentioned, it could be
extended to build biosensors for the detection of all relevant biomarkers of infectious diseases.

Robust biosensors for the detection of infectious disease markers, with a simple setup, low-cost
microelectronic circuits, a small volume requirement, and good sensitivity, are listed in Table 1.
The achievements of these detection platforms and devices opened new avenues for the early diagnosis
of infectious diseases and helped to control major epidemics and pandemic threats.

Table 1. Biosensors constructed for biomarker detection of infectious diseases.

Disease Biomarker Biosensor Type LOD Reference

CCHF Specific IgG antibodies CL ND [3]

hepatitis B hepatitis B surface antibodies Surface acoustic wave 10 pg µL−1 [5]

human IgG antibodies
anti-HBsAg

Chronoampero-metric
detection 3 mIU mL−1 [90]

HIV anti-HIV antibody ELISA ND [6]

Hepatitis C anti-HCV antibodies
EC 0.003 pg mL−1 [33]

CL ND [89]

Leishmaniasis anti-leishmania infantum
antibodies PEC 0.05 mM [55]

Malaria anti-plasmodium vivax antibodies EC 6 pg L−1 [82]

Cholera anti-cholera toxin antibodies EC 10−13 g mL−1 [83]

Neospora anti-neospora antibodies PL ND [85]

Salmonella enteritidis
infection egg yolk antibodies SPR ND [86]

Adenoviruses infection anti-adenoviruses antibodies SPR 10 PFU mL−1 [87]

Dengue IgM antibody CL ND [88]
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3.2. Biosensors for AIDs Markers

AIDs are characterized by the presence of autoantibodies in the serum of affected patients.
Sensitive and accurate biosensing systems for these biomarkers can not only significantly aid in the
early diagnosis and clinical management of AIDs but also help to establish therapeutic strategies [4].
Biosensors for the detection of autoantibodies specific to AIDs, including antiphospholipid syndrome
(APS) [91–94], rheumatoid arthritis (RA) [95–99], systemic lupus erythematosus (SLE) [100–107],
multiple sclerosis (MS) [108–111], and celiac disease (CD) [112–124], are now constructed based on
diverse techniques with many advantages, including high sensitivity and easy operation.

For optical methods, a parallelized, label-free optical biosensor was reported to simultaneously
evaluate APS biomarkers in a single measurement. It worked in a serum matrix with a sample
volume of 10 µL and was faster than the routinely performed ELISA [91]. A biomimetic optical
sensor for APS-specific autoantibody β2-glycoprotein-I detection was constructed with an LOD of
5.62 mg L−1 [92]. A highly sensitive magnetic immunosensor was designed for anti-CCP autoantibodies
based on SERS detection for the early diagnosis of RA [96], with an LOD as low as 13 pg mL−1.

For electrochemical methods, Villa et al. [95] reported a MWCNT-polystyrene transducer based
amperometric biosensor for the diagnosis of RA by detection of serum anti-citrullinated peptide
antibodies (ACPAs), which was eventually applied to the detection of ACPAs in human sera.
Derkus et al. [111] reported a highly sensitive impedimetric immunosensor for the determination of a
MS autoantibody, anti-myelin basic protein antibody, based on CV and EIS detections in short response
times, showing LODs of 0.1528 ng mL−1 and 0.1495 ng mL−1, respectively. This immunosensor also
yielded acceptable results for human cerebrospinal fluid (CSF) and serum samples. Neves et al. [112]
developed a disposable EC immunosensor for the simultaneous detection of IgA- and IgG-type
anti-gliadin (GA) and anti-tissue transglutaminase (tTG) autoantibodies in real patient samples using
dual screen-printed carbon electrodes as working electrodes. CD-specific antigens of GA and tTG
were used as MREs, showing results that were consistent with commercial ELISA kits and allowing a
decentralization of the analyses toward a POC strategy.

Other techniques such as giant magnetoresistive (GMR) biosensor microarrays have been designed
to analyze serum samples from SLE patients and have also been shown to be capable of identifying
autoantibodies associated with relevant clinical manifestations of SLE, with potential for use as
biomarkers in clinical practice [101].

Various biosensors for autoantibody detection used in recent years are listed in Table 2.

Table 2. Biosensors constructed for AID biomarker detection.

Disease Biomarker Biosensor Type LOD Ref.

APS

Multidetection of anti-β2-GPI
antibody, anti-cardiolipin antibody,
anti-phospholipid antibody,
and anti-prothrombin antibody

Optical sensor ND [91]

anti-β2-GPI antibody
Reflectometric interference

spectroscopy 5.62 mg L−1 [92]

SPR ND [93]

Multidetection of anti-β2-GPI
antibody, prothrombin, cardiolipin,
and β2-GPI/cardiolipin complex

Reflectometric interference
spectroscopy ND [94]

RA
anti-cyclic citrullinated peptide
(CCP) autoantibody

EC ND [95]

Surface-enhanced Raman
scattering (SERS) 13 pg mL−1 [96]

PL 0.1 ng mL−1 [97]

piezoelectric ND [98]

SPR ND [99]
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Table 2. Cont.

Disease Biomarker Biosensor Type LOD Ref.

SLE

Multidetection of anti-FLAG
antibody, anti-Ro52 antibody,
anti-U1-70K antibody, anti-K5Ac
antibody, and anti-K20Ac antibody

Magneto resistive ND [101]

anti-TRIM21 and anti-TROVE2
circulating autoantibodies Piezoelectric 1.51 U mL−1 and 0.32 U

mL−1 [102]

anti-DNA autoantibody

EC ND [103]

SPR ND [104]

SPR ND [105]

Piezoelectric ND [106]

anti-chromatin autoantibody EC ND [107]

MS

anti-glucopeptide antibody SPR ND [108]

anti-CSF114(Glc) antibodies
EC ND [109]

SPR ND [110]

anti-myelin basic
protein (anti-MBP) EC 0.1528 ng mL−1 [111]

CD

Multidetection of anti- GA and
anti-tTG autoantibodies EC

2.45 U mL−1 for tTG IgA
and 2.95 U mL−1 for

tTG IgG
[112]

anti-GA autoantibodies

EC 0.52 arbitrary
units mL−1 [113]

EC 46 ng mL−1 [114]

EC 9.1 U mL−1 for IgA and
9.0 U mL−1 for IgG

[115]

Piezoelectric 100 nM [116]

anti-tTG autoantibodies

EC 260 ng mL−1 [117]

EC
1.7 AU mL−1 for IgA

and 2.7 AU mL−1

for IgG
[118]

EC ND [119]

EC 390 ng mL−1 [120]

EC 20 A.U. [121]

EC 30 pM [122]

EC ND [123]

Piezoelectric 1.3 µg mL−1 [124]

3.3. Evaluation of Vaccine Immunity Based on Biosensor

The follow-up evaluation of vaccine immunity is of great significance to estimate whether
the contingent diseases could be effectively controlled. Besides monitoring infectious status and
determining autoimmune disorders or allergies, antigen-based microarrays for antibody detection and
characterization can also be used to evaluate the immunity efficiency of vaccines. As immunosensors
for specific protection antibody detection are noninvasive, fast, highly accurate, and cheap, they can be
used to develop new ways of evaluating clinical vaccine immunity.

Similar to other immunological analysis in clinical labs, ELISA is the most common way
to quantitatively determine protection antibodies. An array-based biosensor that simultaneously
measures four different targets of toxins or viruses has been developed [125], showing an LOD as
low as approximately 100 fg in human sera. The arrays can test 12 samples at once, providing
a capacity for testing both positive samples and negative controls and for testing multiple serum
samples and multiple dilutions. However, only a limited number of reported sensing platforms have
been constructed for vaccine immunity evaluation. Arrays for antibody immunosensing evidently
open new avenues for improving the efficiency of this.
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4. Conclusions

Modern clinical laboratory diagnosis tends to develop in the directions of rapid analysis, high
accuracy, easy operation, low cost, and miniaturization. Serological protein quantitative determination
provides a novel tool giving fast results with high precision. Biosensors combined with various
detection techniques have shown plenty of advantages for bioanalysis to further increase detection
sensitivity, especially for serological immunoassays with low content. With the assistance of
nanotechnology and diverse signal amplification strategies, the previously reported biosensors have
shown attractive opportunities for protein detection. As mentioned above, biosensors for tumor
markers, i.e., the typical protein targets in clinical immunology, make multi-channel testing possible,
exhibiting high sensitivity and selectivity, easy operation, and low cost. Detection sensitivities of the
reported biosensors show great potential for clinical applications, as we have described in Section 2.
As the cutoff values of most antigens/antibodies can reach the ng mL−1 level, stability and easy
operation for these devices, instead of higher sensitive detection strategies, should be pursued.

Antibody detection is widely needed for auxiliary diagnosis and has even become the golden
standard for some infectious diseases, such as HIV. Very often, the primary biomarkers of diseases
possess very low stability or are not present in body fluid at all. Thus they cannot be detected using the
available detection techniques. Thus, specific antibodies have become the best biomarkers for clinical
diagnosis. This method is very popular in the diagnosis of infectious, and other, diseases. We presented
a brief summary of relevant biosensors for antibody detection with excellent performances in
Section 3. These biosensing strategies will provide great opportunities for antibody detection in
clinical serodiagnosis application. In addition, very few biosensors for vaccine-specific protection
antibodies have been investigated, a prospective area of interest in serodiagnosis studies.
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Abbreviations

Ig immunoglobulin
WHO World Health Organization
IUIS International Federation of Immunological Societies
AIDs autoimmune diseases
APS antiphospholipid syndrome
RA rheumatoid arthritis
SLE systemic lupus erythematosus
MS multiple sclerosis
CD celiac disease
ELISA enzyme-linked immunosorbent assay
POC point-of-care
MRE molecular recognition element
EC electrochemical
NPs nanoparticles
CNTs carbon nanotubes
CV cyclic voltammograms
NRs nanorods
LOD limit of detection
SWCNTs sing-walled carbon nanotubes
MWCNTs multi-walled carbon nanotube
ITO indium tin oxide
DPV pulse voltammetry
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SWV square wave voltammetry
AFP alpha fetoprotein
HRP horseradish-peroxidase
PL photoluminescent
HCV hepatitis C virus
QDs quantum dots
FRET förster resonance energy transfer
cTnI cardiac Troponin I
cTnT cardiac troponin T
AFB1 aflatoxin B1
GVA-antigens grapevine virus A-type proteins
ALD atomic layer deposition
PEC photoelectrochemical
g-C3N4 graphitic carbon nitride
CL chemiluminescence
CEA carcinoembryonic antigen
CA19-9 cancer antigen 19-9
ECL electrochemiluminescent
PAMAM polyamidoamine dendrimer
IFN-γ interferon-gamma
TNF-α tumor necrosis factor-alpha
IL-2 interleukin
FIA fluidic immunoassay
CCHF crimean-congo hemorrhagic fever
SPR surface plasmon resonance
MCL microcantilever
EIS electrochemical impedance spectroscopy
ACPAs anti-citrullinated peptide antibodies
GMR giant magnetoresistive
CSF human cerebrospinal fluid
GA gliadin
tTG tissue transglutaminase
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