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ABSTRACT 

Protein abundance correlates only moderately with mRNA levels, and are modulated 

post-transcriptionally by a network of regulators including ribosomes, RNA-binding 

proteins (RBPs), and the proteasome. Here, we identified Master Protein abundance 

Regulators (MaPRs) across ten cancer types by devising a new computational pipeline 

that jointly analyzed transcriptomes and proteomes from 1,305 tumor samples. We 

identified 232 to 1,394 MaPRs per cancer type, mediating up to 79% of post-

transcriptional regulatory networks. MaPRs exhibit high network connectivity, strong  

genetic dependency in cancer cells, and significant enrichment for RBPs. Combining 

tumor up-regulation, druggability, and target network analyses identified cancer-specific 

vulnerabilities. MaPRs predict tumor proteomic subtypes more accurately than other 

proteins. Finally, significant portions of RBP MaPR-target relationships were validated by 

experimental evidence from eCLIP binding and knockdown assays. Our findings uncover 

central MaPRs that govern post-transcriptional networks, highlighting diverse processes 

underlying human proteome regulation and identifying key regulators in cancer biology. 

Key words: protein abundance, post-transcriptional regulation, proteomics, cancer, 

computational biology 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.619147doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.619147
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Proteins execute most cellular functions. Dysregulation of proteins, such as 

overexpression of oncogenic kinases, diminished expression of DNA damage repair 

proteins, and imbalanced metabolic enzyme levels, can drive and sustain tumorigenesis. 

A myriad of post transcriptional processes that modulate translation rates, protein 

transport, or protein degradation are known to impact protein abundance1,2. Despite 

extensive research on the regulation of mRNA levels, the control of protein abundance 

and such key regulators in large-scale cancer cohorts remain sparsely characterized. 

Moreover, most cancer drug targets are proteins3,4, highlighting the urgent need for a 

systematic network approach that can leverage the emerging proteogenomic datasets to 

characterize post-transcriptional regulatory networks and identify key regulators of protein 

abundance that shape individual tumor proteomes. 

Recent advancement in high-throughput mass spectrometry (MS) technologies have 

enabled the quantification of over ten thousand proteins from primary tumor samples5–15. 

Several of the cancer protegenomic studies that concurrently conducted global 

proteomics and transcriptomic analyses have reported overall moderate correlations 

between mRNA levels and protein abundance, with median correlations ranging from 

0.39 to 0.5416–18 and significant variations across different genes. Discordance between 

mRNA and protein levels have also been reported across diverse physiological conditions 

and organisms1. These observations, coupled with the successful expansion of cancer 

therapeutic targets through proteogenomics analysis3 and identification of potential 

transcriptional master regulators as cancer therapeutic targets19,20, underscore the 

necessity for systematic and in-depth investigations into master regulators of protein 

abundance across cancer types. 

We hypothesize that there exists Master Protein abundance Regulators (MaPRs) that 

orchestrate post-transcriptional processes regulating abundance of target proteins and 

shape the molecular phenotypes of cancer. Leveraging 10 cancer cohorts with 

spontaneous quantitative transcriptomic and proteomic profiling, we developed a 

computational pipeline to systematically identify MaPRs affecting protein abundance in 

post-transcriptional regulatory networks through diverse cellular processes. Our analysis 

revealed that MaPRs show high degree of network connectivity and are significantly 

enriched for known translational processes including RBPs and the nuclear core complex. 

We identified MaPR pairs with shared targets and present as cancer-specific 

vulnerabilities. MaPR proteins performs superiorly at predicting proteomic subtype across 

cancer types compared to non-MaPRs, suggesting their central role in shaping tumor 

proteomes. Finally, we validated a significant fraction of MaPR-target relationships using 

experimental RNA binding and knockdown data. Overall, our MaPR pipeline provides a 

new method to identify key regulators of protein abundance, illuminating their pivotal roles 

of determining the cancer proteome landscape. 
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RESULTS 

Systematic identification of MaPRs across ten cancer types 

We devised a computational pipeline, MaPR, to systematically predict master regulators 

of protein abundance across 10 cancer types using datasets compiled from the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) phase 3 studies. The curated 

proteogenomic dataset includes a total of 1,047 samples in the discovery set and 258 

samples in the validation set (Fig. 1A and Table S1, Methods). The MaPR pipeline 

consists of four steps (Methods), built into an R package (Data and code availability, 

Fig. 1B).  (i) mRNA and protein co-expression networks are separately constructed based 

on Spearman correlation. (ii) To eliminate transcriptional influence, a post-transcriptional 

regulatory network is generated by directly removing the edges of mRNA co-expression 

network from the protein co-expression network. (iii) MaPR builds a directed post-

transcriptional regulatory network, where edges originate from regulators to targets. This 

is achieved by calculating semi-partial Spearman correlation21, which identifies regulators 

whose protein abundance correlates significantly with target protein abundance 

independent of target mRNA levels. Significant edges are retained to obtain the final post-

transcriptional regulatory network for each cancer cohort. Across cancers, 5.3%-24.1% 

of significant edges are supported by the protein physical interaction network from string22 

(Fig. 1C and Table S1). Examination of the target number of all regulators revealed a 

power law distribution, indicating the post-transcriptional regulatory network is scale-free-

like, similar to most biological networks (Fig. S1A). (iv) The post-transcriptional regulatory 

network is randomly shuffled 10,000 times to identify MaPRs that show significant 

regulations in the network. To ensure robustness, the network shuffling process is 

repeated 100 times and the overlapping MaPRs across all repetitions are defined as the 

final set of MaPRs (Fig. 1B and S1B). As an illustrative example of a MaPR-target pair, 

the protein abundance of the MaPR AQR showed a significant high correlation with target 

PAD21 protein abundance independent of PAD21 mRNA expression in the GBM cohort 

(semi-partial spearman correlation = 0.725, BH-corrected P-value < 1e-6), despite of the 

lack of correlation between AQR protein and PAD21 mRNA levels (Fig. 1D). The 

comprehensive list of MaPRs across cancer types is provided as a resource at Table S1. 

In total, we identified 232 to 1394 MaPRs in each of the 10 cancer types (Fig. 1C). While 

MaPRs identified by step (iv) consituted only a small proportion of the regulators of (iii), 

varing from 13% in OV to 25% in GBM, MaPRs of (iv) typically mediated the majority of 

the post-transcriptional regulatory networks of (iii)—ranging from 48% in OV to 79% in 

GBM (Fig. S1C). MaPRs was observed to regulate significantly more targets and exhibit 

higher Pagerank centrality score compared with other non-MaPR regulators (Wilcoxon 

test P-value < 0.001, Fig. S1D and S1E). Moreover, CRISPR genetic knockout of MaPRs 

reduced cell viability at larger extents compared with knocking out other genes across 

cancer types based on the DepMap 24Q2 dataset23, demonstrating MaPRs’ essentiality 

in cancer cells (Wilcoxon test P-value < 0.001, Fig. 1E and S1F, Method). To validate 

our predictions, the MaPR pipeline was applied to 4 independent validation datasets from 
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CPTAC2/TCGA retrospective studies across 3 cancer types, including BRCA, CRC, and 

OV (OV analyzed at Pacific Northwest National Laboratory (PNNL) and Johns Hopkins 

University (JHU)) (Fig. 1A and Table S1). Subsequently, we computed cross-cancer 

Jaccard/geometric indices based on overlapping MaPRs (Fig. 2A and S2C) and edges 

in the post-transcriptional networks (Fig. S2A and S2B). As expected, post-

transcriptional regulations and MaPRs from validation studies exhibited higher overlaps 

within the same cancer type from the CPTAC3 cohorts (Fig. 2A). Cancers originating 

from similar tissues are known to possess common molecular characteristics that can 

lead to tissue-specific context of protein abundance control24–26. Here, LUAD and LSCC, 

two subtypes of non-small cell lung cancer, also displayed higher overlaps in MaPRs and 

associated networks (Fig. 2A and S2), further validating that the MaPR pipeline 

accurately recapitulates the underlying post-transcriptional biology within tissue types.  

To provide functional contexts of MaPRs, we curated multiple gene sets associated with 

known processes in the regulation of protein abundance (Table S2), including (1) 

modulation of protein translation, such as RNA binding proteins (RBPs)27–29, ribosome 

proteins, spliceosome proteins, and proteins involved in transportation (nuclear pore 

complexes), (2) modulation of protein half-life or degradation, such as autophagy 

regulation, proteasomes and ubiquitin proteins. As shown on Fig. 2B and S2D, MaPRs 

consistently demonstrated significant enrichment (Wilcoxon test P-value < 0.01) in 

processes that mediate translation rate across cancer types, but are rarely significantly 

enriched in processes modulating protein half-life or degradation. These results suggest 

a relatively strong impact of translation on overall protein abundance, especially from 

RBPs. As expected, we observed the lack of enrichment of MaPRs among transcription 

factors (TFs)30 (Fig. 2B and S2D), indicating the successful removal of transcriptional 

regulators by the MaPR pipeline. Housekeeping genes (HKGs) exhibited significant 

overlap with MaPRs among most cancer types (Fig. 2B and S2D), suggesting the 

essentiality of MaPRs in maintaining cellular fitness. MaPR were also enriched in cancer 

related gene and known/potential drug targets among various cancers (Fig. 2B and S2D), 

implying its potential for cancer therapy. 

To illustrate these findings, we visualized the cancer-specific post-transcriptional 

networks derived from the MaPR pipeline to demonstrate these findings. Due to high 

network density, each post-transcriptional network was first pruned before visualization 

(Methods). The pruned BRCA post-transcriptional network shows MaPRs, particularly 

those that are RBP and HKGs, localized at the center of the network (Fig. 2D). Additonally, 

a higher PageRank centrality score were systematically observed among RBP MaPRs or 

HKG MaPRs across cancers (Fig. 2C). These observations reinforce MaPRs as hub 

proteins and highlight their central regulatory roles in post-transcriptional processes. 

 

Post-transcriptional regulators with therapeutic potential 
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Analysis across 10 cancer cohorts enabled us to identify MaPRs that are cancer-specific 

as well as those shared across multiple cancer types. As shown in Fig. 3A, the majority 

of MaPRs (57.98%, 2375/4096) were identified in only one cancer type. In particular, 

GBM MaPRs accounted for the largest proportion of cancer-specific MaPRs (32.6%, 

775/2375) (Fig. 3B), highlighting brain-specific proteome regulations that align with 

tissue-specific gene expression and transcript usage patterns observed within the brain31. 

In contrast, only a small proportion of MaPRs (5.42%, 222/4096) were observed in the 

majority of cancer types (>5 cancers). Based on the number of cancer types identified, all 

MaPRs were categorized into three classes: cancer-specific MaPR, moderate MaPR and 

pan-cancer MaPR (Fig. 3A).  

Given the close association between abnormal protein expression and tumor progression, 

we identified MaPRs that show dysregulated protein expression by conducting a 

differential expression analysis (BH-corrected P-value < 0.05 & |log Fold Change| > 1.2) 

among the 8 cancer types with available patient-matched adjacent normal samples (Fig. 

S3A and S3B, Table S1, Methods). Almost all pan-cancer MaPRs (221/222) displayed 

significant dysregulated protein expression in at least one cancer, whereas cancer-

specific and moderate MaPRs were less frequently differentially expressed (Fig. S3C). 

MaPRs were split into four classes considering the consistency of dysregulated protein 

expression direction across cancer types: not dysregulated, up-regulated, down-

regulated and mixed dysregulated (Method). A large portion of pan-cancer MaPRs 

(29.73%, 66/222) displayed down-regulated expression in all cancers, while a smaller 

fraction (9.01%, 20/222) showed up-regulated expression in all cancers (Fig. S3D and 

S3E). All up-regulated cancer-MaPR pairs displayed strong genetic dependency as 

shown by their negative chronos score, which indiciates that knockout of these MaPRs 

decrease cancer cell viability, in the corresponding lineages from Cancer Dependency 

Map (DepMap)23, with the majority (81.1%, 30/37) corroborated by evidence from Savage 

et al3 (Method and Fig. 3C ans S3E). The comprehensive list of MaPRs corroborated by 

Savage et al3 with all levels of annotated evidence across seven cancer types is provided 

at Table S1. RAN, an up-regulated MaPR, exhibited the strongest cancer cell genetic 

dependency in CCRCC and HNSC (Fig. 3C). This could be explained by its involvement 

in multiple cancer pathways including PIK3-related, KRAS-related and mitosis 

pathways32–34. These analyses highlight dysregulated MaPRs that are critical in cancer 

cell growth and progression. 

Previous transcriptomics research indicates that hub genes with higher centrality scores 

are more influential in regulatory networks, but the importance of hub proteins in post-

transcriptional network remains to be characterized. Across post-transcriptional networks 

of most cancer types, non-cancer-specific MaPRs often exhibited higher centrality scores 

(Fig. 3D). To identify MaPRs with highest impact, we selected the top 0.2% of pan-cancer 

MaPRs ranked by PageRank centrality score, that also showed differential protein 

expression and identified 15 hub pan-cancer MaPRs, including 6 MaPRs involved in 

processes known to modulate translation rate and 4 MaPRs exhibiting up-regulated 

expression in tumors and cancer cell genetic dependency corroborated by Savage et al3 
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(Fig. 3E). HNRNPM, a spliceosome component RBP responsible for RNA splicing and 

processing, emerged as an up-regulated hub MaPR in the LUAD patient tumor cohort 

that also showed strong cancer cell genetic dependency in LUAD23 (Fig. 3G). In HNSC, 

MMP8 was an up-regulated potentially druggable enzyme in tumors and showed cancer 

cell genetic dependency3, which was also reported up-regulated in HNSC patient 

serums35. We further investigated the therapeutic potential of MMP8 MaPR networks by 

combining evidences from druggability compiled by Savage et al3, our DEP analysis, and 

MaPR post-regulatory networks (Method). In our HNSC cohort analysis, MMP8 was an 

up-regulated hub MaPR with its associated potentially druggable MaPR targets enriched 

in two immune-related pathways: leukocyte transendothelial migration and chemokine 

signaling pathway. Interestingly, cooperation analysis identified another MaPR, ARPC1B, 

whose potentially druggable MaPR targets were also enriched in the same two pathways 

in HNSC (Method). This finding was supported by previous studies identifying ARPC1B 

as promising target for tumor immunotherapy and prognostic biomarker in various 

cancers, including HNSC36,37. We further identified additional MaPR pairs, including 

SLC12A7-NCEH whose potentially druggable MaPR targets were enriched in the same 

six pathways in PDAC and WDR5-AQR in four pathways in LSCC (Fig. S4A and S4B 

and Method). Notably, 14 MaPRs’ potentially druggable MaPR targets were enriched the 

same two pathways, N glycan biosynthesis and protein export, as another potentially 

druggable enzyme MaPR, FKBP11, in LSCC (Fig. S4C and Method). 

We additionally identified dysregulated cancer-specific hub MaPRs within the top 2% of 

PageRank centrality scores (Fig. 3E and S4E). In PDAC, we identified MaPRs with 

cancer cell genetic dependency, including RPS5 and RPL23, two tumor down-regulated 

ribosome proteins that participates in translation initiation, CHMP5, a housekeeping gene 

that regulates late endosome function38,39 and CHMP1A, a nuclear pore complex protein 

(Fig. 3E and 3F). Up-regulated expression in tumors and cancer cell genetic dependency 

of the two MaPRs, CHMP5 and CHMP1A, were also observed in Savage et al3 (Table 

S1). Moreover, we identified MaPRs with therapeutic potential shared across cancer 

types, including DDX21 (MaPR in BRCA and LUAD), RSL1D1 (MaPR in BRCA and LUAD) 

and SMC2 (MaPR in LUAD, HNSC and LSCC). These three MaPRs showed cancer cell 

genetic dependency23 (Fig. S4D) and our recent knockdown experiments of these three 

MaPRs reduced cancer cell survival40. Overall, these analyses highlight key MaPRs that 

are central to post-transcriptional regulation networks and with therapeutic potential in 

multiple cancer types. 

 

Pathways enriched for MaPRs and post-transcriptional regulatory networks  

To examine how MaPRs may perburb pathways underlying tumorigesis, we performed a 

functional enrichment analysis (Methods). We selected the top 30% of MaPRs ranked by 

Pagerank centrality score and calculated their statistical overrepresentation in KEGG 

pathways using the hypergeomeric test (BH-corrected P-value < 0.05, Fig. 4A and Table 

S2). Diverse pathways were perturbed by these central MaPRs, including post-
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transcriptional processes, such as ribosome, splicesome, and protein transports, as well 

as tumor-related pathways, such as oxidative phosphorylation and metabolism. Pathways 

for multiple neurodegenerative diseases also showed significant enrichment for MaPRs, 

possibly due to the involvement of peptide processing and misaggregation in these 

ontologies (Fig. 4A and 4B). 

We also performed functional enrichment analysis of all the predicted targets of each 

MaPR in each cancer. Despite pervasive pathway enrichment by MaPRs’ targets, target-

enriched pathways varied across cancers. The top enriched pathways overall includes 

spliceosome (Fig. S5B), which was also prominently enriched by consistently up-

regulated pan-cancer MaPRs (Fig. 4B). Given previous studies highlighting the 

discrepancy of translation efficiency for diffent transcript isoforms41,42 orchestrated by the 

spliceosome, this finding underscores the influence of MaPRs on protein abundance via 

alternative splicing. Additionally, our analysis captured pathway patterns affected by 

critical MaPRs. For example, targets of the tumor up-regulated MaPR PRPF8 were 

enriched for the spliceosome pathway across all the seven cancers where it was identified 

as a MaPR (Fig. 4B). Two up-regulated MaPRs, ACTG1 and GCA, were similarly 

enriched for targets in four pathways, including ribosome (Fig. 4B). The top 10 MaPRs 

showing the highest numbers of target-enriched pathways were associated with the 

electron transport chain and ATP production (Fig. S5A) and their targets were showed 

the most significant enrichment for oxidative phosphorylation (Fig. S5C), implying roles 

of MaPRs in energy production.  

Comparing post-transcriptional networks and enriched pathways in LSCC and LUAD, the 

top MaPRs for each cancer type shared enrichment in essential pathways of ribosome, 

spliceosome, oxidative phosphorylation, complement and coagulation cascades and 

leukocyte transendothelial migration. Meanwhile, these two lung cancer types also 

displayed cancer-specific enrichment in several metabolism pathways (Fig. 4A). Similar 

to the top MaPRs enrichment analysis, the targets of LSCC/LUAD’s 331 shared MaPRs 

were enriched in essential pathways while distinct metabolism pathways were enriched 

by the targets of the cancer-specific MaPRs (Fig. S5D and S5E). Butanoate, pyruvate 

and propanoate metabolism were enriched in LUAD (Fig. S5F), while sugar, purine, and 

pyrimidine metabolism were enriched in LSCC (Fig. S5G). Figure 4C and 4D provides 

visualization of the pruned post-transcriptional networks for LSCC and LUAD. KEGG 

pathway enrichment analysis were conducted43 within each of the modules that included 

at least 50 proteins (Methods, Table S3). Both cancer types shared module enrichment 

for terms such as ribosome, spliceosome, protein processing in the endoplasmic 

reticulum, oxidative phosphorylation, and complement and coagulation cascades (Fig. 

4C and 4D, Table S3). However, both cancer types displayed module enrichment for 

unique KEGG pathways as well (Table S3). For example, LSCC module 0 displayed 

unique enrichment for KEGG terms such as NF-kappa B signaling pathway, hematopoeic 

cell lineage, cellular senescence, ubiquitin mediated proteolysis, and galactose 

metabolism. On the other hand, LUAD module 0 displayed unique enrichment for KEGG 

terms cuh as proteosome, spinocerebellar ataxia,  Parkinson Disease, and Alzherimer’s 
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Disease. These results demonstrate how MaPR-mediated post-transcriptional regulation 

may delineate the unique features and mechanisms defining tissue-specific cancer types. 

 

Abundance of MaPRs predict proteome subtypes across cancers 

We hypothesized that if MaPRs play a central role in regulating post-transcriptional 

processes, then MaPR levels, compared to other proteins, can reasonably predict and 

define the overall proteome observed in tumor samples. To test this hypothesis, we first 

identified proteome subtypes by clustering samples within each cancer type based on 

their whole proteomic profiles (Fig. 5A, 5B and S5H) (Methods). Next, using protein 

levels as a proxy for activity, we trained random forest classifiers to predict proteomic 

subtype membership with randomly selected (n=100 or 10) MaPRs and same number of 

other proteins for 1,000 permutations in each cancer type44 (Methods). Each model’s 

performance was assessed using 5-fold cross validation and the mean AUC ROC was 

calculated. As the number of features decreased from 100 to 10, MaPRs generally 

showed increased predictability of proteomic subtype compared to same number of non-

MaPRs across all cancer types (Fig. 5C, Table S4). For example, randomly selected 100 

BRCA MaPRs and 100 other proteins both predict subtype membership with high 

performance (Mean AUC ROC MaPRs: 0.973, Mean AUC ROC Other proteins: 0.988, P-

value: 3.56e-148, Mann-Whitney U test45), suggesting that 100 proteins can reasonably 

reconstitute overall proteome subtypes. However, when the number of features dropped 

to 10, randomly selected BRCA MaPRs performed significantly better than other proteins 

in predicting subtype membership (Mean AUC ROC MaPRs: 0.882, Mean AUC ROC non-

MaPRs: 0.865, P-value: 9.42e-09, Mann-Whitney U test45). In CRC, the same trend was 

observed where 100 randomly selected MaPRs and 100 other proteins both perform well 

at predicting subtype membership (Mean AUC ROC MaPRs: 0.952, Mean AUC ROC 

Other proteins: 0.948, P-value: 3.69e-3, Mann-Whitney U test45). However, a decrease in 

performance was observed in the predictive ability of other proteins when the number of 

features dropped to 10 (Mean AUC ROC MaPRs: 0.916, Mean AUC ROC Other proteins: 

0.825, P-value: 7.82e-208, Mann-Whitney U test45). This trend was observed across all 

10 cancer types and suggests that individual MaPRs hold more information reguarding 

the cancer proteome than other proteins. Overall, these findings support our hypothesis 

that MaPRs are playing a central role in regulating protein abundance. 

 

Validation of MaPR targets based on eCLIP and knockdown experiments 

To validate predicted MaPRs, we obtained RNA binding targets of RBPs measured by 

the ENCODE eCLIP experiments46, and knockdown RNA-seq data across two cell lines, 

K562 and HepG247 (Methods). Among the 139 RBPs that had data available for both 

eCLIP and knockdown RNA-seq within identical cell line, 85 RBPs were identified as 

MaPR in at least one cancer.  
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MaPR RBPs showed significantly higher target validation rates compared to non-MaPR 

RBPs based on eCLIP binding of the targets’ RNA, as well as the targets’ differential 

mRNA expression/splicing upon knocking-down the corresponding MaPR (Fig. 6A). 

Combining eCLIP and knockdown differential expression to validate MaPR targets 

revealed 7 MaPRs with significant enrichment of targets being validated, among which 6 

MaPRs were splicesome factors belonging to three protein families associated with pre-

mRNA splicing: heterogeneous nuclear ribonucleoproteins (hnRNPs), RNA-binding motif 

(RBM) proteins and serine/arginine (SR)-rich proteins (Fig. 6B). This is expected as other 

MaPRs modulating only protein exports/processing were less likely to affect differential 

mRNA expression, whereas splicesome MaPRs modulate both transcription and 

translation processes that could be tightly linked. These results align with the 

splicesome’s central role  in differential transcript usage/generation and modulation of 

translation rate, thereby influencing protein abundance41,42. 

We further examined the RNA binding of these MaPRs to their targets’ RNA. eCLIP data 

showed the extensive binding of  the GBM MaPR SRSF1—alternative splicing factor 1 

known to be associated with with various cancers48—to a substantial portion of the gene 

body of one of its predicted targets, NCL (Fig. 6C, Table S5). NCL displayed significant 

differential expression upon SRSF1 knockdown in HepG2 (log2FC = 1.51, FDR = 1.19e-

05). Additional MaPR-predicted targets of SRSF1—ZEB2 and SRSF5 showed differential 

splicing upon SRSF1 knockdown in K562 (Fig. S6B, S6C and Table S5). As another 

example, the binding of GBM MaPR AQR to its target RAD21 was validated by eCLIP 

data, and RAD21 showed significant differential expression and splicing upon AQR 

knockdown in K562 (Fig. 6D and Table S5). Another AQR target U2AF2 also showed 

significant changes in both expression and splicing upon AQR knockdown in K562 (Fig. 

S6D and Table S5). 

In addition to ENCODE eCLIP data, we obtained an independent eCLIP dataset of the 

U251 glioblastoma cell line49 to validate RNA binding of YBX1, a protein we identified as 

a MaPR in GBM. The predicted targets of YBX1 in GBM were significantly validated by 

the eCLIP data (Hypergeometric test P-value < 0.05) (Table S5). We observed that the 

gene bodies of the majority of YBX1 predicted targets (81.7%, 125 /153) overlapped with 

at least one significant eCLIP peak of YBX1 binding (P-value < 0.05). These 125 validated 

targets carried higher coefficients and lower FDR value in our MaPR-derived post-

transcriptional regulatory network in GBM (Fig. 6E). Notably, the most significant eCLIP 

peak target identified was PKM, a gene associated with metabolism and prognosis in 

cancer50,51 (Fig. 6F). Additionally, several other targets associated with multiple cancers 

were validated, including RPS19, a spliceosome pathway factor, and EP300 (Fig. S6E 

and S6F).  

Lastly, we reprocessed and anazyed a experimental proteogenomic dataset52 we 
previously generated upon delepting a key MaPR identified herein, PRPF8, in Cal51 
breast epithelial-like cells to assess the resulting transcriptomic and proteomic changes 
quantified by RNA-seq and SWATH-MS (Methods). Based on the BRCA primary tumor 
cohort used herein, our MaPR pipeline identified that majority of  predicted targets of 
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PRPF8 (80.2%, 105/131) were supported by the eCLIP data from ENCODE (Fig. S6A). 
These targets significantly overlaped with differentially-expressed proteins upon PRPF8 
knockdown in this experimental data (8 overlapped proteins, Hypergeometric test P-value 
= 2.08E-4, Fig. 6G), including MED23, reported to activate tumor cell invasion and 
metastatis53, and MAVS, whcich is associated with immune regulation54 (Fig. 6H). Seven 
of the differentially expressed target proteins were down-regulated upon PRPF8 
knockdown (Fig. 6H and S6G), which is aligned with their positive semi-partial correlation 
with PRPF8 in the MaPR-derived post-transcriptional regulatory network of the BRCA 
primary tumor cohort. Interestingly, EFTUD2, a spliceosome component, showed 
significant differential expression at the protein level but not at mRNA level upon PRPF8 
knockdown (Fig. 6H). This could be explained by its varied use of different mRNA 
transcripts that may have affected translation and eventually, protein abundance (Fig. 6I). 
Collectively, these results demonstrate that our MaPRs inferred from human tumor 
cohorts are validated by experimental data of RBP MaPR binding’s to target RNAs and 
expression changes of their predicted targets upon MaPR knockdown. 
 
 
Discussion 

Protein abundance in biological systems is determined not only by mRNA expression, but 

also by multiple post-transcriptional processes. Our study elucidates the critical roles of 

Master Protein abundance Regulators (MaPRs) in post-transcriptional regulation 

networks across various cancer types, providing a new resource into the complex 

landscape of protein abundance regulation. By integrating high-throughput proteomic and 

transcriptomic data from ten cancer cohorts, we developed a robust computational 

pipeline to identify MaPRs. The identification of 232 to 1,394 MaPRs per cancer type, 

mediating a substantial proportion of the post-transcriptional regulatory landscape, 

underscores the extensive influence of these regulators that were understudied by 

previous system biology approaches focusing on DNA/RNA-level analyses.  

Pathway enrichment analyses of MaPRs and their targets reveals the extensive impact 

of MaPRs on key post-transcriptional processes and tumor-related pathways. The 

enrichment of pathways associated with ribosome, RBPs, spliceosome, and oxidative 

phosphorylation across multiple cancers aligns with the known roles of these pathways 

in protein synthesis and energy production1, which are essential for cancer cell 

proliferation and survival. Surprisingly, MaPRs were not enriched for gene sets 

associated with modulation of protein’s half life and degradation, suggesting they are 

relatively weaker regulators of the overall proteome abundances compared to RBPs. The 

cancer-specific enrichment of metabolism pathways further highlights the distinct 

metabolic reprogramming that occurs in different cancer types55, a hallmark of cancer that 

presents opportunities for targeted therapies. 

Identified MaPRs are largely cancer-specific, with the majority found in only one cancer 

type. This observation underscores the tissue-specific nature of post-transcriptional 

regulation, particularly in the context of proteome regulations specific to brain tissues, as 

evidenced by the high proportion of MaPRs in glioblastoma multiforme (GBM). In contrast, 
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a small subset of MaPRs exhibit pan-cancer dysregulation, pointing to their potential role 

as universal regulators in tumorigenesis. The majority of pan-cancer MaPRs showed 

significant dysregulation, predominantly exhibiting down-regulated expression across 

cancers, which is consistent with their involvement in pathways crucial for maintaining 

cellular homeostasis and proliferation. Notably, the identification of genetic dependency 

in up-regulated MaPRs across multiple cancer types, as corroborated by data from the 

Cancer Dependency Map23, highlights their essential role in cancer cell survival and their 

potential as therapeutic targets. For example, we identified hub MaPRs that were up-

regulated in tumors and show strong cancer cell genetic dependency, such as HNRNPM 

in LUAD and MMP8 in HNSC, which already has investigational or experimental drugs3.  

Our hypothesis that MaPRs play a central role in defining proteome subtypes is supported 

by the strong predictive power of MaPRs in classifying proteomic subtypes across cancer 

types. The ability of using just ten MaPRs to predict proteomic subtypes with high 

accuracy, particularly when compared to non-MaPR proteins, suggests that MaPRs 

encapsulate key information about the cancer proteome and could serve as biomarkers 

for molecular subtyping and cancer prognosis. 

The MaPR pipeline constructs post-transcriptional regulartory networks using quantitative 

proteogenomic profiles to identify tissue-specific regulatory patterns. This approach 

complements sequence-based deep learning (DL) models, which have shown excellent 

performance in predicting RBP and non-coding RNA (ncRNA) target binding, but have 

been trained on in vitro experimental data and ignore tissue contexts. For example, 

DeepCLIP56 and RBPNet57 focus on using sequence-based approaches to predict RBP 

targets. These predictions are complementary and may be combined to achieve better 

understanding of post-transcriptional regulations. Furthermore, ongoing developments of 

technologies surveying “translatomics”58, including polysome profiling, ribo-seq, trap-seq, 

proximity-specific ribosome profiling, rnc-seq, tcp-seq, qti-seq and scRibo-seq, will also 

provide data to be cross-validated the MaPR post-transcriptional regulartory networks. 

The validation of MaPR targets using eCLIP and knockdown experiments provides robust 

experimental evidence supporting the functional relevance of MaPRs in post-

transcriptional regulation. The independent validation of MaPR binding in glioblastoma 

cell line, as well as pre/post-knockdown differential protein expression of MaPR targets 

in breast cancer cells, further strengthen the credibility of the human cohort-derived MaPR 

networks and validates the functional and proteome consequence of targeting MaPRs. 

Our study has several limitations. First, the identification of MaPRs is based on 

computational predictions and statistical correlations, which, although supported by 

available experimental data, require further experimental validation to confirm their 

functional roles. Second, the variability in data quality, sample size, and proteomic data 

coverage may introduce biases across different cancer cohorts, and we envision the 

completeness and robustness of identified MaPRs will improve over time given the rapid 

rise in high-quality proteogenomic cohorts. Lastly, while our study identifies key MaPRs, 

it does not investigate their interactions with mutations or other biomolecules such as non-
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coding RNAs that may also participate in post-transcriptional regulation. Addressing these 

limitations in future research will be crucial for fully elucidating the role of MaPRs across 

cancer types. 

In conclusion, the identification of MaPRs reveals key regulators of post-transcriptional 

processes in cancer. The validation of MaPR-target relationships using experimental RNA 

binding and knockdown data provides robust evidence supporting the regulatory networks 

generated by our new computational tool. Our findings not only elucidate the complex 

regulatory networks governing protein abundance, but also highlight the potential of 

MaPRs as biomarkers and therapeutic targets. This study provides a resource of the 

catalog of MaPRs across ten cancer types and a robust MaPR computational tool for 

proteogenomic cohorts, laying the groundwork for future research aimed at unraveling 

the intricate post-transcriptional regulatory mechanisms that shape cancer and cell 

biology. 

 

METHODS 

Paired protein/mRNA expression profiles across 10 cancer cohorts 

Genome-wide paired protein and mRNA expression profiles of 1,047 samples across 10 

cancer cohorts were downloaded from CPTAC (https://portal.gdc.cancer.gov/,). The 

protein expression is a relative quantification achieved by MS technology. Normalization 

of Median Absolute Deviation (MAD) is performed for protein expression of each sample 

within a specific cancer cohort yielding a unit MAD.  Proteins without detected expression 

in more than 30% samples in each cancer cohort were removed. The mRNA expression 

was processed through STAR-Counts pipeline and measured by Fragments per kilobase 

of transcript per million mapped reads upper quartile (FPKM-UQ). mRNAs showing no 

expression in more than 30% of samples were removed. The curated samples conferred 

clinical diversities of different levels, such as age and gender, except for that all samples 

of BRCA, OV and UCEC were female. We also collected clinical information available for 

each cancer, including age, gender and other aspects used in downstream differential 

expression analysis. 

In addition, genome-wide paired protein and mRNA expression profiles of 258 

independent samples across 4 cancer cohorts were downloaded from The Cancer 

Genome Atlas (TCGA) for validation analysis. Proteome data of OV is derived from two 

institutions: Pacific Northwest National Laboratory (PNNL) and Johns Hopkins University 

(JHU), where 21 samples were shared by both institutions. The overview of paired 

protein/mRNA expression profiles were summarized at Fig. 1A and Table S1. 

Construction of post-transcriptional regulatory network 

We developed a computational pipeline, MaPR, to construct a post-transcriptional 

regulartory network independent of transcriptional regulation by simultaneously analyzing 

transcriptomic and proteomic data of the same cohort. The pipeline consists of the 
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following steps: (1) Construct two undirected graphs: one graph for protein co-expression 

network Gp = (Vp,Ep), where Vp is the set of quantified proteins in the input dataset and 

Ep are significant pair-wise spearman correlations of protein expression (Benjamini-

Hochberg BH corrected P-value < 0.01); and the other graph for mRNA co-expression 

network Gm = (Vm,Em) obtained through the same method applied to the transcriptomic 

data. (2) Remove co-expressed protein pairs that also show co-expression at the mRNA 

level, thus generating a new graph Gp-only = (Vp,Ep – Em). (3) Generate a directed graph 

of post-transcriptional regulation. Given protein A is a candidate protein abundance 

regulator and B is a protein which it regulates, we reasoned that protein A’s protein 

expression will be correlated with protein B’s protein expression independent of protein 

B’s mRNA expression. Based on the Gp-only graph, we iterated through each edge and 

calculated the semi-partial spearman correlation between protein A and protein B21:  

𝑟𝑝𝐴(𝑝𝐵,𝑚𝐵) =
𝑟𝑝𝐴 𝑝𝐵 − 𝑟𝑝𝐴 𝑚𝐵 ∗ 𝑟𝑝𝐵 𝑚𝐵

√1 − 𝑟𝑝𝐵 𝑚𝐵
2

 

where 𝑝𝐴 and 𝑝𝐵 are the expression of protein A and protein B, respectively, 𝑚𝐵 is the 

mRNA expression of protein B, and r is spearman coefficient between variables. The final 

post-transcriptional regulatory network is subsequently defined with a directed graph 

GMaPR = (VP,EMaPR) where the directionality denotes the regulators to the regulated 

proteins based on significant semi-partial spearman correlations (Bonferroni corrected P-

value < 0.01) corrected for the regulated protein’s mRNA level. To include more edges 

into consideration and retain the most significant edges as post-transcriptional regulatory 

network used for further MaPR prediction, the BH method and the stricter Bonferroni P-

value correction method were used at the (1) and (3) step, respectively. 

Identification of MaPR 

We hypothesized that, like transcription factors (TFs) that control RNA expression 

transcribed from DNA, there exists regulators (i.e., ribosomal-binding proteins) that 

mediate protein abundance translated from RNA. We used an empirical permutation-

based method to identify such protein abundance regulators from GMaPR that show 

statistical enrichment of regulated proteins. In this procedure, all edges EMaPR were 

shuffled 10,000 time, and each time, the summed number of EMaPR originated from a given 

candidate protein abundance regulator was calculated. The significance P-value for each 

regulator is simply calculated as the fraction of random simulations where the originating 

regulator edges is larger than that observed for a given protein in GMaPR. This procedure 

was repeated 100 times to identify significant regulator as MaPRs and the overlapped 

MaPRs of repetition were selected as final predicted MaPRs. 

Differential expressed protein (DEP) 

To identify differentially expressed protein, limma R package was used to perform a 

patient-paired (tumor and normal sample from the same patient) differential expression 

analysis in each cancer cohort, where we corrected any available confounding factors in 

that cancer cohort including demographics (age, ethnicity, race and geneder) and batch 
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effects (sequencing center, generating date, operator and tandem mass tag TMT batch). 

Significant was defined as both BH-corrected P-value < 0.05 and absolute value of log 

Fold Change > 1.2. Specially, no enough patient matched tumor/normal samples exist in 

GBM and OV leading  no DEP identificationin among these two cancer types (Table S1). 

We classified MaPRs into four categories considering the consistency of dys-regulated 

protein expression direction across cancers. Given one MaPR dysregulated in A cancers, 

including up-regulated in B cancers and down-regulated in C cancer, it is classified as (i) 

not dysregulated if A = 0; (ii) up-regulated if A > 0 & A = B & C = 0; (iii) down-regulated if 

A > 0 & A = C & B = 0; (iv) Mixed dys-regulated otherwise.  

Pruning, visualization, and module identification of post-transcriptional networks 

In order to visualize the dense post-transcriptional networks for each cancer type, the 

networks were first pruned. The pruning process involves ranking all edges for each 

regulator using the -log10(FDR) value and preserving only the top 2 edges. The pruned 

networks were then visualized using Cytoscape v3.10.159 using the Prefuse Force 

Directed Layout with default settings. Protein modules were identified using Clauset-

Newman-Moore greedy modularity maximization60 (resolution = 0.1) using the NetworkX 

v3.2.161 Python package. Finally, proteins without connections to the main network due 

to the pruning process were removed to simplify visualization. 

Centrality score of MaPR in each cancer type 

Pagerank62 is an algorithm originally developed to rank the importance of websites during 
a Google search and successfully applied to address biological problems. We calculated 
Pagerank scores to measure the centrality of each node in the post-transcriptional 
network. For each cancer type, the post-transcriptional regulatory network was initiated 
as a directed graph using the NetworkX61 Python package. Proteins in the network are 
represented as nodes and edges connecting nodes are directional, originating from a 
MaPR and pointing towards its target(s). The -log(FDR) was used as edge weights due 
to its direct relationship with the absolute value of the Spearman correlation coefficient. 
The direction of all edges in graph were reversed before calculating the PageRank 
centrality (edges originating from targets and pointing towards their regulators).   
 
Functional Enrichment Analysis 

We used proteins within expression profile filtering gene set associated with KEGG 

pathways obtained from Msigdb database63, resulting in 186 KEGG pathways ranging 

from 8 genes to 279 genes (Table S2). Hypergeometric test was performed to check 

whether gene set of interest were significantly overpresented in each KEGG pathway, 

where genes with expression available used as background. Enrichment significance is 

defined as both more than three overlapped and BH-corrected P-value < 0.05. We 

analyzed two gene sets of interest, including: (i) targets of each MaPR of each cancer 

type, (ii) top MaPRs in terms of their Pagerank score within each cancer type. 

 
Cancer Dependency Map (DepMaP)  
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To assess MaPR’s effect on cell viability, we acquired gene dependency scores from 
broad CRISPR experiments in cancer cell lines of corresponding lineage, sourced from 
current version 24Q2 of Cancer Dependency Map (DepMap)23. We used ‘OncotreeCode’ 
of DepMap model file to associate cancer cell line with our cancer types, where only two 
cancers need to notice that ‘GB’ classified as ‘GBM’ and ‘PAAD’ classified as ‘PDAC’ 
(Table S1). The gene dependency scores were calculated using the Chronos algorithm64, 
measuring the relative change in growth rate resulting from successful knockout of the 
gene. A score of 0 indicates no change in cancer cell viability, negative value indicates a 
loss of viability and positive value indicates a gain of viability. 
 

Targetable dependency driven by up-regulated expression in tumors and reduction in cell 

growth viability 

Savage et al expanded the landscape of therapeutic targets by combinatorial analysis of 
CPTAC proteome dataset and CRISPR experiment from an older version 22Q2 of 
DepMap3. We obtained the list of targetable proteins with up-regulated expression in 
tumors of CPTAC that also reduce cell growth in DepMap from their supplementary 
material (Table S3). These proteins, exhibiting differential protein abundance in our 
analysis at same cancer cohort of CPTAC, were identified as potentially druggable 
proteins for further analysis across seven cancers with all dataset available (CCRCC, 
CRC, HNSC, LSCC, LUAD, PDAC and UCEC, Table S1). 
 
Identification of cooperative MaPR pairs with therapeutic potential in each cancer type  

Cooperation between MaPR with therapeutic potential, MaPRs that belongs to potentially 
druggable proteins and 2,863 drug target proteins of five tiers from Savage et al3, and 
other MaPR are defined in a cancer type if they shared potentially druggable MaPR 
targets that are significantly enriched in at least two KEGG pathways. Potentially 
druggable MaPR targets of one MaPR were defined as its targets overlapped with 
potentially druggable proteins that also carry positive semi-partial correlation with the 
MaPR. Herein, the cooperation analysis were only performed on tumor up-regulated 
MaPR in our differential protein abundance analysis across seven cancer types. 
 
Machine learning to predict proteome subtype membership from MaPR protein 

abundance  

CPTAC proteomic profiles were first preprocessed with the following steps: 1) profile 
selection, 2) removing features (i.e., proteins) with many missing values, 3) imputing 
missing values, and 4) scaling. First, CPTAC profiles with matching proteomics and 
transcriptomics data were retained and proteins with missing values for >= 60% of profiles 
were removed. Next, missing values were imputed using k-nearest neighbors (KNN) with 
scikit-learn’s44 KNNImputer function. Predicted values were determined using the 5 
nearest neighbors (n_neighbors=5) while also factoring in their distances 
(weights=distance). Finally, features (i.e., proteins)  were Z-Score normalized using scikit-
learn’s44 StandardScaler function. After preprocessing, Uniform Manifold Approximation 
and Projection (UMAP) was applied to reduce the dimensionality of the protein features 
and the first 3 UMAP components were retained. Subsequently, K-means clustering was 
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subsequently applied to the first 3 UMAP components for a range of 2-5 subtypes. Finally, 
silhouette scores were calculated and used to determine the optimal number of subtypes 
for each cancer type. 
 
The aforementioned preprocessed CPTAC proteomics profiles (Steps 1-2) and proteomic 
subtypes for each cancer type were then used to train a machine learning classifier. For 
each cancer type, protein levels of n randomly selected MaPRs were used to train a 
random forest classifier with 5-fold cross validation to predict each sample’s subtype 
membership. Scikit-learn’s44 RandomForestClassifier was used with default 
hyperparameters. Samples were split into stratified folds using scikit-learn’s44 
StratifiedKFold function to ensure balanced cluster labels across folds. Training folds 
were KNN imputed and Z-Score normalized independently from the testing fold before 
each training iteration to prevent information leakage. Model performance was assessed 
by calculating the mean area under the receiver operating characteristic curve (AUC ROC) 
across all 5 folds. For cancers with > 2 subtypes, AUCs were calculated using the one-
vs-all method. Models were trained with 100 and 10 randomly selected cancer-specific 
MaPRs over 1000 permutations. Using the same method, other proteins (not MaPRs) 
were also randomly selected as features for comparison. The same random state was 
used for all models as well as sample stratification. To assess statistical difference 
between mean AUC ROCs over 1,000 permutations for MaPRs versus non-MaPRs, a 
Mann-Whitney U test was performed using python package statannotations45. 
 
Validation based on experimental data 

eCLIP data of target RNA binding 

We downloaded genome-wide eCLIP reproducible RNA binding peak region of 150 human 

RBPs in K562 or HepG2 cell lines from ENCODE (file set accession identifier 

ENCSR456FVU)47. Then, we inferred eCLIP-based translational regulation by using 

bedtools intersect function to overlap the reproducible RNA binding peak region of each RBP 

with protein-coding gene body annotation from GENCODE release 19, where one or more 

base(s) overlapped in the same strand defined as a regulation from the RBP to the mRNA. 

To validate MaPR-predicted targets by eCLIP-based targets, hypergeometric test is 

performed for each MaPR in a specific cancer, where significance required BH corrected P-

value < 0.05 and at least 3 overlapped genes. A similar procedure was performed to the 

eCLIP data of RBP YBX1 in U251 cell line49. 

RNA-seq upon RBPs knockdown 

We downloaded the batch corrected differential expression and differential splicing upon the 

knockdown RNA-seq of 263 human RBPs in K562 or HepG2 cell lines from ENCODE (file 

set accession identifier ENCSR870OLK)47. Significance were defined, separately, to obtain 

reliable target as following: |log2(fold-change)| > 1.2 and FDR < 0.05 for differential 

expression while |IncLevelDifference| > 0.05 & FDR < 0.1 & P-value < 0.05 for differential 

splicing. There were 139 RBPs with both eCLIP and knockdown RNA-seq within identical cell 

lines (Table S5). To validate MaPR-predicted targets by knockdown-based targets, 
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hypergeometric test is performed for each MaPR in a specific cancer, where significance 

required BH corrected P-value < 0.05 and at least 3 overlapped genes.  

RNA-seq, SWATH-MS proteomics (sequential window acquisition of all theoretical 

spectra-mass spectrometry) upon PRPF8 knockdown 

We obtained transcriptome and proteome upon PRPF8 knockdown in Cal51 cell lines 

from our previous work52. Protein expression was measured by SWATH-MS in three 

independent experiments (control-siRNA-treated and PRPF8-depleted). The proteomics 

dataset was reprocessed using the latest version of Data-independent acqustion (DIA) 

data analysis software by using Spectronaut v18.0 and default settings65. Differential 

protein analysis were performed using standard procedures in limma R package. RNA 

expression, measured by raw read count, was obtained from sequencing on Illumina 

HiSeq2000 platform in 3 control-siRNA-treated and 4 PRPF8-depleted experiments. The 

limma-voom method was used to normalize raw read count to better fit standard limma R 

package procedures for differential RNA analysis. 
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Figure Legends 

Figure 1. A computationally integrative pipeline to predict Master Protein 

abundance Regulator (MaPR) in cancer. (A) Tumor sample count with paired mRNA 

and protein expression profile of 14 datasets, including 10 discovery datasets of 10 

cancer types and 4 validation datasets of 3 cancer types. Different colors represent 

different cancer types. (B) Schematic overview of the pipeline. (C) Number of identified 

post-transcriptional regulations, MaPR, and their targets across 10 cancers. (D) 

Demonstration of one MaPR-target pair through correlations between MaPR AQR protein 

abundance, target PAD21 mRNA level, and target PAD21 protein abundance in GBM. (E) 
Comparison between the quantile of median Chronos score (relative change in cell 

viability caused by successful CRISPR knockout) of MaPRs and other genes in 

corresponding cancer lines from DepMap 24Q2. A lower Chronos score indicates a loss 

of cancer cell viability upon knockout and higher genetic dependency. Only cancer types 

with corresponding cancer lines available from DepMap 24Q2 are shown. P-value was 

calculated by one-sided Wilcoxon test for paired median Chronos score groups and 

significance was denoted by asterisks in each cancer. 

Figure 2. Identification of MaPR across 10 cancer types. (A) The Jaccard index matrix 

showed the similarity of MaPRs found across cancer types. The same cancer type from 

independent cohorts was labeled by green box while cancer from the same tissue was 

labeled by blue box, where the number of overlapped MaPR indicated. Cancer types from 

validation datasets were subscript with a ’1’. (B) Overlap of MaPR of each cancer among 

gene sets reported with known functions. Each cell represents the percentage of gene 

sets with known functions that overlap with MaPRs, where cells with hypergeometric test 

P-value < 0.05 were boxed. Cancer genes are the union of cancer hallmark genes (Yize 

Li et al Cell 023) and genes from the Cancer Gene Census of Cosmic. The 2,863 drug 

target proteins classified into five tiers were from Savage et al Cell 2024. (C) Pagerank 

quantile distribution for MaPRs within or not within RBP (upper) or HKG (bottom). 

Significant differences based on P-value calculated by one-sided Wilcoxon test were 

denoted by asterisks. (D) Pruned BRCA post-transcriptional network showing protein 

nodes colored by MaPR and RBP overlap (upper) or by MaPR and HKG overlap (bottom). 

Node border thickness corresponds to PageRank centrality scores of protein nodes in the 

unpruned network. Abbreviations: RBP: RNA binding protein; HKG: Housekeeping Gene; 

TF: transcription factor. 

Figure 3. Post-transcriptional regulators and their therapeutic potential. (A) The bar 

plot depicts the number of proteins identified as MaPR in different numbers of cancer 

types. MaPRs were classified into three categories based on the number of cancer types: 

cancer-specific MaPR, moderate MaPR, and pan-cancer MaPR. (B) The number of 

cancer-specific MaPRs across cancers. (C) Median Chronos score (relative change in 

cell viability caused by successful CRISPR knockout) of consistently up-regulated pan-

cancer MaPR in cell lines of the corresponding lineages from DepMap 24Q2. A negative 

value of Chronos score indicates a loss of cancer cell viability. We only displayed MaPRs 
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with DepMap dataset available that also exhibite up-regulated protein abundance in a 

specific cancer type. The gene-cancer pairs supported by up-regulated expression in 

tumor and reduced cell viability upon CRISPR knock down in Savage et al Cell 2024 was 

grey boxed. The gene-cancer pairs with negative value among all corresponding CRISPR 

knock down experiments from DepMap 24Q2 was denoted by an asterisk. (D) Pagerank 

quantile distribution for MaPRs of each cancer belonging to three MaPR categories, 

separately. Significant differences based on P-value calculated by one-sided Wilcoxon 

test were denoted by asterisks. (E) Differential expression and PageRank centrality of 

MaPRs. In the upper panel, pan-cancer hub MaPRs, defined with top 0.2% Pagerank 

centrality that showed significant dysregulated protein expression in at least one cancer, 

are labeled. The lower panel shows PDAC-specific hub MaPRs, defined with top 2% 

Pagerank centrality showing significant dysregulated protein expression in PDAC. The 

protein name color stands for gene sets with known functions while dot color indicates 

the cancer type where the MaPR was identified. The X-axis represents the Pagerank 

centrality score and the y-axis denotes the log Fold Change of dysregulated protein 

expression. The MaPR supported by up-regulation in tumor and reduced cell viability 

upon CRISPR knock down was dash boxed. MaPRs belonging to 2,863 drug target 

proteins of five tiers defined by Savage et al. 2024 were denoted with asterisk. (F) 

Cooperation analysis between MMP8, an enzyme of Tier 3 drug target, and ARPC1B in 

HNSC. Tier 3 drug targets were inhibited by drugs considered investigational or 

experimental. The Venn diagram shows the overlap between their potentially druggable 

MaPR targets while the barplot shows their co-enriched KEGG pathways. Potentially 

druggable MaPR targets of one MaPR were defined as its targets overlapped with 

potentially druggable proteins that also carry positive semi-partial correlation with the 

MaPR (Method).  (G) Median Chronos score (relative change in cell viability following the 

successful CRISPR knockout) of pan-cancer hub MaPR (upper) or PDAC-specific hub 

MaPR (lower) in cancer cell line of corresponding lineage from DepMap 24Q2. The 

percentage of corresponding CRISPR knock down experiments with negative Chronos 

score is labelled on the points plot. 

Figure 4. Pathway enrichment reveals biological processes modulated by MaPR 

proteins and targets. (A) Top pathways significantly enriched by MaPRs with top 30% 

Pagerank score in each cancer. The color of each cell indicates the odds ratio of the 

pathway enrichment, where the odds ratios that were greater than 1 are denoted by an 

asterisk. In the plotting scale, odds ratio greater than 1.5 times the interquartile range 

above the third quartile were reduced to this value. (B) Pathway enrichment of selected 

MaPR's targets, where each cell represents the number of cancer types where an 

enriched pathway. These MaPRs were chosen from pan-cancer MaPR that shows 

consistently up-regulated expression across cancer types. (C-D) Pruned post-

transcriptional networks in LSCC and LUAD, respectively. Protein nodes are colored by 

protein module membership found using the greedy modularity maximization algorithm. 

Proteins within each module, containing at least 50 nodes, were subject to enrichment 

analysis, and the top 5 significantly enriched KEGG pathways are shown. Significantly 
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enriched KEGG pathways that are both in the top 5 and cancer-specific (only significantly 

enriched by either LUAD or LSCC, not both) are in bold font.  

Figure 5. Performance of MaPRs vs other proteins in predicting cancer subtype. (A) 

Automatic identification of the optimal number of subtypes for each cancer type. UMAP 

was applied to the proteomics data and K-Means clustering was applied to the first 3 

UMAP components. Silhouette scores were calculated for 2-5 cancer subtypes. (B) 

UMAP visualization of subtype membership for an optimal number of subtypes found for 

BRCA, CCRCC, GBM, and UCEC. (C) Predicting tumor proteome subtypes based on 

100/10 MaPRs vs. non-MaPR proteins. The protein abundances of a randomly selected 

set of 100 (top row) and 10 (bottom row) MaPRs/other proteins were used as features to 

train a random forest classifier to predict cancer subtype membership. For each round of 

training (1,000 permutations), 5-fold cross-validation was performed and the mean ROC 

AUC was calculated (boxplots). A Mann-Whitney U test was performed to assess the 

statistical difference between ROC AUCs for MaPRs and other proteins. 

Figure 6. Experimental validation of MaPR-target regulation based on eCLIP and 

knockdown datasets. (A) Percentage of predicted targets of MaPR and other Non-

MaPRs validated by eCLIP (top), knockdown differential expression (middle, |log2Fold 

Change| > 1.2 & FDR < 0.05) and knockdown differential splicing (bottom). Significant 

differences based on P-value calculated by one-sided Wilcoxon test were denoted by 

asterisks. (B) MaPR targets validated by both eCLIP binding of MaPRs and differential 

gene expression upon MaPR knockdowns. Each cell color stands for the percentage of 

predicted targets validated by the overlap of eCLIP and knock-down differential 

expression (|log2Fold Change| > 1.2 & FDR < 0.05) in the same cell line. Only significantly 

validated cells are shown in red and respective validation rates. Only protein predicted as 

MaPR in a specific cancer is boxed. MaPRs that belong to the spliceosome pathway are 

bolded, and MaPRs that are housekeeping genes are underlined. Cells significantly 

supported by the overlap of eCLIP and knockdown differential splicing in the same cell 

line were denoted by an asterisk. (C) eCLIP RNA binding peaks of SRSF1 on NCL in 

HepG2 cell line. (D) eCLIP RNA binding peaks of AQR on RAD21 in the K562 cell line. 

(E) Comparison of –log10(FDR) or estimated coefficients among post-transcriptional 

regulatory network between eCLIP validated targets and non-validated targets of YBX1 

(left and middle) in GBM. Estimated coefficients vs –log10(FDR) from the post-

transcriptional regulatory network for eCLIP validated targets (right) in GBM. (F) eCLIP 

RNA binding peaks of YBX1 on PKM in GBM cell line of U251. For all the eCLIP peak 

region visualization figures, the red bar represents the significance of eCLIP peaks (–

log10 of P-value) and the orange bar represents a signal of eCLIP peaks (log2 of fold 

change). All significant differential splicing defined as |IncLevelDifference| > 0.05 & FDR 

< 0.1 & P-value < 0.05. (G) Differential protein expression analysis upon PRPF8 knock 

down in Cal51 cell line for the 105 targets supported by eCLIP in BRCA. (H) SWATH-MS 

protein expresion upon PRPF8 knock down in Cal51 cell line shown by XIC graph for 

three PRPF8 targets: MED23, MAVS, and EFTUD2. XIC graph used the extracted ion 

chromatography to measure protein abundance quantifications in three biologically 
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independent replicates (control-siRNA-treated and PRPF8-depleted). For each XIC graph, 

the upper panel of peak graphs represents the MS2 level ion traces while the bottom 

panel of peak graphs represents the MS1 level ion traces. (I) Expression fraction for the 

EFTUD2 transcripts whose fraction difference is> 0.1. 
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