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Abstract

Background: The clinical behavior of prostate cancer (PCa) is variable, and while the majority of cases remain
indolent, 10% of patients progress to deadly forms of the disease. Current clinical predictors used at the time of
diagnosis have limitations to accurately establish progression risk. Here we describe the development of a tumor
suppressor regulated, cell-cycle gene expression based prognostic signature for PCa, and validate its independent
contribution to risk stratification in several radical prostatectomy (RP) patient cohorts.

Methods: We used RNA interference experiments in PCa cell lines to identify a gene expression based gene
signature associated with Tmeff2, an androgen regulated, tumor suppressor gene whose expression shows remarkable
heterogeneity in PCa. Gene expression was confirmed by qRT-PCR. Correlation of the signature with disease outcome
(time to recurrence) was retrospectively evaluated in four geographically different cohorts of patients that underwent
RP (834 samples), using multivariate logistical regression analysis. Multivariate analyses were adjusted for standard
clinicopathological variables. Performance of the signature was compared to previously described gene expression
based signatures using the SigCheck software.

Results: Low levels of TMEFF2 mRNA significantly (p < 0.0001) correlated with reduced disease-free survival (DFS) in
patients from the Memorial Sloan Kettering Cancer Center (MSKCC) dataset. We identified a panel of 11 TMEFF2
regulated cell cycle related genes (TMCC11), with strong prognostic value. TMCC11 expression was significantly
associated with time to recurrence after prostatectomy in four geographically different patient cohorts (2.9 ≤ HR≥ 4.1;
p ≤ 0.002), served as an independent indicator of poor prognosis in the four RP cohorts (1.96≤ HR≥ 4.28; p ≤ 0.032)
and improved the prognostic value of standard clinicopathological markers. The prognostic ability of TMCC11 panel
exceeded previously published oncogenic gene signatures (p = 0.00017).

Conclusions: This study provides evidence that the TMCC11 gene signature is a robust independent prognostic
marker for PCa, reveals the value of using highly heterogeneously expressed genes, like Tmeff2, as guides to discover
prognostic indicators, and suggests the possibility that low Tmeff2 expression marks a distinct subclass of PCa.
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Background
Cancer of the prostate (PCa) is the second leading cause of
cancer death in male Americans. The clinical behavior of
PCa is variable, and while the majority of PCa cases remain
indolent, 10% of patients progress with aggressive metastatic
disease and subsequent emergence of therapy-resistant PCa
[1, 2]. In current practice, clinical variables including Glea-
son score, tumor stage, and PSA levels are used at the time
of diagnosis to predict disease outcome [3, 4]. However,
these prognostic factors have limitations, resulting in signifi-
cant rates of overtreatment, with associated comorbidities
[5–7], and undertreatment, leading to disease progression
and increased risk of PCa-specific mortality [8–10].
The clinical heterogeneity of PCa reflects, in part, a re-

markable genomic heterogeneity [11–18]. This suggests
that disease stratification based on molecular features may
be of prognostic value beyond standard clinicopathological
variables, and aid in the clinical management of the dis-
ease, as is the case for other cancers, i.e. breast [19–21].
Currently, several tissue-based molecular tests offer prog-
nostic information for patients with PCa either before or
after treatment. These are based on general features of ma-
lignancy, such as the Prolaris test (initially described by
Cuzick et al. [22]), which incorporates information from 31
cell-cycle related genes, or on molecular features more spe-
cific for PCa (Decipher, Oncotype DX, ProMark, and Con-
firmMDx tests [23–27]). In addition, recent work has
outlined the existence of several molecular subtypes of
PCa [28–31]. Notably, in one of these studies, the molecu-
lar subtypes were defined by specific driver mutations or
gene fusions that are essentially mutually exclusive and that
are able to categorize up to 74% of the analyzed tumors
[32]. If shown to correlate with clinical behavior, these mo-
lecular subtypes could prove critical for the management
and treatment of the disease. However, currently their
prognostic value is not fully established, and a significant
fraction of primary prostate cancers in the study could not
be categorized within these molecular subsets, suggesting
the existence of additional relevant molecular alterations.
High levels of variability in gene expression between tu-

mors can be useful in identifying prostate and other cancers’
risk genes [33]. We hypothesized that molecular subtypes of
primary prostate cancers may exist that have gene expres-
sion patterns associated with changes in the expression of
these highly variable genes. A recent report lists TMEFF2 as
one of the top 100 mRNA transcripts with the highest levels
of inter-tumor variability in primary PCa tissues [34].
TMEFF2 is an androgen regulated transmembrane protein
mainly restricted to brain and prostate. Our studies in PCa
demonstrate a role of TMEFF2 as a tumor suppressor [35–
38]. Furthermore, studies using limited numbers of clinical
samples, reveal changes in the expression of Tmeff2 with
disease stage in PCa [39, 40] and gliomas [41], supporting
an important role of Tmeff2 in these diseases.

We have investigated the expression pattern of TMEFF2
in human prostate tissues and explored the potential of a
TMEFF2 associated gene signature as a biomarker for dis-
ease prognosis. We report that low TMEFF2 mRNA ex-
pression is associated with decreased disease free survival
(DFS) in the MSKCC PCa dataset. Using transcriptional
profiling of cell lines and publically available PCa clinical
data, we have identified a low TMEFF2 driven gene signa-
ture associated with poor clinical outcome, comprised of
cell cycle related genes. This study not only provides new
insights into the clinical relevance of Tmeff2 in cancer, but
also specifies a group of cell cycle related genes as prog-
nostic and potential therapeutic targets.

Methods
TMEFF2 expression data
TMEFF2 mRNA expression in benign and malignant sam-
ples of PCa was interrogated using Oncomine Compen-
dium of Expression Array data [42] in the following
cohorts: Varambally et al. (n = 19; GSE3325; [43]), Vanaja
et al. (n = 40; [44]), Grasso et al. (n = 122; GSE35988; [45]),
and Taylor et al. (or MSKCC; n = 185; GSE21032; [46]).

Validation cohorts
Four prostate cancer cohorts were used in this study to es-
tablish the prognostic value of the TMCC11 signature:
MSKCC [46] (GSE21032); Cambridge [34] (GSE70768)
and Stockholm [34] (GSE70769), are microarray datasets,
and the TCGA PRAD (https://gdc.cancer.gov), a RNA
sequencing cohort. Cancer samples for all cohorts were
from RP specimens. Biochemical recurrence (MSCKK,
Cambridge and Stockholm) or recurrence/progression
(TCGA-PRAD) was the follow-up endpoint. Clinical,
histopathological data and summary of the cohorts are
listed in Table 1 and Additional file 1: Table S1.

Mammalian cell culture and treatment
The LNCaP and 22Rv1 cell lines were purchased from
American Type Culture Collection (ATCC; Manassas,
VA) and cultured as recommended. Dihydrotestosterone
(DHT; Sigma, Burlington,MA) was used at a concentra-
tion of 10 nM. For TMEFF2 knockdown, LNCaP and
22Rv1 cells were transduced with pLKO.1 lentiviral vec-
tors with antisense TMEFF2 sequences shTMEFF2–0
(TRCN0000073518), shTMEFF2–1 (TRCN0000073519)
and shTMEFF2–2 (TRCN0000073521). See Additional
file 1: Table S7 for sequences.

RNA extraction and RNA-Seq
LNCaP cell expressing sh_TMEFF2 or the sh_scramble
control were grown for 14 days after transduction and
then 24 h in hormone-depleted media before stimulation
with 10 nM DHT (or ethanol as vehicle control) for 24 h
prior to harvesting for RNA extraction. Three biological
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replicates per sample were used. Total RNA was extracted
with RNeasy mini kit (Qiagen, Waltham, MA) and cDNA
was synthesized with SuperScript III First-Strand synthesis
system (Life Technologies Inc., Carlsbad, CA). RNA integ-
rity and quantity was assessed using the Agilent Bioanaly-
zer (Agilent Technologies, Santa Clara, CA). Raw 75 bp
paired-end sequences were generated from an Illumina
NextSeq 500 sequencer (Illumina, San Diego, CA). Se-
quenced reads first underwent quality control with the
FASTQC tool and then aligned to a contaminant genome
to filter out reads which align to human ribosomal RNA,

poly-A, poly-C, phiX virus or mitochondrial DNA se-
quence. The filtered reads were trimmed using Trimmo-
matic [47], as well as read clipping based on quality over a
sliding window, retaining reads with a minimum length of
15 bp. Trimmed, filtered reads were pseudoaligned to the
GRCh38 human reference transcriptome using kallisto
version 0.42.3 [48], with enabled bias correction and 50
bootstrapping rounds. Expression values for 173,259
unique transcripts were measured and transcripts with an
average of 5 count per million (CPM) or less across all
samples were removed from further analysis. To perform

Table 1 Clinical and pathological characteristics of the prostate cancer datasets used in this study

MSKCC
(Taylor et al.)
n = 140

Cambridge
(Ross-Adams et al.)
n = 112

Stockholm
(Ross-Adams et al.)
n = 92

TCGA-PRAD
(TCGA)
n = 490

Age (years)

Mean 58.04 62 61

Range 37.3–83.0 41–73 41–78

PSA

Median 6.15 7.9 7.95

< 10 104 80 56

≥ 10 34 31 34

Unknown 2 1 2

Biopsy Gleason

≤ 3 + 4 128 77 68

≥ 4 + 3 12 27 22

Unknown 8 2

Surgical Gleason

≤ 3 + 4 94 83 56 197

≥ 4 + 3 44 29 34 293

Unknown 2 2

Extra-capsular ext. (mri + ct scan combined)

Y 97 77 42 31

N 43 35 48 199

NA/equivocal 2 260

Positive surgical margins

Y 33 26 42 165

N 107 86 50 311

Unknown 14

Recurrence

Y 36 19 45 91

N 104 93 47 399

Pathology Stage

pT2a-c 87 35 47 184

pT3a-c 46 77 42 290

pT4 7 3 10

Unknown 6

The table defines the characteristics of the samples used in this study for each of the datasets
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differential expression analysis (LNCaP-sh_TMEFF2 vs.
LNCaP-sh_scramble control), CPM values were summa-
rized at the gene level and normalized with the R packages
[49] and DESeq2 [50] to identify significantly differentially
expressed genes (DEGs) with fold change ≥1.5 and
FDR-adjusted p-value ≤0.05. Data deposited in NCBI
GEO under accession number GSE117180.

Real-time polymerase chain reaction (RT-PCR)
Total RNA was extracted with RNeasy mini kit and cDNA
was synthesized with iScript™ Reverse Transcription
Supermix for RT-qPCR (BioRad, Hercules, CA). Quantita-
tive RT-PCR was performed using the SsoAdvanced™
Universal SYBR® Green and gene specific primers
(Additional file 1: Table S7) on the Biorad CFX96™ Touch
Real-Time PCR Detection System (BioRad, Hercules, CA).
All RT-PCR experiments were performed under MIQE
guidelines, using three biological replicates and two tech-
nical replicates.

Western blotting
Cell lysates were prepared in RIPA buffer containing a
protease inhibitor mixture and analyzed by Western blot
as described before [38], using the following antibodies:
TMEFF2 (HPA015587, Sigma) at a 1:1000 dilution; AR
(sc-7305, Santa Cruz Biotechnology Inc., Dallas, TX) at a
1:1000 dilution; and Calnexin (ab22595; Abcam, San
Francisco, CA) at a dilution of 1:4000.

TMCC11 signature selection process
From the initial group of 25 genes nuclear genes selected
as significantly upregulated (Log2 fold change ≥1.8, ≤3.1;
FDR < 0.05) by DHT in the LNCaP-TMEFF2 knockdown
cells, we chose the 21 top-ranking upregulated genes
(Log2 fold change ≥2.0) (Additional file 1: Figure S3).
We interrogated this 21 gene subset in the MSKCC
dataset (n = 150) in cBioPortal [51, 52] and selected
those genes (n = 11; TMCC11) whose expression was
upregulated in at least 4 of those patients with low
TMEFF2 mRNA expression, and that maintain a strong
functional association as demonstrated using STRING
[53] and IPA pathway analyses (Additional file 1: Figure S4).
Two other signatures were used for SigCheck analysis.
TMCC13 is a modified TMCC11 signature including two
additional genes, E2F7 and GSG2 (from the TMEFF2 21
top-ranking upregulated genes; Additional file 1: Figure
S3), selected based on their individual prognostic values
and lack of overlap with genes from the Cuzick [22] signa-
ture. TMCC3 consist of the CDC45, NCAPG and CLSPN
genes and was selected from TMCC11 as the optimal sub-
set in predicting time to BCR in the Stockholm dataset.
For this purpose, the dependence of time to BCR on the
signature gene expression was modeled using GLM cox
regression, and the search for the best subset relied on

elastic net regularization, a standard features selection
procedure implemented in the R package glmnet.

TMCC11 signature score development
Patients were divided in two categories (high and low)
based on the TMCC11 gene signature, by calculating the
mean expression over all the genes in the signature for each
sample. The distribution for the population was calculated,
and samples were included in the high group when their
mean fell within the upper tertile (above the 67th percent-
ile) and in the low group when below the 67th percentile.

Databases and statistics
Databases/platform used during this study: cBioportal [51,
52], Oncomine [42], the R2 genomic analysis and
visualization platform (http://r2.amc.nl); the STRING data-
base [53]; and SurvExpress [54]. The parameters used are
referenced in the corresponding figure legends if applicable.
For publicly available microarray or RNA-Seq expression
data sets, the normalized expression data was downloaded
from the Oncomine, cBioportal or R2 databases.
Hierarchical clustering of the TMCC11 signature

genes (Euclidean distance with average linkage on zscore
transformed expression values) on samples from the
MSKCC dataset was performed in R2.
Data analysis were performed by non-parametric

Wilcoxon multiple comparison test or Student t-test as in-
dicated in figure legends. Statistical significance was de-
fined as P < 0.05 unless otherwise stated. Time-to-event
outcomes were evaluated using Kaplan-Meyer analysis
and survival-time differences were compared using the
log-rank test. Uni-, multi-variate and C-statistics were
used to assess the independent effect of biomarker status
on clinical outcome. Univariate hazard ratios and p-values
were obtained using the Cox proportional hazard model.
Multivariate analysis was performed using the Cox pro-
portional hazard model. A stepwise model selection pro-
cedure coupled with Cox proportional hazard model was
used to define the final model. The Harrell’s method was
used to compute the concordance statistics. Covariates in-
cluded in the multivariate models were: biopsy and/or sur-
gical gleason score, PSA, pathological T- stage, positive
surgical margins and/or extracapsular extension. Covari-
ates were adjusted as follow: Gleason – High (≥4 + 3):
Low (≤3 + 4); PSA – High (≥10):Low(< 10); Path Stage –
High(≥T3):Low(≤T2); Positive surgical margins -Y:N;
Extracapsular extension (ECE) – Y:N. These analyses were
conducted using SAS 9.4 and a p-value of less than 0.05
or 0.01 if indicated, was deemed statistically significant.

Gene signature analysis with SigCheck
We analyzed the prognostic potential and specificity of
the TMCC11 signature using the Bioconductor package
SigCheck [55]. This software allows comparison of a
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gene signature prognostic performance against random
and known gene signatures. In a first analysis, we com-
pared the prognostic power of the TMCC11 gene signa-
ture and 253 oncogenic signatures available from the
literature. The prognostic power of a gene signature was
quantified by the log-rank test p-value for the difference
between the time to BCR in high versus low risk groups
according to overall signature gene expression. Mean ex-
pression over all the genes in the signature for each sam-
ple was computed, and high versus low expression was
considered as over or below the 67th percentile respect-
ively. Log-rank P-values for each signature were com-
puted using the Stockholm ( [34], GSE70769),
Cambridge ( [34], GSE70768) and MSKCC ( [46],
GSE21034) datasets downloaded from the GEO website.
In a second analysis, we comparatively assessed the su-
periority of the TMCC11 and the other 253 oncogenic
signatures against randomly constructed predictors. For
each signature under study, 10,000 signatures of the
same number of genes were selected at random and for
each log-rank p-value scores of their predictive power
were computed as described above. A bootstrap p-value
was then determined as the proportion of random gene
signatures scoring better than the original gene signa-
ture. Stockholm, Cambridge and MSKCC datasets were
also used for this analysis. The code for the analysis is
available upon request. See Additonal file 1 for supple-
mentary Methods.

Results
Low expression of TMEFF2 is associated with advanced
disease and is prognostic of clinical outcome
The previously described cell growth inhibitory function
of TMEFF2 in PCa [35–37] led us to determine the rela-
tionship of Tmeff2 expression alterations to the clinico-
pathologic features of PCa. We first analyzed tumor
associated changes in TMEFF2 expression by immunohis-
tochemistry in PCa tissues (Additional file 1: Figure S1A).
TMEFF2 protein expression was higher in patients with
localized disease as compared to non-tumor samples (not
shown). However, when patients were stratified by tumor
stage, TMEFF2 expression was significantly decreased in
more advanced pathological stages (Additional file 1:
Figure S1B).
We then used Oncomine [42] to examine alterations of

TMEFF2 mRNA expression in publically available samples
from PCa patients. Expression of TMEFF2 mRNA is sig-
nificantly increased in the primary tumors of patients with
PCa when compared to normal tissue, in multiple inde-
pendent datasets (Fig. 1a). However, in samples from me-
tastases and castration resistant prostate cancer (CRPC),
the levels of TMEFF2 mRNA are either unchanged or de-
creased compared to normal prostate, and significantly
decreased (P < 0.05) when compared to primary tumors

(Fig. 1a). These data suggest a negative correlation be-
tween TMEFF2 mRNA expression and progression to the
advanced stages of PCa.
Based on these observations, we analyzed the prognos-

tic value of TMEFF2 mRNA expression in the MSKCC
dataset ( [46]; Table 1), a publically available human PCa
dataset with clinical outcome data. Kaplan-Meier ana-
lysis demonstrated a significant (p < 0.0001) correlation
between TMEFF2 levels and disease progression
(assessed by biochemical recurrence, BCR). Patients with
the lowest TMEFF2 mRNA expression had faster BCR
(20 vs. 110 months; Fig. 1b). These findings underscore
the clinical significance of Tmeff2 in cancer.

TMEFF2 silencing in the LNCaP cell line increases
androgen-driven expression of a group of cell-cycle
related genes
TMEFF2 is one of the top 100 mRNA transcripts with
the highest levels of inter-tumor variability in patient
samples from several publically available datasets ( [34]
and Additional file 1: Table S1). Such heterogeneity and
the fact that low TMEFF2 mRNA expression correlates
with advanced disease, suggest that it may define a mo-
lecular signature with prognostic value. To begin under-
standing the molecular consequences of decreased
TMEFF2 expression and its potential to define a prog-
nostic gene signature, we conducted TMEFF2-targeted
RNA interference experiments. Using shRNA, we si-
lenced expression of TMEFF2 in LNCaP cells (Fig. 2a
and Additional file 1: Figures S2A and S2B), a PCa cell
line that expresses high levels of TMEFF2 mRNA and
protein. Using RNA-Seq, we identified a group of 25 nu-
clear genes that were moderately but significantly upreg-
ulated by DHT in the context of TMEFF2 silencing
(Log2 fold change ≥1.8, ≤3.1; FDR < 0.05), as compared to
control cells (transduced with scramble shRNA; Additional
file 1: Figure S2C). STRING pathway analysis [53] suggests
that most of these genes are functionally associated
(Additional file 1: Figure S2D) and belong to the DNA rep-
lication and cell cycle gene ontology categories. All to-
gether these results suggest that TMEFF2 silencing alters
expression of androgen receptor (AR) targets, andthat pre-
viously reported TMEFF2 effects on growth [37] may be
driven, in part, by TMEFF2-modulated AR-mediated ex-
pression of genes involved in cell cycle related processes
(Additional file 1: Supplementary Discussion).
Out of the initial group of genes, we selected 11 (see

Methods and Additional file 1: Figsure S3A and S3B) re-
ferred to as the “TMEFF2 modulated cell cycle 11
(TMCC11)” gene signature. qRT-PCR analysis in LNCaP
cells confirmed that DHT mediated induction of the
TMCC11 genes was significantly increased in LNCaP
cells in which TMEFF2 expression was low compared to

Georgescu et al. BMC Cancer          (2019) 19:423 Page 5 of 13



control cells (Fig. 2b). High expression of these genes
with low TMEFF2 expression was also seen in patients’
samples from the MSKCC dataset (Additional file 1: Fig-
ure S3C). Clustering analysis of the TMCC11 signature
genes in the MSKCC dataset indicate that expression of
these genes is highly correlated (Fig. 2c). These 11 genes
are all tightly related to cell-cycle and DNA replication
and repair processes (Additional file 1: Figure S3B).
Moreover, silencing of TMEFF2 in PCa cells affects cell

cycle progression (Additional file 1: Figure S4) support-
ing the role of TMEFF2 in modulating expression of
cell-cycle related genes (see also Additional file 1:
Supplementary Discussion).
In clinical samples from the Grasso [45] and MSKCC

[46] datasets, the expression of the individual genes from
the TMCC11 signature is significantly increased in
CRPC and metastatic disease samples when compared
to normal tissue, and inversely correlated with the

A

B

Fig. 1 Low expression of TMEFF2mRNA is associated with advanced disease and clinical outcome. a Scatter plot showing TMEFF2mRNA expression levels in
normal, primary and metastatic/CRPC tissue from patients from different prostate cancer cohorts. Expression levels were obtained from Oncomine and
compared using a Wilcoxon multiple comparison test. b Kaplan-Meier analysis of biochemical-relapse free survival for patients from the MSKCC prostate cohort
stratified by TMEFF2mRNA expression (n = 11; lowest expression in the cohort) vs. the rest of the patients. *P <0.05; **P <0.01; ***P <0.001; ****P <0.0001
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expression of TMEFF2 in the same samples (Additional
file 1: Figure S5A and S5B). In addition, mRNA coexpres-
sion analysis using the PCa MSKCC and PRAD TCGA
datasets indicates that these genes are significantly
co-expressed (Additional file 1: Figure S6).

The TMEFF2-modulated gene signature is an independent
marker of recurrence after prostatectomy in multiple
clinical datasets
Based on the results suggesting that loss of TMEFF2 often
predates aggressive/metastatic disease, we postulated that
the TMEFF2-modulated TMCC11 gene signature could
have prognostic value. We evaluated this hypothesis using
BCR as the clinical endpoint in the PCa MSKCC dataset

[46] (Table 1 and Additional file 1: Table S2 and Figure S7
provide information on the samples). The MSKCC dataset
includes a number of prostatectomy samples from pa-
tients with wide range of times to BCR as measured by in-
creased levels of PSA. Individually, increased expression of
each of the genes comprising TMCC11 was statistically
significant (P < 0.01) in predicting BCR (Additional file 1:
Table S3; for CLSPN p = 0.0137). In Kaplan-Meier ana-
lyses, high expression of the TMCC11 signature was asso-
ciated with a median time to progression of 55.39months
vs. greater than 150months for patients with low expres-
sion of TMCC11 (log-rank P value = 1.11e-05; Fig. 3a).
These results indicate that the TMCC11 signature is a
powerful predictor of aggressive PCa, segregating the
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Fig. 2 TMEFF2 silencing in PCa cells induces androgen-driven expression of cell cycle genes. a Western Blot analysis to determine knockdown of
TMEFF2 in LNCaP cells using three different TMEFF2 targeted shRNAs. Only sh_TMEFF2–1 and sh_TMEFF2–2 appreciably silenced TMEFF2 expression.
Note that Tmeff2 is an androgen-regulated gene. Representative blot from > 3 repeats. b qRT-PCR data in the LNCaP-sh_TMEFF2 cells confirming
increased expression in response to androgen stimulation of the cell cycle genes selected for the TMCC11 signature. Data is the average of 3
independent repeats and was analyzed using T-test. Error bars correspond to s.e.m. c Clustering analysis of TMCC11 signature genes in the MSKCC
cohort. Each column corresponds to an individual patient. The status of some clinicopathological variables for each sample has been included in the
figure at the top of the heatmap. *P < 0.05; **P < 0.01
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tumors into high and low-risk groups based on time to
BCR. We obtained similar results using the SurvExpress
[54] database for analysis (Additional file 1: Figure S8).
In Cox regression analyses, TMCC11 was a significant

prognostic variable (p < 0.001) with a hazard ratio (HR)
of 4.1 (Table 2). In multivariate analysis, and a model
constructed using a forward stepwise selection process
coupled with Cox proportional hazard, TMCC11
remained a significant prognostic variable with a HR of
2.27 and 2.35 respectively (Table 2). The final model also
selected pathological T-score and surgical Gleason score
as significant predictors of BCR (Table 2).
We validated the prognostic findings in additional in-

dependent publically available datasets (see Table 1,
Additional file 1: Table S2 and Fig. S7 for descriptions).
Kaplan-Meier analysis of relapse free survival demon-
strated that TMCC11 was a significant (log-rank p =
5.75e-04, p = 1.52e-04 and p = P = 1.01e-07) predictor of
outcome in the Cambridge (CAM; n = 112; [34]),
Stockholm (STO; n = 92; [34]) and PRAD TCGA
(n = 490) cohorts, segregating patients with better/worse

prognosis based on disease recurrence data over 60, 100
and 180months respectively (Fig. 3b-d). Results using
multivariate Cox regression analysis including expression
level of the TMCC11 signature and several clinical vari-
ables, demonstrate that the TMCC11 signature is an inde-
pendent predictor of recurrence after prostatectomy in
these datasets (Table 2). Taken together, these data suggest
that the TMCC11 signature is prognostic for risk of dis-
ease recurrence after radical prostatectomy, and has an
added benefit in the context of standard clinical variables
in several independent datasets.
The prognostic value of the TMCC11 signature was fur-

ther evident using C-statistics (Additional file 1: Table S4).
The TMCC11 signature was a significant predictor across
all datasets. In the TCGA-PRAD, it performed better
(C-index, 0.64; confidence interval, 0.58–0.70; p < 0.001)
than Gleason (C-index, 0.62; confidence interval,
0.58–0.67; p < 0.001) or pathological score (C-index, 0.61;
confidence interval, 0.57–0.66; p < 0.001). Moreover, in all
the datasets, the TMCC11 signature significantly im-
proved prognostic ability when combined with other

A B

C D

Fig. 3 High TMCC11 expression correlates with decreased disease-free survival in several independent PCa datasets. Kaplan-Meier analysis of
biochemical-relapse free survival in the MSKCC (a), Cambridge (b), Stockholm (c) and PRAD-TGCA (d) datasets. Patients were divided in two
categories with the upper tertile of the TMCC11 used at the cut point. Red indicates high TMCC11 group
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clinical variables (Additional file 1: Table S4). The persist-
ence of the interaction terms as significant effects proves
that the TMCC11 predictive effectiveness might vary with
the levels of the other clinical variables.
In selected patients from the MSKCC and TCGA-

PRAD datasets with high pathological T (≥ T3) or
Gleason (≥ 4 + 3) scores, high TMCC11 significantly
stratified men at risk for disease recurrence/progression
(Additional file 1: Figures S9 and S10). TMCC11 pro-
vides prognostic information in high-risk patients be-
yond that provided by established clinicopathological
prognostic features as demonstrated using multivariate
analysis (Additional file 1: Tables in Figures S9 and S10).
These results suggest that TMCC11 has prognostic value
in men with high-grade tumors, after RP. TMCC11
failed to stratify patients with low surgical Gleason score,
however, preliminary data using the MSKCC [46] and
Stockholm [34] datasets indicate that TMCC11 can
stratify patients presenting with low biopsy Gleason
score, suggesting that the signature may be informative
for PCa management after a positive biopsy (Additional
file 1: Figure S11).

Prognostic assessment of the TMCC11 gene signature
Several gene signatures have prognostic capabilities in
PCa. We therefore conducted additional tests to deter-
mine the value of the TMCC11 signature when compared
to other signatures, using the Bioconductor package
SigCheck [55]. This software allows comparison of a gene
signature’s prognostic performance against random and
known gene signatures. Initially, we analyzed the prognos-
tic power (based on time to recurrence) of TMCC11 and
other previously identified oncogenic signatures: 6 signa-
tures for PCa [22, 25, 34, 56–58], 189 oncogenic signa-
tures from multiple cancer types in MSigDB, and 48
breast oncogenic signatures (compiled in [59]) (n = 243,
Table 3 and Additional file 1: Table S5). TMCC11 outper-
formed most signatures (Additional file 1: Table S5).
Considering just the 6 PCa gene signatures, only the
Cuzick (n = 31) signature achieved comparable perform-
ance to the TMCC11 across the three datasets for iden-
tifying patients with shorter time to biochemical relapse,
and the performance depended on the dataset utilized
(Table 3). Of note, 5 genes within the Cuzick set overlap
with the TMCC11 set. We obtained similar results using

Table 2 Uni- and multivariate Cox regression analysis of disease recurrence in several PCa datasets

UNIVARIATE ANALYSIS MULTIVARIATE ANALYSIS FINAL MODEL

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

MSKCC TMCC11 4.10 (2.08, 8.1) < 0.001 2.27 (1.05,4.91) 0.038 2.35 (1.14,4.87) 0.021

Biop. Gleason 4.26 (1.93, 9.42) < 0.001 0.96 (0.36,2.59) 0.943

PSA 2.98 (1.53, 5.83) 0.001 1.66 (0.79,3.49) 0.372

Path Stage 4.62 (2.30,9.27) < 0.001 4.15 (1.56,11.04) 0.459 2.99 (1.42,6.29) 0.004

Surg. margins 2.07 (1.06, 4.06) 0.034 0.90 (0.42,1.95) 0.776

ECE 2.10 (0.92,4.80) 0.79 0.42 (0.12,1.29) 0.415

Surg. Gleason 10.56 (4.87,22.86) < 0.001 7.92 (3.16,19.87) < 0.001 6.78 (2.92,15.73) < 0.001

CAM TMCC11 4.76 (1.80, 12.59) 0.002 4.28 (1.53, 11.99) 0.006 3.53 (1.31,9.51) 0.013

Biop. Gleason 3.25 (1.32, 8.02) 0.011 1.10 (0.25,4.93) 0.897

PSA 1.50 (0.57, 3.95) 0.412 2.82 (1.00,7.98) 0.050

Surg. Gleason 4.68 (1.88,11.63) < 0.001 5.12 (1.07, 24.55) 0.041 4.31 (1.70,10.91) 0.002

Surg. margins 1.64 (0.62, 4.35) 0.324 2.08 (0.76,5.71) 0.156

ECE 1.82 (0.60,5.48) 0.288 0.85 (0.28,2.64) 0.780

STO TMCC11 3.00 (1.65,5.44) < 0.001 2.69 (1.46,6.11) 0.003 2.89 (1.56,5.36) < 0.001

Preop. Gleason 2.67 (1.44,4.96) 0.002 1.40 (0.66, 2.99) 0.381 2.12 (1.12,4.02) 0.021

PSA 1.61 (0.89,2.92) 0.116 1.05 (0.56,1.98) 0.879

Surg. Gleason 3.62 (2.00,6.58) < 0.001 1.77 (0.84,3.74) 0.136

Surg. margins 1.99 (1.10,3.59) 0.023 1.84 (0.96,3.54) 0.068

ECE 4.21 (2.19,8.09) <.001 2.98 (1.46,6.11) 0.003 3.69 (1.89,7.20) < 0.001

TCGA TMCC11 2.94 (1.94, 4.46) < 0.0001 1.96 (1.26,3.05) 0.003 1.96 (1.26,3.05) 0.003

Gleason 4.08 (2.27, 7.34) < 0.0001 2.29 (1.20, 4.38) 0.012 2.29 (1.20, 4.38) 0.012

Path Stage 3.68 (2.07, 6.51) < 0.0001 2.25 (1.22, 4.15) 0.010 2.25 (1.22, 4.15) 0.010

Gleason – High (≥4 + 3): Low (≤3 + 4); PSA – High (≥10):Low(< 10); Path Stage –High(≥T3):Low(≤T2); Positive surgical margins -Y:N; Extracapsular extension (ECE) – Y:N
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two other TMCC11 derived signatures, TMCC13 and
TMCC3 (Additional file 1: Table S5). TMCC13 is a
modified form of TMCC11 including two additional
genes, E2F7 and GSG2, while TMCC3 consisted of only
3 genes from the TMCC11 signature that do not over-
lap with the Cuzick signature. These results underscore
the independent prognostic value of the genes included
in the TMCC11 signature.
We then analyzed the performance of the oncogenic sig-

natures against 10,000 signatures consisting of the same
number of genes (for the specified signature) selected at
random (Tables 3 and Additional file 1: Table S6). The
TMCC11 signature performed in the 97th and 99th
percentiles, with only 3, 1.2 and 0.18% of the random
signatures demonstrating an equal or smaller p-value
(empirical p-values of p = 0.0305, p = 0.012 and p = 0.0018)
in predicting relapse in the Stockholm, Cambridge and
MSKCC datasets respectively. Considering the PCa signa-
tures, only the Cuzick (n = 31) signature achieved compar-
able performance to the TMCC11 across the three
datasets (Table 3). TMCC11, TMCC13 and TMCC3 out-
performed most of the oncogenic signatures described
above (n = 243), when tested against random signatures
(Additional file 1: Table S6).

Discussion
Here, we have identified an 11-gene prognostic signature
(TMCC11) for PCa progression consisting of genes associ-
ated with cell-cycle and DNA damage response. The prog-
nostic value of this signature was confirmed on several
publically available cohorts totaling 834 samples from
geographically different cohorts of patients that under-
went RP. TMCC11 is an independent predictor of bio-
chemical recurrence after RP and added significant
prognostic value to standard clinicopathological variables.
In multivariate analysis TMCC11 was the only variable

consistently predictive of disease recurrence in all of the
datasets, and it significantly increased risk prediction over
other clinical variables and when combined with other
variables (Table 2 and Additional file 1: Table S4).
Moreover, in subsets of patients with high Gleason or
pathological scores, the TMCC11 signature provided a
statistically significant stratification of patients identifying
high and low risk groups for disease recurrence, and pre-
liminary data suggests that TMCC11 can stratify patients
that present with low biopsy or pre-operative Gleason
scores. All together, these results suggest that TMCC11
may provide relevant prognostic information in several
clinical scenarios and have an impact not only on the deci-
sion of whether to provide adjuvant therapy after RP, but
also on treatment management after a positive biopsy.
Genomic and transcriptomic analyses have provided

insight into the complexity of prostate tumors and the
existence of molecular subtypes. However, the clinical
applicability of these classifications has been thwarted,
due in part to the highly heterogeneous nature of PCa
and the difficulty of identifying additional relevant alter-
ations that occur at low frequencies [11–18] [60]. We
hypothesized that heterogeneously expressed genes can
expose unidentified molecular subclasses of PCa and/or
identify translationally relevant gene sets. Expression of
Tmeff2, an androgen regulated gene, is highly variable
across several different PCa datasets ( [34], Additional
file 1: Table S1). Low TMEFF2 mRNA expression signifi-
cantly associated with shorter time to post-RP BCR.
Although the prognostic value of low TMEFF2 mRNA
levels is uncertain, low TMEFF2 mRNA correlates with:
1) increased androgen response of the cell cycle genes
that define the TMCC11 signature in cell lines; and 2)
increased mRNA levels of the same genes in samples
from clinical datasets (see also Additional file 1:
Supplementary Discussion). Interestingly, SPINK1 also

Table 3 Prognostic potential of PCa signatures

P-values (compared to known PCa signatures) P-values (compared to random sets of genes)

Dataset Signature STO CAM MSKCC STO CAM MSKCC Ref

CUZICK 0.00466 0.01610 2.10E-06 0.0182 0.0272 0.0000 22

TMCC11 0.00915 0.00479 0.000173 0.0305 0.0120 0.0018 This study

HES6 0.00544 0.00447 0.24900 0.0242 0.0126 0.5834 56

ROSS(100E) 0.17000 0.00720 0.06070 0.2609 0.0173 0.1388 34

IRSHAD 0.14100 0.04040 0.14500 0.2208 0.0552 0.2819 57

ONCOTYPEDX 0.05380 0.15600 0.20600 0.1126 0.1846 0.3586 25

SHARMA 0.46600 0.29700 0.60400 0.5489 0.3234 0.7237 58

Left columns: Comparative TMCC11 and known PCa signatures prognostic potential. Performance scored by log-rank test p-value of the difference on time to BCR
between high and low risk groups defined by the overall gene expression signature. Right columns: Comparative analysis for TMCC11 and known PCa signatures
over performance against random signatures. For each signature, 10,000 equal size signatures were generated at random and evaluated for predicting early
relapse by log-rank test p-value. An overall bootstrap p-value score was computed as proportion of random signatures performing better than the initial
signature. For both analyses, the data is sorted by first principal component of the individual rankings of the 3 columns corresponding to the Cambridge,
Stockholm and MSKCC datasets. The Ross (100E) signature corresponds to the genes selected based on transcriptome profiling only. See also Additional file 1:
Tables S5 and S6 for a full list with additional signatures
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demonstrates highly variable expression across the same
datasets (Additional file 1: Table S1). SPINK1 is an
androgen-regulated gene highly overexpressed in approxi-
mately 10% of PCa cases [61–63]. While the prognostic
role of SPINK1 for PCa is unclear [64], it has been sug-
gested that pathways downstream of SPINK1 may have
translational and prognostic significance [64, 65]. These
observations hint to highly variably expressed genes as a
potential source of information with translational value.
Currently several tissue-based genomic biomarkers

offer prognostic information for patients with PCa either
before or after treatment [23]. The Decipher™ [24],
Oncotype DX® [25] and Prolaris® [22] are commercially
available panels based on measurement of gene expres-
sion changes at the RNA level. The Prolaris® panel,
based on the set described in Cuzick [22], examines the
expression of 31 genes involved in cell cycle progression
and 5 out of the 11 genes in TMCC11 are common to
this panel. We observed a similar prognostic perform-
ance for the Cuzick [22] and the TMCC11 signatures
when compared against random size-matched signa-
tures. In addition, the prognostic power (based on
p-value) of our signature vs. Cuzick [22] was dependent
on the dataset utilized, but they were similarly inform-
ative and both behaved as strong risk predictors. While
these comparisons need to be verified in independent
studies, TMCC11 represents a smaller and more focused
distinct gene set with potentially added value in specific
patient subsets. The smaller size of the TMCC11 signa-
ture (11 genes vs. 31 of Cuzick [22]) is an advantage in
clinical use since smaller signatures are more amenable
to testing with reduced RNA quantities (i.e. biopsy sam-
ples) or even assayed with immunohistochemistry. In
addition, TMCC3, a signature consisting of three genes
selected from the TMCC11 signature, that does not
overlap with the Cuzick gene set, demonstrated excellent
prognostic ability in SigCheck analysis. This suggests
that subsets of the TMCC11 genes can be of prognostic
value. Finally, the fact that our studies have independ-
ently led to the identification of a cell-cycle based signa-
ture validates the results and points to the value of using
cell cycle genes as prognostic markers in PCa. See Addi-
tonal file 1 for a supplementary Discussion.

Conclusions
Using an unconventional approach, we have identified an
11-gene signature consisting of functionally related nu-
clear genes with roles in DNA replication/ repair and/or
cell cycle that can improve accuracy of prognosis in
patients with PCa after RP in the context of current clini-
copathological variables. Prognostic gene signatures con-
taining, or based on, cell cycle gene expression changes
have been identified using other approaches and different

sample types. This observation not only validates our re-
sults, but also suggests that heterogeneity may lead to
similar cellular consequences, providing cell cycle based
signatures with rather global prognostic values. The
TMCC11 signature requires further validation in
multi-institutional cohorts and clinical trials. In addition,
the ability of TMCC11 to provide prognostic information
using biopsy samples needs to be further explored.

Additional file

Additional file 1: A TMEFF2-regulated cell cycle derived gene signature
is prognostic of recurrence risk in prostate cancer. Figure S1. Expression
of TMEFF2 protein in prostate cancer. Figure S2. Androgen-induction of
nuclear genes is affected by TMEFF2 silencing. Figure S3. Selection of
the TMEFF2 modulated cell cycle (TMCC11) gene subset. Figure S4.
Effect of TMEFF2 silencing on cell cycle progression. Figure S5. The
TMCC11 signature genes are highly expressed in metastatic prostate
cancer and clinical CRPC. Figure S6. The genes in the TMCC11 signature
are significantly co-expressed. Figure S7. Distribution of the TMCC11
signature score in patients from the different datasets used in this study.
Figure S8. High expression of TMCC11 correlates with poor prognosis
in the MSKCC dataset using the SurvExpress platform for analysis.
Figure S9. High TMCC11 expression correlates with decreased
disease-free survival in subsets of patients with high pathological or
surgical Gleason score in the MSKCC dataset. Figure S10. High TMCC11
expression correlates with decreased disease-free survival in subsets of
patients with high pathological or surgical Gleason score in the
PRAD-TCGA dataset. Figure S11. TMCC11 stratifies patients presenting
with low biopsy or pre-operative Gleason score. Supplementary
Methods. Supplementary Discussion. Supplementary References.
Table S1. List of the 100 most variable expressed genes in 5 different
datasets. Table S2. Overview of clinical datasets used in this study with
expression data. Table S3. Summary of Kaplan-Meier analysis for DFS
of the individual 11 genes corresponding to the TMCC11 signature.
Table S4. C-statistical analysis for time to BCR comparing the performance
of TMCC11 alone or in combination with other clinical variables. Table S5.
Performance of multiple oncogenic signatures on predicting relapse.
Table S6. Comparison of the prognostic potential for relapse of multiple
oncogenic signatures against random sets of genes. Table S7. Primers and
TMEFF2 shRNA targets used in this study (DOCX 3760 kb)

Abbreviations
AR: Androgen receptor; BCR: Biochemical recurrence; CPM: Counts per
million; CRPC: Castration resistant prostate cancer; DEG: Differentially
expressed gene; DFS: Disease free survival; FDR: False discovery rate;
PCa: Prostate cancer; PSA: Prostate specific antigen; qRT-PCR: Quantitative
reverse-transcription polymerase chain reaction; RP: Radical prostatectomy;
TMEFF2: Transmembrane protein with EGF like and two follistatin domains 2

Acknowledgements
The results published here are in part based upon data generated by The
Cancer Genome Atlas Research Network (https://www.cancer.gov.tcga).
Special thanks to all the patients that provided samples that made possible
this study. Supplementary information accompanies the paper on the BMC
Cancer website (https://www.bmccancer.biomedcentral.com/).

Funding
This work was supported by the Stephenson Cancer Center, Oklahoma City,
OK. RNA-Seq analysis help was provided by the Oklahoma Medical Research
Foundation Quantitative Analysis Core and supported by COBRE grant
1P30GM110766–01. Histology, immunohistochemistry, slide scanning, and
image analysis were provided by the Stephenson Cancer Center at the
University of Oklahoma, an Institutional Development Award (IDeA) from the
National Institute of General Medical Sciences (P20 GM103639) and a Cancer
Center Supporting Grant Award from the National Cancer Institute (P30
CA225520), both from the National Institute of Health. The funding bodies

Georgescu et al. BMC Cancer          (2019) 19:423 Page 11 of 13

https://doi.org/10.1186/s12885-019-5592-6
https://www.cancer.gov.tcga
https://www.bmccancer.biomedcentral.com/


had no involvement in the design of the study, collection, analysis, and
interpretation of data or in writing the manuscript.

Availability of data and materials
Clinical datasets used and/or analyzed during the current study are publically
available, previously described, referenced within this study and listed in
Additional File 1: Table S2. The LNCaP RNA-Seq data generated during the
current study and analyzed to support the initial findings is available at the
Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/
geo/), series GSE117180. (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE117180).

Authors’ contributions
CG, JMC and ST contributed equally to this work. CG, JMC, ST, ASA and MJRE
contributed to the conception and design of the study. CG, JMC, ST, and
ZDW, acquired the data. CG, JMC, ST, ZDW, YDZ, JK, KMF, JDW and MJRE
analyzed and interpreted the data. MJRE drafted the manuscript. CG, JMC, ST,
JK, KMF, ASA, JDW and MJRE critically revised the manuscript for intellectual
content. All authors gave final approval of the manuscript.

Ethics approval and consent to participate
Radical prostatectomy histopathology records from the Department of
Pathology at the University of Oklahoma Health Sciences Center were
retrospectively examined. The study was approved by the institutional
review board of the University of Oklahoma Health Sciences Center (IRB #
6431). The institutional review board issued an expedited review and waived
the need for written consent since only archival, de-identified materials were
used.

Consent for publication
Not applicable.

Competing interests
MJRE is an inventor of a pending patent related to this study. It is not
commercialized or licensed at this time. The authors declare that they have
no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Arthritis & Clinical Immunology Program, Division of Genomics and Data
Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
2Department of Pathology, Oklahoma University Health Sciences Center,
Oklahoma City, OK, USA. 3Stephenson Cancer Center, Oklahoma City, OK,
USA. 4Department of Biostatistics and Epidemiology, Oklahoma University
Health Sciences Center, Oklahoma City, OK, USA. 5Amsterdam UMC,
Department of Oncogenomics, University of Amsterdam, Amsterdam, The
Netherlands. 6Department of Medicine, Oklahoma University Health Sciences
Center, Oklahoma City, OK, USA. 7Present address: Department of Agronomy
& Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA.

Received: 15 August 2018 Accepted: 9 April 2019

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;

65(1):5–29.
2. Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in

prostate cancer. Oncotarget. 2014;5(17):7217–59.
3. Humphrey PA. Gleason grading and prognostic factors in carcinoma of the

prostate. Mod Pathol. 2004;17(3):292–306.
4. Joniau S, Briganti A, Gontero P, Gandaglia G, Tosco L, Fieuws S, et al.

Stratification of high-risk prostate cancer into prognostic categories: a
European multi-institutional study. Eur Urol. 2015;67(1):157–64.

5. Draisma G, Etzioni R, Tsodikov A, Mariotto A, Wever E, Gulati R, et al. Lead
time and overdiagnosis in prostate-specific antigen screening: importance
of methods and context. J Natl Cancer Inst. 2009;101(6):374–83.

6. Hong SK, Vertosick E, Sjoberg DD, Scardino PT, Eastham JA. Insignificant
disease among men with intermediate-risk prostate cancer. World J Urol.
2014;32(6):1417–21.

7. Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, Carter HB, et al.
Overdiagnosis and overtreatment of prostate Cancer. Eur Urol. 2014;65(6):1046–55.

8. Shao YH, Demissie K, Shih W, Mehta AR, Stein MN, Roberts CB, et al.
Contemporary risk profile of prostate cancer in the United States. J Natl
Cancer Inst. 2009;101(18):1280–3.

9. Schröder FH, Hugosson J, Roobol MJ, Tammela TLJ, Ciatto S, Nelen V, et al.
Prostate-Cancer mortality at 11 years of follow-up. N Engl J Med. 2012;
366(11):981–90.

10. Aizer AA, Chen MH, Hattangadi J, D'Amico AV. Initial management of
prostate-specific antigen-detected, low-risk prostate cancer and the risk of
death from prostate cancer. BJU Int. 2014;113(1):43–50.

11. Ruijter ET, van de Kaa CA, Schalken JA, Debruyne FM, Ruiter DJ. Histological
grade heterogeneity in multifocal prostate cancer. Biological and clinical
implications. J Pathol. 1996;180(3):295–9.

12. Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al.
Spatial genomic heterogeneity within localized, multifocal prostate cancer.
Nat Genet. 2015;47(7):736–45.

13. Cyll K, Ersvær E, Vlatkovic L, Pradhan M, Kildal W, Avranden Kjær M, et al.
Tumour heterogeneity poses a significant challenge to cancer biomarker
research. Br J Cancer. 2017;117:367.

14. Boutros PC, Fraser M, van der Kwast T, Bristow RG. Clonality of localized and
metastatic prostate cancer. Curr Opin Urol. 2016;26(3):219–24.

15. Tosoian JJ, Antonarakis ES. Molecular heterogeneity of localized prostate
cancer: more different than alike. Transl Cancer Res. 2017:S47–50.

16. Shoag J, Barbieri C. Clinical variability and molecular heterogeneity in
prostate cancer. Asian J Androl. 2016;18(4):543–8.

17. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al.
Analysis of the genetic phylogeny of multifocal prostate cancer identifies
multiple independent clonal expansions in neoplastic and morphologically
normal prostate tissue. Nat Genet. 2015;47:367.

18. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC,
Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate
cancer. Nature. 2015;520:353.

19. Guiu S, Michiels S, Andre F, Cortes J, Denkert C, Di Leo A, et al. Molecular
subclasses of breast cancer: how do we define them? The IMPAKT 2012
working group statement. Ann Oncol. 2012;23(12):2997–3006.

20. Bertucci F, Finetti P, Cervera N, Maraninchi D, Viens P, Birnbaum D. Gene
expression profiling and clinical outcome in breast cancer. Omics. 2006;
10(4):429–43.

21. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al.
Supervised risk predictor of breast Cancer based on intrinsic subtypes. J Clin
Oncol. 2009;27(8):1160–7.

22. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al.
Prognostic value of an RNA expression signature derived from cell cycle
proliferation genes in patients with prostate cancer: a retrospective study.
Lancet Oncol. 2011;12(3):245–55.

23. Moschini M, Spahn M, Mattei A, Cheville J, Karnes RJ. Incorporation of
tissue-based genomic biomarkers into localized prostate cancer clinics. BMC
Med. 2016;14(1):67.

24. Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. Discovery
and validation of a prostate cancer genomic classifier that predicts early
metastasis following radical prostatectomy. PLoS One. 2013;8(6):e66855.

25. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala
T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the
context of Gleason grade heterogeneity, tumor multifocality, and biopsy
undersampling. Eur Urol. 2014;66(3):550–60.

26. Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP,
et al. Development and clinical validation of an in situ biopsy-based
multimarker assay for risk stratification in prostate cancer. Clin Cancer
Res. 2015;21(11):2591–600.

27. Partin AW, Van Neste L, Klein EA, Marks LS, Gee JR, Troyer DA, et al. Clinical
validation of an epigenetic assay to predict negative histopathological
results in repeat prostate biopsies. J Urol. 2014;192(4):1081–7.

28. Kaffenberger SD, Barbieri CE. Molecular subtyping of prostate cancer. Curr
Opin Urol. 2016;26(3):213–8.

29. Schoenborn JR, Nelson P, Fang M. Genomic profiling defines subtypes of
prostate cancer with the potential for therapeutic stratification. Clin Cancer
Res. 2013;19(15):4058–66.

Georgescu et al. BMC Cancer          (2019) 19:423 Page 12 of 13

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117180
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117180


30. Demichelis F, Garraway LA, Rubin MA. Molecular archeology: unearthing
androgen-induced structural rearrangements in prostate cancer genomes.
Cancer Cell. 2013;23(2):133–5.

31. Lee D, Fontugne J, Gumpeni N, Park K, MacDonald TY, Robinson BD, et al.
Molecular alterations in prostate cancer and association with MRI features.
Prostate Cancer Prostatic Dis. 2017;20(4):430–5.

32. Aea A. The molecular taxonomy of primary prostate Cancer. Cell. 2015;
163(4):1011–25.

33. Gorlov IP, Yang J-Y, Byun J, Logothetis C, Gorlova OY, Do K-A, et al. How to
get the most from microarray data: advice from reverse genomics. BMC
Genomics. 2014;15(1):223.

34. Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM, et al.
Integration of copy number and transcriptomics provides risk stratification
in prostate cancer: a discovery and validation cohort study. EBioMedicine.
2015;2(9):1133–44.

35. Chen X, Corbin JM, Tipton GJ, Yang LV, Asch AS, Ruiz-Echevarria MJ. The
TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and
migration of prostate cancer cells. Biochim Biophys Acta. 2014;1843(6):1216–24.

36. Chen X, Overcash R, Green T, Hoffman D, Asch AS, Ruiz-Echevarria MJ. The
tumor suppressor activity of the transmembrane protein with epidermal
growth factor and two follistatin motifs 2 (TMEFF2) correlates with its ability
to modulate sarcosine levels. J Biol Chem. 2011;286(18):16091–100.

37. Corbin JM, Overcash RF, Wren JD, Coburn A, Tipton GJ, Ezzell JA, et al.
Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in
prostate regeneration and cancer. Prostate. 2016;76(1):97–113.

38. Green T, Chen X, Ryan S, Asch AS, Ruiz-Echevarria MJ. TMEFF2 and SARDH
cooperate to modulate one-carbon metabolism and invasion of prostate
cancer cells. Prostate. 2013;73(14):1561–75.

39. Afar DE, Bhaskar V, Ibsen E, Breinberg D, Henshall SM, Kench JG, et al.
Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in
the treatment of prostate cancer. Mol Cancer Ther. 2004;3(8):921–32.

40. Glynne-Jones E, Harper ME, Seery LT, James R, Anglin I, Morgan HE, et al. TENB2,
a proteoglycan identified in prostate cancer that is associated with disease
progression and androgen independence. Int J Cancer. 2001;94(2):178–84.

41. Lin K, Taylor JR, Wu TD, Gutierrez J, Elliott JM, Vernes J-M, et al. TMEFF2 is a
PDGF-AA binding protein with methylation-associated gene silencing in
multiple Cancer types including glioma. PLoS One. 2011;6(4):e18608.

42. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al.
ONCOMINE: a cancer microarray database and integrated data-mining
platform. Neoplasia (New York, NY). 2004;6(1):1–6.

43. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, et al.
Integrative genomic and proteomic analysis of prostate cancer reveals
signatures of metastatic progression. Cancer Cell. 2005;8(5):393–406.

44. Vanaja DK, Cheville JC, Iturria SJ, Young CY. Transcriptional silencing of zinc
finger protein 185 identified by expression profiling is associated with
prostate cancer progression. Cancer Res. 2003;63(14):3877–82.

45. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al.
The mutational landscape of lethal castration-resistant prostate cancer.
Nature. 2012;487(7406):239–43.

46. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al.
Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;
18(1):11–22.

47. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30(15):2114–20.

48. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34(5):525–7.

49. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

50. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

51. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio
Cancer genomics portal: an open platform for exploring multidimensional
Cancer genomics data. Cancer Discov. 2012;2(5):401.

52. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.
Integrative analysis of complex Cancer genomics and clinical profiles using
the cBioPortal. Sci Signal. 2013;6(269):pl1–pl.

53. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The
STRING database in 2017: quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–d8.

54. Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya
A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online

biomarker validation tool and database for Cancer gene expression data
using survival analysis. PLoS One. 2013;8(9):e74250.

55. Stark R, Norder J. SigCheck: Check a gene signature's prognostic
performance against random signatures, known signatures, and permuted
data. 2016.

56. Ramos-Montoya A, Lamb AD, Russell R, Carroll T, Jurmeister S, Galeano-
Dalmau N, et al. HES6 drives a critical AR transcriptional programme to
induce castration-resistant prostate cancer through activation of an E2F1-
mediated cell cycle network. EMBO Mol Med. 2014;6(5):651–61.

57. Irshad S, Bansal M, Castillo-Martin M, Zheng T, Aytes A, Wenske S, et al. A
molecular signature predictive of indolent prostate Cancer. Sci Transl Med.
2013;5(202):202ra122.

58. Sharma Naomi L, Massie Charlie E, Ramos-Montoya A, Zecchini V, Scott
Helen E, Lamb Alastair D, et al. The androgen receptor induces a distinct
transcriptional program in castration-resistant prostate Cancer in man.
Cancer Cell. 23(1):35–47.

59. Venet D, Dumont JE, Detours V. Most random gene expression signatures
are significantly associated with breast Cancer outcome. PLoS Comput Biol.
2011;7(10):e1002240.

60. Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. The long
tail of oncogenic drivers in prostate cancer. Nat Genet. 2018.

61. Paju A, Hotakainen K, Cao Y, Laurila T, Gadaleanu V, Hemminki A, et al.
Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate
cancer and in androgen-independent 22Rv1 cells. Eur Urol. 2007;52(6):1670–9.

62. Stenman UH. SPINK1: a new therapeutic target in cancer? Clin Chem. 2011;
57(11):1474–5.

63. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, et al. The role
of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell.
2008;13(6):519–28.

64. Flavin R, Pettersson A, Hendrickson WK, Fiorentino M, Finn S, Kunz L, et al.
SPINK1 protein expression and prostate cancer progression. Clin Cancer Res.
2014;20(18):4904–11.

65. Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, et al.
Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med.
2011;3(72):72ra17.

Georgescu et al. BMC Cancer          (2019) 19:423 Page 13 of 13


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	TMEFF2 expression data
	Validation cohorts
	Mammalian cell culture and treatment
	RNA extraction and RNA-Seq
	Real-time polymerase chain reaction (RT-PCR)
	Western blotting
	TMCC11 signature selection process
	TMCC11 signature score development
	Databases and statistics
	Gene signature analysis with SigCheck

	Results
	Low expression of TMEFF2 is associated with advanced disease and is prognostic of clinical outcome
	TMEFF2 silencing in the LNCaP cell line increases androgen-driven expression of a group of cell-cycle related genes
	The TMEFF2-modulated gene signature is an independent marker of recurrence after prostatectomy in multiple clinical datasets
	Prognostic assessment of the TMCC11 gene signature

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

