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Abstract 

Background:  The application of machine learning to cardiac auscultation has the potential to improve the accuracy 
and efficiency of both routine and point-of-care screenings. The use of convolutional neural networks (CNN) on heart 
sound spectrograms in particular has defined state-of-the-art performance. However, the relative paucity of patient 
data remains a significant barrier to creating models that can adapt to a wide range of potential variability. To that 
end, we examined a CNN model’s performance on automated heart sound classification, before and after various 
forms of data augmentation, and aimed to identify the most optimal augmentation methods for cardiac spectrogram 
analysis.

Results:  We built a standard CNN model to classify cardiac sound recordings as either normal or abnormal. The 
baseline control model achieved a PR AUC of 0.763 ± 0.047. Among the single data augmentation techniques 
explored, horizontal flipping of the spectrogram image improved the model performance the most, with a PR AUC 
of 0.819 ± 0.044. Principal component analysis color augmentation (PCA) and perturbations of saturation-value (SV) 
of the hue-saturation-value (HSV) color scale achieved a PR AUC of 0.779 ± 045 and 0.784 ± 0.037, respectively. Time 
and frequency masking resulted in a PR AUC of 0.772 ± 0.050. Pitch shifting, time stretching and compressing, noise 
injection, vertical flipping, and applying random color filters negatively impacted model performance. Concatenating 
the best performing data augmentation technique (horizontal flip) with PCA and SV perturbations improved model 
performance.

Conclusion:  Data augmentation can improve classification accuracy by expanding and diversifying the dataset, 
which protects against overfitting to random variance. However, data augmentation is necessarily domain specific. 
For example, methods like noise injection have found success in other areas of automated sound classification, but 
in the context of cardiac sound analysis, noise injection can mimic the presence of murmurs and worsen model per-
formance. Thus, care should be taken to ensure clinically appropriate forms of data augmentation to avoid negatively 
impacting model performance.
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Background
Cardiac auscultation has been a core element of the 
cardiovascular physical exam since the 1800s. Sounds 
produced by the heart reflect its underlying biology and 
can cue a trained physician to different heart patholo-
gies such as valvular defects or congenital diseases. 
However, in recent years, cardiac auscultation has 
been challenged for its diagnostic utility. The decline 
in accurate cardiac auscultation is a well-documented 
phenomenon [1–3]. For example, internal medicine 
residents in the US made a correct assessment of aus-
cultation findings only 22% of the time [2].

This has spurred an active area of research in develop-
ing suitable machine learning models to classify heart 
sounds based on recorded phonocardiogram (PCG) 
signals. Many research groups have published a wide 
variety of machine learning models to this end. Survey 
of the existing literature reveals that many different fea-
ture extraction methods (Mel-frequency cepstral coef-
ficients [4–6], discrete wavelet transform [7–9], tensor 
decomposition [10], sparse coding [11]) and classifica-
tion methods (k-nearest neighbors [7], support vector 
machines [4, 10–12], hidden Markov models [13, 14], 
recurrent neural networks [15, 16], convolution neural 
networks [6, 17, 18]), and their different permutations 
together have been extensively explored.

It is generally accepted that bigger datasets result 
in better machine learning models [19, 20]. However, 
real-world clinical applications is limited by the scar-
city of labeled clinical data. This scarcity issue can be 
attributed to several challenges unique to the medi-
cal domain, including: the relative paucity of avail-
able clinical databases structured for machine learning 
research, the administrative and logistical hurdles asso-
ciated with collecting and working with patient data 
and protected health information due to Health Insur-
ance Portability and Accountability Act (HIPAA) laws 
and Institutional Review Board (IRB) regulations, and 
finally the time-consuming and expensive nature of 
properly annotating health data. The gold standard for 
validating heart sounds is echocardiogram imaging plus 
the diagnosis from a cardiologist, both of which are 
costly to obtain. An additional challenge in creating a 
machine learning model to classify heart sounds is that 
heart sounds are not actually recorded and stored any-
where in electronic health records (EHR). Mining EHR 
databases is not an option, meaning heart sounds must 
be collected and labeled from scratch, one-by-one. 
Data acquisition is made even harder in times of public 
health crises, as we have observed with the COVID-19 
pandemic, which resulted in drastic reductions in non-
emergency patient volumes in clinics across the world.

Data augmentation is one solution to the legal limita-
tions and constraints around clinical data. Data augmen-
tation is the process of generating synthetic data from 
real data, while preserving the class label. In the context 
of developing machine learning models for heart sound 
classification, real data means heart sounds collected 
directly from a patient, whereas synthetic data means 
artificial heart sounds generated from real heart sounds 
via various computer-implemented methods.

The major value add of data augmentation for heart 
sound classification resides in its ability to significantly 
expand the size of available training data without the 
onerous task of having to actually obtain and label a large 
enough volume of heart sounds. An expanded dataset 
can improve model performance because the new data 
created from class-preserving transformations can help 
the model better learn the unique features that constitute 
the essence of a class, instead of the random variance that 
is present within each class. Data augmentation combats 
overfitting and can help the model make better predic-
tions on unseen data.

Data augmentation is necessarily domain specific, as 
the applied transformations should reflect realistic vari-
ations and preserve the underlying features that distin-
guish different classes from each other. In other words, 
the data augmentation should ‘make sense’ for the task at 
hand. Two important constraints unique to heart sound 
spectrograms must be considered in designing effective 
data augmentation strategies.

The first constraint, which we will call the “physi-
ological constraint”, is related directly to the phenom-
enon under study, the heart sound itself. Heart sounds 
naturally fall within a narrow physiological scope: heart 
rates are 60–100 beats per minute and the principal fre-
quencies of heart sounds are 20–500 Hz. A healthy heart 
sound can be deconstructed into four main frequency 
components: S1 (mitral and tricuspid valve closing), 
systole (ventricles contracting), S2 (aortic and pulmo-
nic valve closing), and diastole (ventricles relaxing). A 
pathological heart sound has all the same frequency com-
ponents. The difference between a healthy heart sound 
and pathological heart sound is that a pathological heart 
sound will have additional frequency components such as 
murmurs from valve stenosis or regurgitation, rubs from 
pericarditis, S3 gallops(from increased atrial pressure, as 
seen in congestive heart failure or dilated cardiomyopa-
thy), or S4 gallops(atrium contracting against stiff ven-
tricle caused by hypertension, pulmonary hypertension, 
ventricular outflow obstruction, or ischemic heart dis-
ease). Of note, an additional sound that can be produced 
by a healthy heart is the physiological splitting of S2 due 
to delayed pulmonic valve closing. Thus, the “physiologic 
constraint” is that any data augmentation method must 
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reflect realistic variations of possible heart sounds and 
also ensure the presence or absence of additional fre-
quency components is preserved for each individual 
heart sound or else the distinguishing factor between a 
normal and abnormal heart sound is lost and the class 
labels lose their meaning.

The second constraint, which we will call the “spec-
trogram constraint”, is related to the spectrogram image 
and what it represents. One advantage for using CNN to 
classify heart sounds is that this converts an audio classi-
fication problem into a computer vision problem, which 
opens the door to the extensive library of data augmenta-
tion techniques developed for images. Shorten et  al. [21] 
published a review article surveying the gamut of image 
data augmentation techniques that have been researched 
including flipping, cropping, rotation, translations, color 
space transformations, kernel filters to sharpen or blur 
images, mixing images, and random erasing. However, 
not all image data augmentation techniques will translate 
appropriately. Although spectrograms are images from a 
data structure point of view, spectrograms and traditional 
images have a fundamental difference in terms of what 
information is conveyed along the x- and y- axis. For a tra-
ditional image, the axes represent physical distances, while 
for spectrograms the x-axis represents time and the y-axis 
represents frequency. Moreover, color also carries a differ-
ent meaning for traditional images vs spectrogram images. 
The meaning of color is self-evident for traditional images. 
For spectrograms, color is an additional dimension that 
represents decibels, or the loudness and intensity of the 
heart sound. Thus, the “spectrogram constraint” is that any 
data augmentation method that operates on the spectro-
gram as a simple image should correlate with a real-world, 
physical transformation of the sound.

With these constraints in mind, we evaluate common 
data augmentation techniques at the audio level, includ-
ing pitch shifting and time stretching/compressing and 
noise injection, and at the image level, including horizon-
tal flips, vertical flips, hue/brightness transformations, 
principal component analysis (PCA) color augmenta-
tion, random color filters, and time/frequency masking, 
for classification of heart sounds based on their spectral 
image. We include augmentation methods that are con-
sistent with and contradict what would be an effective 
data augmentation method as predicted by our theo-
retical considerations discussed above to (1) examine the 
individual effectiveness of each augmentation technique 
on heart sound classification and (2) assess the validity of 
our theoretical framework.

To study the effects of these data augmentation methods 
on heart sound classification, we separate our experiments 
into two phases. The first phase is to establish the base-
line performance of our CNN on spectral images of heart 

sounds. In the second phase, the same CNN is trained on 
both real and synthetically generated heart sounds. Model 
performance with and without data augmentation on the 
same binary classification task is compared. Each individ-
ual data augmentation scheme is carried out in a one-to-
one correspondence, meaning for every real heart sound, 
one synthetic heart sound is generated from it. This dou-
bles the size of the dataset available for training, from N to 
2N. Figure 1 below shows our study design.

To study the effects of data augmentation on heart 
sound classification, we established the baseline perfor-
mance of a machine learning algorithm trained on real 
heart sound data only (Model 0). We then compared this 
baseline performance to various models as delineated in 
the above diagram.

Methods
Data
The data in this study was sourced from a publicly avail-
able database assembled from the PhysioNet/Comput-
ing in Cardiology (CinC) Challenge in 2016 [22, 23]. 
The directory contains 3,239 recorded heart sounds that 
range between 5 and 120  s which came from a total of 
1,072 subjects. The sounds were compiled by physi-
cians and research teams across seven countries over 
the course of a decade [22, 23]. Experts in cardiology 
labelled the heart sounds as either normal or abnormal. 
Normal sounds are sounds collected from patients with 
no underlying cardiometabolic conditions. Abnormal 
sounds are sounds collected from patients with an under-
lying cardiac pathology, including valvular defects (i.e. 
mitral prolapse, mitral regurgitation, aortic regurgitation, 
aortic stenosis and valvular surgery), as well as coronary 
artery disease [22, 23].

Pre‑processing
In concordance with a previous study on heart murmur 
identification [24], the raw heart sounds were first pro-
cessed by a third-order Butterworth filter with a pass-
band of 20–500  Hz, which encapsulates the range of 
normal heart sound and murmur frequencies [25]. All 
sounds under 8 s were discarded. Then, the samples were 
either truncated to 30-s if their length exceeded that 
limit, or preserved in their entirety if the length less than 
30-s. Subsequently, the amplitudes of the signals were 
normalized according to Eq. 1:

where X refers to the amplitude of the signal to ensure 
it is standardized across all recordings. Of the remain-
ing heart sounds, 2189 were labeled as normal and the 
remaining 560 sounds were labeled as abnormal.

(1)Xnorm =
X

max(|X |)
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Mel‑spectrogram
The samples are windowed using a Hann window of 
size 512 and hop length of 256. A 512-point Fast Fou-
rier Transform is applied to each window to generate 
a spectrogram, which depicts frequency over time. The 
amplitude of each frequency component is encoded in 
color. The amplitude axis is converted to the dB scale, 
with the maximum amplitude serving as the reference 
point and given a value of 0  dB. The frequency axis is 
transformed onto the Mel scale, which is characterized 
by Eq. 2,

where f is frequency in Hz.

(2)Mel = 2595 ∗ log(1+
f

500
)

The resulting Mel-spectrogram images are standard-
ized by rescaling each image to be of size 100 × 180 
using bicubic interpolation. Figure 2 shows representa-
tive examples of the final Mel-spectrogram images.

Data augmentation
Pitch shifting and time stretching/compression
To create a synthetic heart sound under method 1, 
each real heart sound is first randomly pitch shifted up 
or down by p semitones, where p is a randomly chosen 
integer between 1 and 10. A semitone is defined as the 
interval between two adjacent notes in a 12-tone scale. 
For example, on a musical scale, the interval between C 
and C# is one semitone. Then the pitch shifted sound 
is randomly time stretched/compressed by a factor of t, 

Fig. 1  Overview of study design
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where t is randomly chosen from the uniform distribu-
tion [0.5, 2.0]. For example, if t = 2.0, then a 30  s audio 
file is stretched to 60  s, or if t = 0.5, then a 30  s audio 
file is compressed to 15  s. The pitched shifted and time 
stretched/compressed sounds are then converted to Mel-
spectrogram images, which are used to supplement the 
Mel-spectrogram images derived from real heart sounds 
to train the convolutional neural network.

Noise injection
To create a synthetic heart sound under method 2, addi-
tive white Gaussian noises (AWGN) are injected element-
wise into the original signal. The amplitude of AWGN is 
modeled as a Gaussian distribution, with µ = 0 [26]. The 
standard deviation of the noise signal is described with 
the following formula:

Assuming a signal-to-noise ratio (SNR) of 0, the required 
RMSnoise can be approximated by RMSsignal . Each element 
of the noise signal is independently sampled from the dis-
tribution X ∼ N µ, σ 2  where µ = 0, σ = RMSsignal . The 
resulting noise signal is summed with the original sample. 
The synthetic samples are converted to Mel-spectrogram 
images and combined with the real heart sound Mel-spec-
trogram database to train the CNN model.

Image flip
To create synthetic data under method 3.1, each real heart 
sound is first converted to a Mel-spectrogram. The images 
are flipped horizontally, along an imaginary vertical axis 
that passes through its center, such that a given pixel with 

RMS =

√

∑

i x
2
i

n

coordinate (x, y) will now be situated at (width− x − 1, y) . 
Figure  3 displays an example of the transformation. For 
method 3.2, the images are flipped vertically along a cen-
tered horizonal axis, such that a given pixel with coor-
dinates (x, y) will now be situated at 

(

x, height − y− 1
)

. 
Figure 3 shows illustrative examples of a horizontally and 
vertically flipped spectrogram image.

Color‑space transformations
To create synthetic heart sound spectrograms under 
Method 4, the real heart sounds are first converted into 
Mel-spectrograms. Then, each image was transformed into 
their RGB representation, allowing for the extrapolation 
of other color-space values using pre-established conver-
sion factors and mathematical operations. For example, 
in an RBG-to-HSV transformation, the red, green, and 
blue value which range from ([0,255]) for each pixel, is 
converted into hue ([0°, 360°]), saturation ([0–100%]), and 
value/brightness ([0–100%]) using the following formulas 
[27]:

R′ =
R

255

G′ =
G

255

B′ =
B

255

Cmax = MAX(R′,G′,B′)

Cmin = MIN (R′,G′,B′)

Fig. 2  Representative Mel-spectrograms of normal heart sound (left) and pathological heart sound (right)
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Within the scope of color space transformations, we 

explored three modalities of data augmentation. Method 
4.1 created new images from saturation and value pertur-
bations. Method 4.2 created new images from Principal 
Component Analysis color augmentation, a method first 

S =

{

0, Cmax = 0
�

Cmax
, Cmax �= 0

V = Cmax

Fig. 3  Unaltered Mel-spectrogram (top), horizontally flipped Mel-spectrogram (bottom left), vertically flipped Mel-spectrogram (bottom right)

Fig. 4  Representative Mel-spectrograms with saturation brightness perturbations
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introduced in Krizhevsky et  al. [28]. Method 4.3 created 
new images from applying random color filters.

Method 4.1  In Method 4.1, two numbers, αbrightness and 
αsaturation , were randomly drawn from a uniform distribu-
tion X ∼ U(a, b) . Experimentally, it was determined that 
the αbrightness would be bounded by a = 0.5 and b = 2, and 
αsaturation by a = 0.1 and b = 2. αbrightness and αsaturation con-
trol the degree of brightness and saturation perturbations, 
respectively. The merging operation can be described with 
the following formula:

Brightness alterations were achieved by blending 
the original image with a pure black image of the same 
dimensions. Saturation alterations were achieved by 
blending the original image with a grey-scale image of the 
same dimensions. The two perturbations were applied 
sequentially to the original image, and the adjustment 
factors αbrightness and αsaturation were redrawn for each 

BlendingImage ∗ (1− α)+OriginalImage ∗ α

input spectrogram. Figure  4 shows spectrograms that 
have undergone saturation and brightness perturbations.

Method 4.2  In Method 4.2, as described in Krizhevsky 
et  al. [28], we implemented principal component analy-
sis on the unaltered input images, yielding a sorted set of 
eigenvectors and eigenvalues that are associated with the 
3 × 3 covariance matrix of the RGB color channels. We 
then drew a random variable α from the normal distri-
bution X ∼ N

(

µ, σ 2
)

 , where µ = 800, σ = 10 , and multi-
plied it to the original eigenvalues. The principal compo-
nents are scaled by the output from the previous step, and 
the product is added to the RGB vector of each individual 
pixel. α is drawn once for each training image. The spe-
cific mean and standard deviation values of the perturba-
tion were chosen experimentally, to intentionally produce 
more pronounced differences in the output images. Fig-
ure 5 shows spectrograms that have undergone PCA color 
augmentation.

Fig. 5  Unaltered Mel-spectrograms (Left), same images after principal component analysis (PCA) color augmentation (Right) (Data Augmentation 
Method 4.2)
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Method 4.3  In Method 4.3, we iterated through a 
library of 150 different color-space conversions using the 
OpenCV package, effectively generating random color 
balance perturbations, but preserving the underlying 
shapes and content of the input images. The transformed 
Mel-spectrograms are used to supplement the Mel-spec-
trograms from real heart sounds as additional training 
data. Figure 6 shows spectrograms with random color fil-
ters applied.

Time and  frequency masks  To create synthetic heart 
sound data under Method 5, the real heart sounds are left 
untouched and converted to Mel-spectrogram images. To 
the Mel-spectrogram image, three masks are randomly 
applied in the time domain, and three masks are randomly 
applied in the frequency domain. In frequency masking, 
the frequency channels [f0, f0 + f) are masked, where f is 
randomly chosen from the uniform distribution [0, 20], 
and f0 is randomly chosen from (0, v − f), where v is the 
total number of frequency channels. In time masking, the 
time steps [t0, t0 + t) are masked, where t is randomly cho-
sen from the uniform distribution [0, 20], and t0 is ran-
domly chosen from [0, τ − t], where τ the total number 
of time steps. Figure 3 illustrates an example of a trans-
formed Mel-spectrogram. The location of the masks is 
chosen independently, meaning it is possible for masks to 
overlap and merge into one larger mask. The transformed 
Mel-spectrogram images are used to supplement the 
Mel-spectrogram images derived from real heart sounds 
to train the convolutional neural network. Figure 7 shows 
a spectrogram with time and frequency masking applied.

Combined horizontal flip and PCA, combined horizontal 
flip and SV perturbations  In Method 4.6, we augmented 
the initial images using PCA, and subsequently performed 

horizontal flip to generate the final transformed spec-
trograms. In Method 4.7, the initial images were altered 
using SV perturbation, then flipped horizontally to gen-
erate the final transformed spectrograms. The additional 
spectrograms were used to supplement the Mel-spectro-
gram images derived from real heart sounds for Model 6 
and 7, respectively.

Convolutional neural network
The resulting Mel-spectrograms are treated as images 
and used to train a convolutional neural network (CNN) 
for binary classification. A prior study that explored heart 
sound classification provided a CNN framework that 
inspired the basis of the CNN architecture used in this 
study [29]. The convolutional neural network model we 
built consists of four layers. The first layer is a convolu-
tion layer with 32 3 × 3 kernels, each with a stride length 
of one; the activation function used is a rectified linear 
(ReLU) activation function.

Fig. 6  Representative Mel-spectrograms with random color filters

Fig. 7  Representative example of time/frequency masked 
Mel-spectrogram. Three masks, as represented by the yellow bars, are 
randomly applied in the time domain, and three masks are randomly 
applied in the frequency domain
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This is followed by a max pooling layer with a filter of 
size 2 × 2 with a stride length of two. The second layer 
is a convolutional layer with 64 3 × 3 kernels, each with 
a stride length of one; the activation function used is a 
ReLU activation function. Similarly, it is followed by a max 
pooling layer with a filter of size 2 × 2 with a stride length 
of two. Padding is not used in any layer. The output from 
the previous operation is flattened into a one-dimensional 
feature vector, and then passed to the third layer, a fully 
connected layer with 64 hidden units. The fourth and final 
layer is a single neuron with a sigmoid activation function 
to make the final binary classification. We used the Adap-
tive Moment Estimation (Adam) optimizer to iteratively 
improve model performance. Ten epochs are used for 
training. Figure 8 shows the CNN architecture.

Results
The folds are created in a consistent way across the dif-
ferent models, meaning each fold for models 0, 1, 2, etc. 
contains the same set of training/testing data. This serves 
to limit any potential variability in model performance 
that would be due to the differences in the training/test-
ing data supplied.

Figure 9 shows the cross validated ROC curves for the 
different models. Figure 10 shows the cross validated PR 
curves for the different models. Figure 11 shows the con-
fusion matrices for the different models.

Comparison of the confusion matrix for Model 0, 
trained on real data only; confusion matrix for Model 1, 
trained on Mel-Spectrograms of real plus pitch shifted 
and time stretched/compressed heart sounds; confu-
sion matrix for Model 2, trained on Mel-Spectrograms of 
real plus noise injected heart sounds; confusion matrix 
for Models 3.1 and 3.2, trained on real and horizontally 
flipped Mel-Spectrograms, and real and vertically flipped 
Mel-Spectrograms; the confusion matrix for Model 
4.1, 4.2, and 4.3, trained on real and saturation/value 

transformed images, real and multi-color transformed 
Mel-Spectrograms, real and PCA color augmented Mel-
Spectrograms; the confusion matrix for Model 5, trained 
on real and frequency/time masked Mel-spectrograms; 
the confusion matrix for Model 6, trained on real and 
horizontally flipped/PCA augmented Mel-spectrograms; 
and the confusion matrix for Model 7, trained on real and 
horizontally flipped/SV perturbed Mel-spectrograms.

Tables 1 and 2 are numerical summaries of the perfor-
mance of each model.

Discussion
In summary, our objective was to identify the optimal 
forms of data augmentation for the binary classification 
of PCG signals using their spectral image representa-
tion. Our baseline CNN model achieved specificity of 
85.1% at 90% sensitivity, a ROC AUC of 0.94, PR AUC 
of 0.76, and F1 score of 0.87, which makes it compara-
ble to state-of-the-art [30, 31]. As previously discussed, 
one of the unique challenges of heart sound augmen-
tation is that the generated samples must fulfill cer-
tain “physiological constraints” to remain meaningful. 
More explicitly, the rate, rhythm, and pitch of cardiac 
sounds are bounded within a narrow range. Values that 
fall outside of these limits would be unrealistic, and 
hence detract from the classification. Additionally, the 
original spectral components of the heart sounds must 
be maintained to ensure that a normal sound does 
not become pathological. The presence or absence of 
frequency components like murmurs, rubs, S3, or S4 
gallops should be preserved through these transfor-
mations. Secondly, the “spectrogram constraint” stems 
from the fact that spectrograms and photographs fun-
damentally convey different information along their 
respective dimensions. Image data augmentation meth-
ods can work for spectral images only if they correlate 
with realistic physical variations in the sound.

Fig. 8  Convolutional neural network structure. Illustration of the CNN architecture employed in our study for heart sound classification
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Fig. 9  ROC curves for Model 0 (a), Model 1 (b), Model 2 (c), Model 3 (d, e), Model 4 (f–h), Model 5 (i), Model 6 (j), Model 7 (k). Comparison of 
the ROC curve for Model 0, trained on real data only (a); ROC curve for Model 1, trained on Mel-Spectrograms of real plus pitch shifted and time 
stretched/compressed heart sounds (b); ROC curve for Model 2, trained on Mel-Spectrograms of real plus noise injected heart sounds (c); ROC 
curves for Models 3.1 and 3.2, trained on real and horizontally flipped Mel-Spectrograms (d), and real and vertically flipped Mel-Spectrograms 
(e); the ROC curves for Model 4.1, 4.2, and 4.3, trained on real and saturation/value transformed images (f), real and multi-color transformed 
Mel-Spectrograms (g), real and PCA color augmented Mel-Spectrograms (h); the ROC curve for Model 5, trained on real and frequency/time masked 
Mel-spectrograms (i); the ROC curve for Model 6, trained on real and horizontally flipped/PCA augmented Mel-spectrograms (j); and the ROC curve 
for Model 7, trained on real and horizontally flipped/SV perturbed Mel-spectrograms (k). The dotted red line represents the no-discrimination line
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The data augmentation method that satisfied both the 
“physiological constraint” and the “spectrogram con-
straint” improved model performance, while all the 
data augmentation methods that failed to satisfy at least 
one of the constraints worsened model performance in 

some respect, experimentally supporting our theoreti-
cal framework. We provide a rationale for why each data 
augmentation method either improved, did not effect, 
or worsened model performance using our framework 
below. Our claims of model improvement are based on 

Fig. 9  continued
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Fig. 10  PR curves for Model 0 (a), Model 1 (b), Model 2 (c), Model 3 (d, e), Model 4 (f–h), Model 5 (i), Model 6 (j), Model 7 (k). Comparison of the PR 
curve for Model 0, trained on real data only (a); PR curve for Model 1, trained on Mel-Spectrograms of real plus pitch shifted and time stretched/
compressed heart sounds (b); PR curve for Model 2, trained on Mel-Spectrograms of real plus noise injected heart sounds (c); PR curves for Models 
3.1 and 3.2, trained on real and horizontally flipped Mel-Spectrograms (d), and real and vertically flipped Mel-Spectrograms (e); the PR curves for 
Model 4.1, 4.2, and 4.3, trained on real and saturation/value transformed images (f), real and multi-color transformed Mel-Spectrograms (g), real and 
PCA color augmented Mel-Spectrograms (h); the PR curve for Model 5, trained on real and frequency/time masked Mel-spectrograms (i); the PR 
curve for Model 6, trained on real and horizontally flipped/PCA augmented Mel-spectrograms (j); and the PR curve for Model 7, trained on real and 
horizontally flipped/SV perturbed Mel-spectrograms (k). The dotted red line represents the no-discrimination line
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the 95% confidence intervals of the mean difference 
between a given model and the baseline model. When the 
95% confidence interval of the mean difference includes 
the value zero, we conclude that there is no statistical dif-
ference between the models. When the lower boundary 
of the 95% confidence interval is greater than zero, we 

conclude statistically significant improvement. Likewise, 
when the upper boundary of the 95% confidence inter-
val is less than zero, we conclude statistically significant 
worsening performance.

Before examining each individual data augmentation 
technique, the presence of data imbalance in our data 

Fig. 10  continued
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Fig. 11  Confusion matrices for Model 0 (a), Model 1 (b), Model 2 (c), Model 3.1 (d), Model 3.2 (e), Model 4.1 (f), Model 4.2 (g), Model 4.3 (h), Model 5 
(i), Model 6 (j), Model 7 (k). 0 represents normal, 1 represented abnormal
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Fig. 11  continued
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Table 1  Average performance of each model according to accuracy, specificity at 90% sensitivity, the ROC AUC, and ROC AUC mean 
difference from baseline model

Specificities were calculated at the threshold value corresponding to about 90% sensitivity for ease of comparison among models

Accuracy [95% CI] Sensitivity [95% CI] Specificity [95% CI] ROC AUC [95% CI] ROC AUC Difference 
from Baseline [95% CI]

Model 0
Baseline

88.7% [87.8, 89.6] 90.1% [89.7, 90.5] 85.1% [82.7, 87.5] 0.943 [0.935, 0.956] –

Model 1
Pitch/time alterations

88.7% [87.6, 89.8]
–

90.2% [89.8, 90.6] ↑ 81.3% [75.3, 87.3] ↓ 0.925 [0.918, 0.935] ↓ − 0.018 [− 0.031, − 0.004]

Model 2
Noise injection

88.6% [87.7, 89.5] ↓ 90.1% [89.9, 90.3]
–

82.1% [77.3, 86.9] ↓ 0.932 [0.915, 0.943] ↓ − 0.011 [− 0.023, 0.001]

Model 3.1
Horizontal flip

90.7% [89.8, 91.6] ↑ 89.5% [89.2, 89.8] ↓ 90.4% [88.9, 91.9] ↑ 0.956 [0.952, 0.964] ↑ 0.013 [0.007, 0.018]

Model 3.2
Vertical flip

88.9% [87.5, 90.3] ↑ 90.1% [89.8, 90.4]
–

72.8% [64.7, 80.9] ↓ 0.920 [0.908, 0.930] ↓ − 0.023 [− 0.037, − 0.008]

Model 4.1
SV perturbations

90.7% [89.6, 91.8] ↑ 90.0% [89.6, 90.4] ↓ 77.5% [61.3, 93.7] ↓ 0.940 [0.933, 0.958] ↑ − 0.004 [− 0.017,0.009]

Model 4.2
PCA color augmentation

89.3% [88.5, 90.1] ↑ 90.3% [90.0, 90.6] ↑ 87.6% [84.9, 90.3] ↑ 0.941 [0.941, 0.958] ↓ − 0.002 [− 0.013,0.008]

Model 4.3
Random color filters

89.1% [87.7, 90.5] ↑ 90.0% [89.6, 90.4] ↓ 85.1% [80.9, 89.3]
–

0.938 [0.912, 0.943] ↓ − 0.006 [− 0.018,0.007]

Model 5
Time/frequency masking

88.7% [87.6, 89.8]
–

90.1% [89.7, 90.5]
–

83.0% [79.6, 86.4] ↓ 0.934 [0.941, 0.956] ↓ − 0.010 [− 0.020,0.002]

Model 6
Horizontal flip and PCA

91.0% [90.0, 92.0] ↑ 89.9% [89.7, 90.1] ↓ 90.8% [88.8, 92.8] ↑ 0.958 [0.949, 0.968] ↑ 0.015 [0.006,0.023]

Model 7
Horizontal flip and SV perturba-
tions

90.7% [89.8, 91.6] ↑ 90.2% [89.8, 90.6] ↑ 91.0% [90.0, 92.0] ↑ 0.955 [0.948, 0.962] ↑ 0.012 [0.004,0.019]

Table 2  Average performance of each model according to precision-recall AUC, F1 score, and F1 and PR AUC mean difference from 
baseline model

F1 Score
[95% CI]

F1 Score Difference from 
Baseline [95% CI]

PR AUC [95% CI] PR AUC Difference from 
Baseline Mean [95% CI]

Model 0
Baseline

86.7% [85.7, 87.7] – 0.763 [0.734, 0.792] –

Model 1
Pitch/time alterations

84.3% [82.4, 86.2] ↓ − 0.025 [− 0.042, − 0.006] 0.748 [0.703, 0.793] ↓ − 0.031 [− 0.067,0.005]

Model 2
Noise injection

84.6% [83.4, 85.8] ↓ − 0.021 [− 0.035, − 0.006] 0.757 [0.722, 0.792] ↓ − 0.032 [− 0.063, − 0.00002]

Model 3.1
Horizontal flip

87.9% [86.8, 89.0] ↑ 0.012 [− 0.00030.024] 0.819 [0.792, 0.846] ↑ 0.044 [0.013,0.073]

Model 3.2
Vertical flip

84.5% [83.0, 86.0] ↓ − 0.022 [− 0.038, − 0.006] 0.741 [0.695, 0.787] ↓ − 0.030 [− 0.070,0.0102]

Model 4.1
SV perturbations

87.6% [86.4, 88.8] ↑ 0.008 [− 0.006,0.023] 0.784 [0.761, 0.807] ↑ 0.005 [− 0.033,0.0425]

Model 4.2
PCA color augmentation

86.4% [85.3, 87.5] ↓ − 0.003 [− 0.014,0.008] 0.779 [0.751, 0.807] ↑ 0.000 [− 0.029,0.029]

Model 4.3
Random color filters

85.3% [83.1, 87.5] ↓ − 0.014 [− 0.034,0.005] 0.754 [0.703, 0.805] ↓ − 0.029 [− 0.055, − 0.002]

Model 5
Time/frequency masking

85.1% [83.7, 86.5] ↓ − 0.016 [− 0.031, − 0.001] 0.772 [0.741, 0.803] ↑ − 0.007 [− 0.036,0.023]

Model 6
Horizontal flip and PCA

88.7% [87.5, 89.9] ↑ 0.020 [0.004,0.034] 0.815 [0.772, 0.858] ↑ 0.036 [− 0.0002,0.0712]

Model 7
Horizontal flip and SV perturbations

88.1% [87.2, 89.0] ↑ 0.014 [0.005,0.0213] 0.802 [0.765, 0.839] ↑ 0.026 [0.001,0.0507]
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set merits a discussion. Our data set contains 2575 nor-
mal heart sounds and 664 abnormal heart sounds. Our 
main strategy for counteracting potential bias introduced 
by class imbalance was to use a stratified k-fold cross 
validation, to ensure that the class distribution is main-
tained in both the training and test sets. We have elected 
to not utilize any techniques such as under sampling the 
majority class or over sampling the minority class. Our 
rationale is two fold. First, we believe these techniques 
introduces its own set of biases (i.e. if we over sample the 
minority class we may be overfitting to certain features). 
Second, we believe a total of 664 abnormal sounds is a 
sufficiently large enough sample size to build a predic-
tive model and ensure statistical power. Contrast this 
with a more severely imbalanced data set (i.e. 1000 nor-
mal:10 abnormal), where the issue of sample size or stati-
cal power is the real issue, not to be conflated with class 
imbalance. Evidence that our minority class is of suf-
ficient size resides in the fact that our accuracies for all 
our models range from 88%-91%. If our predictive model 
simply predicated the majority class every time, the accu-
racy would be 78%, which means our model is doing 
more than simply predicating the majority class.

We also note that accuracy, sensitivity, specificity, and 
ROC AUC, although widely used, may not be the most 
suitable metric in ascertaining model performance in 
the context of class imbalance. Our data set has a larger 
number of negative examples (i.e. normal sounds) and 
a smaller number of positive samples (i.e. pathological 
sounds). Given this distribution, a more optimal form of 
appraisal is precision-recall. Precision is not affected by 
a large number of negative samples because it measures 
the number of true positives over the number of sam-
ples predicted as positive (true positive + false positives). 
This makes precision-recall a better metric for evaluat-
ing models on an imbalanced dataset compared to sen-
sitivity–specificity because precision-recall measures the 
ability of a model to correctly identify the positive sam-
ples, while sensitivity–specificity measures the ability of a 
model to distinguish between classes, which is less mean-
ingful when there is a large class imbalance in the data-
set. In other words, under the precision-recall paradigm, 
more weight is given to the accurate detection of posi-
tive classes. This rationale makes sense clinically, since it 
is more costly to miss a murmur than it is to incorrectly 
classify normal sounds as pathological. This is a general 
principle in binary classification in medicine, as a false 
negative is usually worse than a false positive in making 
a medical diagnosis. Patient safety comes first and fore-
most to physicians, and there are many supplementary 
imaging techniques to evaluate suspected murmurs and 
prevent unnecessary treatment. The burden of dismissing 
a patient who needs medical attention is much greater 

than the alternative. We have presented a variety of met-
rics to capture model performance in our results section, 
but we will focus on the models PR AUC values in com-
paring model performance throughout the rest of the dis-
cussion section.

The first augmentation method was pitch shifting and 
time stretching/compressing. Since this augmentation 
is done at the audio level, the “spectrogram constraint” 
does not apply. Natural pitch variations reflect different 
anatomical variations of the heart including differing 
myocardium wall thickness, body fat/water composition, 
patient bone/rib structure, and the actual heart size, all 
of which may lead to variabilities in heart sound attenu-
ation. The data augmentation technique of pitch shifting 
aims to capture these natural variations. There is also var-
iability in how fast the heart beats. Time stretching and 
compressing represents heart sounds at different heart 
rates, such as in tachycardia or bradycardia. Although 
pitch shifting and time stretching/compressing as data 
augmentation techniques reflects possible physiological 
variations, experimentally we see worsening model per-
formance when these data augmentation techniques are 
applied. At first this seems to contradict our theoreti-
cal framework because the “physiological constraint” is 
supposedly satisfied. However, if we considered that the 
natural heart sound exists within a very narrow physio-
logical range, it is likely that the upper and lower limits of 
our pitch shifting, and time stretching/ compressing may 
have pushed the audio outside the normal physiological 
range. Thus, the “physiological constraint” was not actu-
ally satisfied because our augmentation techniques cre-
ated sounds that would never exist clinically, which is 
consistent with the worsening model performance.

The second augmentation method was noise injec-
tion. Noise injection has a regularization effect that can 
improve model performance by reducing overfitting and 
is a widely used audio data augmentation method for 
improving model performance. This augmentation is also 
done at the audio level, so again the “spectrogram con-
straint” does not apply. Despite the known ability of noise 
injection for improving model performance, we observe 
that noise injection actually worsens model performance 
for heart sound spectral image classification. This can be 
understood from the fact that the fundamental difference 
between normal and abnormal heart sounds is that the 
latter has additional frequency components (murmurs, 
rubs, S3 gallops, S4 gallops). By definition, noise injection 
is the act of introducing new frequency components to 
an audio file. Thus, noise injection is essentially convert-
ing normal heart sounds into abnormal heart sounds. 
Noise injection fails to satisfy the “physiological con-
straint” because it ruins the distinction that separates 
normal and abnormal heart sounds.
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The third augmentation method is flipping the spec-
trogram image. Horizontal flipping improved model 
performance on all three counts, while vertical flip-
ping worsened model performance on all three counts. 
This is explained by the fact that information conveyed 
by sound is encoded in the frequency domain, which is 
represented on the y-axis of spectrogram images. This is 
an important distinction from traditional images, where 
the y-axis represents a physical distance. Although verti-
cal flipping has been shown to be an effective augmen-
tation technique for improving model performance on 
many image datasets such as ImageNet and CIFAR-10 
[32] (which consist of images of commonplace objects 
like dogs, cats, cars, etc.), a vertical flip is not appropriate 
for a spectrogram image. Transformations of the y-axis 
of spectrograms would scramble the frequency content 
of the sound, rendering any meaningful information that 
was encoded in the sound to be lost. A vertical flip has no 
physical correlation, and so does not satisfy the “spectro-
gram constraint.” In fact, the vertical flip worsened model 
performance the most out of all the data augmentation 
techniques explored, underscoring the importance of not 
distorting the y-axis of spectrogram images. Horizontal 
flipping leaves the frequency axis intact, so it satisfies the 
“spectrogram constraint”. A horizontal flip alters the tem-
poral relationships of the frequency components, but as 
discussed above, a normal and pathological heart sound 
mostly contain the same frequency components (S1, S2, 
systole, diastole). The major difference is the presence 
or absence of other frequency components such as mur-
murs. It is not so much the temporal relationship of these 
frequency components with each other that help discern 
a normal heart sound from a pathological one. Thus, 
horizontal flips satisfy the “physiological constraint” as 
well, and experimentally we observe that horizontal flips 
improve model performance the most out of all data 
augmentation methods explored. Horizontal flipping as 
a data augmentation technique is most likely unique to 
heart sound spectral images compared to many other 
audio classification problems that represent sound as 
spectral images, owing to the rhythmic nature of heart 
sounds. In other audio classification tasks such as speech 
recognition, the temporary relationship of the different 
frequency components is important, and thus a horizon-
tal flip would most likely hinder model performance.

The next set of data augmentation methods (methods 
4.1, 4.2, and 4.3) are various color space transformations. 
Although these transformations do not distort the fre-
quency axis of the spectrogram, it is important to keep 
in mind the role of color as an additional dimension in 
spectrogram images. In a regular photo, color repre-
sents the wavelength of light reflecting off an object. In 
a spectrogram, color represents the loudness/intensity 

of the signal measured in decibels. Factors that contrib-
ute to the natural variation in heart sound amplitudes 
(i.e. how loud the heart sound is) include the size and 
position of the heart in the mediastinum, the presence 
of fluid within or fibrous thickening of the pericardium, 
and the position and extent of aeration of the lungs. For 
example, heart sounds are usually loudest at the apex 
where the heart is in direct contact with the anterior 
wall of the thorax. Younger patients tend to have louder 
heart sounds due to elastic and thin chest walls, whereas 
older patients tend to have quieter heart sounds due to 
stiffer and thicker chest walls. Heart sounds are louder 
when the patient is in full expiration, and quieter when 
the patient is in full inspiration. The data augmentation 
technique of color space transformations aims to cap-
ture these variations. Experimentally, we observe that 
SV (method 4.1) and PCA (method 4.2) did not statisti-
cally improve model performance, while adding random 
color filters (method 4.3) unequivocally worsened model 
performance. Neither SV (method 4.1) nor PCA (method 
4.2) introduces temporal or spectral distortions to the 
underlying image, thus satisfying the “spectrogram con-
straint.” However, specificity at 90% sensitivity post-SV 
augmentation worsened, likely due to the unconstrained 
shading changes to the spectrogram, which translates to 
alterations of loudness/intensity at the audio level. The 
model is less able to identify “normal” heart sounds due 
to the unnatural variations in the training set that were 
labeled as normal. In contrast, incorporation of PCA data 
in the training set improved specificity at the expense of 
a minor decrease in ROC AUC. At root, PCA establishes 
new features, known as “principal components,” from the 
original dataset. The goal is to compress the initial input 
dimensionality without compromising the most valu-
able information that were conveyed. Alterations along 
these “principal components” accomplish two objectives. 
First, they enrich the image along the axes of natural 
variation, which are by definition where the maximum 
between-sample variabilities exist. Second, since changes 
are made at the color level, the underlying object invari-
ance is maintained, which preserves the temporal and 
spectral properties of the original spectrograms. While 
PCA’s perturbations were derived mathematically, they 
are still unconstrained by human physiological limits. 
Therefore, PCA suffers a similar pitfall as SV. Compared 
to the other augmentation methods aside from horizon-
tal flip, these detrimental effects are arguably much more 
blunted because the “physiologic constraint” is satisfied 
to a greater extent. Overall, PCA and SV appear to be 
the second-best data augmentation methods for cardiac 
analysis next to horizontal flip.

In contrast to the previous two techniques, random 
color filters entirely shift the hues outside the scope of 
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our predetermined color-axis (i.e. orange). This may 
work for images of commonplace objects like cars, which 
can be observed in a wide variety of colors, but these aug-
mentations are nonsensible for our heart sound spectro-
grams as they have no associated physical meaning. The 
spectrogram constraint is severely violated, and experi-
mentally we observe that multicolor filters worsen model 
performance to the largest degree on all three counts. 
It is also important to note that in addition to the natu-
ral variations in heart sounds amplitudes, changes in 
amplitude may also reflect clinically relevant informa-
tion. Pathological conditions such as cardiac tamponade 
classically lead to diminished heart sounds. Pleural effu-
sions, subcutaneous edema, pneumothorax, and chronic 
obstructive pulmonary diseases (COPD) such as emphy-
sema would also muffle heart sounds, although in these 
conditions the heart itself would be considered healthy. 
Similar to noise injection, alterations in heart sound 
amplitude could potentially blur the distinction between 
normal and abnormal heart sounds, which would worsen 
model performance. Epidemiologically, distant heart 
sounds from tamponade, pneumothorax, or COPD that 
is severe enough to muffle heart sounds are much rarer 
than murmurs. The majority of abnormal heart sounds 
in our data set are characterized by murmurs rather than 
distant heart sounds, explaining why amplitude perturba-
tions did not have as much as a deleterious effect com-
pared to noise injections.

The fifth augmentation method is time and frequency 
masking. Masking induces partial information loss at 
random points in the time and frequency domain. We 
surmise that masking has a similar effect to the regulari-
zation technique of dropout, where randomly selected 
neurons are ignored during training. However, in clini-
cal practice, sudden quiescent periods occur in diseases 
such as AV heart block, cardiac arrest, or sick sinus syn-
drome. The original labels are preserved, so images that 
sprung from masking of normal spectrograms are still 
labeled as normal, despite the introduction of sudden 
pauses. Hence, masking does not satisfy the “physiologic 
constraint” and we observe model performance is not 
improved. Unlike noise injection and similar to amplitude 
changes, this type of pathological heart sound is relatively 
rare, thus there is no drastic reduction in performance. 
This stands in contrast to the state-of-the art results that 
masking has achieved in automated speech recognition 
[33], further illustrating the distinction between clinical 
sound analysis and traditional audio processing.

Compounding data augmentation methods is another 
way to create additional data diversity. For the sixth and 
seventh method, horizontal flip was combined with PCA 
and SV perturbations, respectively. In isolation, the latter 
two did not consistently improve model performance. In 

Model 6, cumulative data augmentation achieved higher 
ROC AUC, sensitivity and F1 score than either horizon-
tal flip or PCA alone. The two methods employed here 
both provided relatively “physiological” changes that also 
satisfied the spectrogram constraint. The subsequent 
outputs fulfilled the previously established framework, 
and arguably showed the model two types of possible 
changes through one training set. Model 7 yielded bet-
ter ROC AUC and F1 score than horizontal flip alone, 
but slightly worsened specificity. While SV perturbations 
introduced diversity to help prevent overfitting, it may 
have pushed some of the horizontally flipped images out 
of the bounds of normal biology, thus detracting from 
model learning. The outputs of these models show that 
concatenating augmentation methods holds promise, but 
maintaining clinical relevance is still of utmost impor-
tance when generating data. For classification problems 
in medicine, the degree to which synthetic outputs can 
mimic natural variations in pathology, physiology and 
clinical features serves as a predictor of their usefulness.

Conclusions
Our experimental results corroborate our theoretical 
framework for thinking about heart sound spectrogram 
classification. Methods that violated the “spectrogram 
constraint”, such as vertical flipping and applying ran-
dom color filters, worsened model performance by the 
greatest extent. Among the methods that did not vio-
late the “spectrogram constraint”, the degree to which 
the “physiological constraint” was adhered to correlated 
with how much model performance improved or wors-
ened. Noise injection is not a safe operation because the 
fundamental distinction between normal and abnormal 
heart sounds is blurred since the majority of abnormal 
heart sounds (murmurs, gallops, rubs) are just normal 
heart sounds with additional frequency components. 
Amplitude variation (via sensible color space transfor-
mations) and masking are also limited by fact that the 
distinction between normal and abnormal heart sounds 
are blurred: heart sounds with decreased amplitudes 
can be found in diseases such as cardiac tamponade, 
and heart sounds with quiescent periods can be found 
in disease such as AV block. However, these augmenta-
tion methods are less fatal compared to noise injection 
because epidemiologically these heart sounds are much 
rarer, explaining why we did not observe a drastic reduc-
tion in model performance compared to noise injection. 
Pitch shifting and time stretching/compressing worsened 
model performance most likely because the alterations 
were outside physiological ranges. There is potential for 
this augmentation method to work but given that heart 
sounds naturally exist within a narrow physiologic range, 
future work includes precisely defining these boundaries. 
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Interestingly, horizontal flipping is not actually rooted in 
any true physiological variation but has proven to be the 
superior data augmentation method. Horizontal flipping 
is able to create variation in the data without unnatu-
ral variations (such as at the extreme ends of pitch and 
time alterations) or run the risk of transforming normal 
sounds into abnormal sounds (such as with amplitude 
variations or masking). The “physiological constraint” 
and “spectrogram constraint” can be used as a guide for 
theory crafting future data augmentation methods for 
heart sound classification based on their spectral image. 
Moreover, the ideas behind the “physiological constraint” 
can be extended to related works seeking to classify heart 
sounds, while the ideas behind the “spectrogram con-
straint” can be extended to related work using spectro-
grams to classify audio.

We recognize several important limitations in our 
study. While the primary focus of our study was to 
compare various data augmentation methods for heart 
sound spectral images, the hyperparameters of the base-
line model was selected using a train/test split over the 
entire dataset. This may introduce potential optimistic 
bias to the performance metrics, as the model was not 
optimized using a train/validate/test split. However, the 
same CNN architecture and hyperparameters were used 
in every experiment, so any potential bias is maintained 
throughout, and should not affect our interpretation of 
the relative differences between data augmentation tech-
niques. In addition, K-fold cross validation does not solve 
the problem of adapting to a wide range of between-sub-
jective variability. Leave-one-subject-out (LOSO) cross 
validation would solve this problem but was not used due 
to the larger computational requirements.

We also note that wavelet transform may achieve a 
higher baseline classification performance due to bet-
ter time–frequency localization capacity. Future work 
includes exploring whether the data augmentation tech-
niques that improved spectral-image based classification 
will likewise improve performance for wavelet-based 
classification. Additionally, we hope to explore clinical 
data classification using other image encoding techniques 
(i.e. Gramian Angular Field, Markov Transition Field, 
etc.), and evaluate the effects of data augmentation on 
their respective model performances.

Despite these limitations, there is value in data aug-
mentation if done correctly, particularly for binary 
classification of PCG signals, and most likely for other 
medical classification problems as well. By synthetically 
generating samples using simple transformations, we 
can expand on the existing reservoir of patient data, and 
further enrich the documentation of select pathological 
conditions, which may be rare in nature and difficult to 
obtain. Machine learning models are increasingly used 

to streamline the repetitive processes in healthcare, 
such as initial screening, preliminary classifications, tri-
age, patient sorting, and specialist recommendations. 
Data augmentation is a method that has shown utility in 
improving model performance in cardiac sound analy-
sis and should be further explored in these alternative 
areas as well. In addition, this study corroborates the idea 
that models are only as good as the data from which it 
learns. Disease-appropriate forms of data augmentation 
are integral to improvements in model performance, and 
synthetic data is most meaningful when it lies within the 
scope of human physiology and can accurately mimic 
clinical findings. Hence, physician input should be con-
sidered when creating models, so these tools can be use-
ful and pragmatic both empirically and at the bedside.
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