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Data mining of bulk and single‑cell RNA 
sequencing introduces OBI1‑AS1 as an astrocyte 
marker with possible role in glioma recurrence 
and progression
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Mina Tabrizi1*   

Abstract 

Long non-coding RNAs (LncRNAs) are widely known for their various functions in cancer from tumor initiation to 
tumor progression and metastasis. Gliomas are the most prevalent primary forms of brain tumor, classified into grades 
I to IV according to their malignant histological features with grade IV, also known as glioblastoma multiforme (GBM), 
displaying the highest level of malignancy. Thus, the search for differentially expressed LncRNAs in GBM versus low-
grade glioma to uncover new insights into the molecular mechanisms of glioma progression have intensified. Bulk 
RNA sequencing pinpointed decreased expression of OBI1-AS1 in GBM compared to low-grade glioma samples. Sub-
sequent single nuclei RNA sequencing revealed OBI1-AS1 to be a super-exclusive astrocyte marker with AUC = 0.99 
and the potential to fully differentiate astrocytes from other brain cell types. Additional supplementary bioinformatics 
analysis exhibited OBI1-AS1 role in synaptic signal transduction and glutamatergic signaling. In addition, ChIP-Seq 
data were analyzed to explore transcription factors that can regulate OBI1-AS1 expression in neural cells. Results of 
Hi-C, methylation and ChIP-Seq analysis strongly suggest methylation of the CTCF binding site serving a central role 
in regulation of OBI1-AS1 expression via managing chromatin interactions. Our study indicated that lncRNAs, like OBI1-
AS1, could be extremely precise in identifying the astrocyte cluster in the single-cell transcriptome and demonstrating 
superiority to well-established astrocyte markers such as GFAP, S100B, ALDH1L1, and AQP4.
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Introduction
Glioma is the most prevalent primary brain tumor. It is 
classified into grades I to IV by the World Health Organi-
zation (WHO) based on its malignant features with 
grades I, II and III classified as low-grade glioma (LGG) 
and grade IV classified as high-grade glioma (HGG) or 
known as glioblastoma multiforme (GBM) [1]. GBM has 
the highest mortality rate and the lowest 5-year survival 
rate in less than 10% of patients when compared with 
LGG being 26% in patients aged 55–64, 73% in patients 
aged 20–44 and 46% for those in the 45–54 age groups 
[2]. GBMs can either be primary (pGBM), arising de 
novo, or can occur as a consequence of LGG recurrence 
with higher grades, known as secondary GBM (sGBM). 
Primary and secondary GBM can differ in regards to 
their genetic and epigenetic landscape [3] with sGBM 
displaying more aggressive features and poorer progno-
sis than pGBM [4]. It is also noteworthy that progres-
sion of LGG to GBM increases the mortality rate [5], 
which makes this an important area of research to find 
key genes implicated in malignant progression of LGG to 
GBM for potential future therapeutic and interventional 
measures to enhance patient survival.

Recently, a massive group of genes coding for non-
coding RNAs (ncRNAs) rather than proteins have been 
in the spotlight. Non-coding RNAs exert their func-
tions either at the RNA level by inhibiting transcription 
of RNAs or at protein level by impeding translation 
[6]. These non-coding RNAs can be grouped based 
on the number of nucleotides they contain into small 

(Small non-coding RNA < 200 nucleotides) or long 
(Long non-coding RNA > 200 nucleotides). They play 
roles in tumorigenesis and tumor progression through 
DNA damage response, immune escape metabolic dys-
regulation of cancer cells that help provide the energy 
required for aberrant cell growth. Additionally, they 
are implicated in tumor metastasis by modulating epi-
thelial-to-mesenchymal transition (EMT), a complex 
process through which cancer cells lose their epithe-
lial features and gain mesenchymal features, enhanc-
ing their migration and invasive abilities [7]. HOTAIR 
is just one of a plethora of LncRNAs involved in glioma 
by promoting cell cycle progression and is tightly linked 
with poor prognosis [8]. In addition, recent studies sug-
gest lncRNAs to be major players in glial cell micro-
environmental dynamics. LncRNA-ATB is an example 
of an exosomal lncRNA that is implicated in astrocyte 
activation to finally lead to glioma cell invasion [9]. 
LincRNA-GM4419 is yet another lncRNA implicated in 
promotion of trauma-induced apoptosis of astrocytes 
by upregulating TNFa [10]. These findings underscore 
lncRNAs to be among key regulatory elements in pre-
serving brain homeostasis via glial cells.

In the present study, we conducted a systematic bio-
informatics study utilizing The Cancer Genome Atlas 
(TCGA) database for analysis of differentially expressed 
LncRNAs (DELncRNAs) in LGG and GBM samples in 
hopes of finding potential LncRNAs that might play a 
role in transformation of LGG to GBM. This analysis 
showed that OBI1-AS1 is one of the most significant 
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DELncRNAs downregulated in GBM. Real-time PCR 
confirmed this finding experimentally. Using the GEPIA 
web server, we also investigated the existing correlation 
between OBI1-AS1 expression and overall survival of 
patients. Gene Ontology and pathway enrichment anal-
yses were performed to underpin molecular functions, 
biological processes, cellular components and signaling 
pathways involving OBI1-AS1. In addition, we analyzed 
single-cell RNA-Seq data to find cell types expressing 
OBI1-AS1. Our results revealed this gene to be only 
expressed in astrocytes. Astrocytes, the most abun-
dant glial cell type in the central nervous system, fulfill 
numerous essential functions contributing to formation 
of the blood–brain barrier, synaptogenesis, mainte-
nance of ion homeostasis, neurotransmitter buffering, 
and secretion of neuroactive agents and intracellular 
calcium signaling [11]. Also, single-cell RNA sequenc-
ing (scRNAseq) confirms the decreased expression of 
OBI1-AS1 in GBM samples. In addition, assessment 
of methylation level in neighboring region of the gene 
displayed extreme hypermethylation in LGG. Finally, 
ChIP-Seq analysis was performed to elucidate tran-
scription factors in close contact with the OBI1-AS1 
promoter to clarify interacting proteins contributing 
to regulation of OBI1-AS1 expression and, therefore, 
playing their part in glioma malignant progression. Our 
findings suggested that OBI1-AS1 has a potential role in 
synaptic signal transduction and we propose that OBI1-
AS1 may be potentially regulated by CTCF via restruc-
turing topologically associated domains (TADs).

Materials and methods
Data availability
The sample datasets downloaded and processes for the 
current study included TCGA-LGG and TCGA-GBM for 
RNA-seq data [12], Allen Institute for Brain Science for 
scRNAseq (Normal brain) data [13, 14], ENCODE pro-
ject for Hi-C and ChIP-Seq [15], CPTAC-3 for scRNAseq 
(GBM) data and TCGA-LGG and TCGA-GBM for Illu-
mina HumanMethylation450 (450  k) data [12]. Sample 
IDs from each dataset were provided in the Excel file in 
Additional file 1.

Bulk RNA sequencing analysis
GBM and LGG RNA-seq datasets and their associ-
ated clinical information were obtained from the TCGA 
database [12]. 40 GBM and 80 LGG samples were ran-
domly selected for Differential Expression Analysis 
(DEA). Transcriptome data were analyzed using the 
edgeR package [16]. The p values were adjusted using the 
Benjamini–Hochberg method [17]. Subsequently, dif-
ferentially expressed LncRNAs were chosen for further 

investigations and a volcano plot was created to visualize 
the DELncRNAs utilizing the R Enhanced Volcano pack-
age [18] based on False Discovery Rate (FDR) and Log 2 
Fold Change (Log2FC).

Survival analysis
GEPIA web server was used for analysis of any correla-
tion between OBI1-AS1 gene expression level and patient 
overall survival [19]. Patients were grouped into high 
expression and low expression categories according to 
whether their OBI1-AS1 gene expression level was above 
the first quartile or below the third quartile, respectively. 
Consequently, Kaplan–Meier survival analysis was per-
formed for the survival data as presented in Fig. 1C.

ChIP‑seq data analysis
The ChIP-Atlas-Enrichment Analysis online tool [20] 
was used to find the transcription factors (TF) binding 
to − 3000 < TSS < 3000 of OBI1-AS1 transcription start 
site (TSS) in neural cells. The significance threshold was 
selected as greater than 100 based on peak caller MACS2 
score (− 10Log10 [MACS2 Q-value]) which means that 
peaks with MACS2 Q-value (FDR) lower than 10−10 were 
considered. Moreover, CTCF and histone modifications’ 
bigwig file was downloaded from the National Bioscience 
Database Center (NBDC) and the ENCODE project [15, 
21].

Single nuclei RNA sequencing
We downloaded gene expression matrix, 2D coordinates, 
and trimmed median of gene expression in each cluster 
of brain cells from the Allen Institute for Brain Science 
[13, 14]. The whole QC criteria, cell type clustering and 
cluster annotation procedure were explained in detail 
by Hodge et al. [22]. In brief, raw data were aligned with 
GRCh38 and GRCh38.p2 as the reference genome and 
RefSeq transcriptome, respectively. Count table was cre-
ated by applying summarizeOverlaps function to BAM 
files. Subsequently, cells with any one of the following 
criteria were filtered out from downstream analyses: 
less than 500,000 reads mapped to exonic or intronic 
sequences; less than 40% of total reads aligned to the 
reference genome; less than 30% cDNA longer than 400 
base pairs; TA nucleotide ratio below 0.7 and less than 
50% of unique reads. After removal of poor-quality cells 
based on mentioned parameters, genes located on sex 
and mitochondrial chromosomes were excluded to avoid 
false clustering based on sex and nuclei quality in subse-
quent analyses. Next, clusters were built and identified 
by the Louvain algorithm using top 20 principal com-
ponents. Subsequently, clusters were annotated manu-
ally using panel of markers. To evaluate the upstream 
analysis, trimmed median of gene expression was used 
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to create dendrogram of cell types by hierarchical clus-
tering. Subsequently, t-SNE was drawn by 2D coordi-
nates. We also used expression of GFAP, S100B, ALDOC, 
SLC1A3, AQP4, and ALDH1L1 as well-known astrocyte 
markers to confirm astrocyte cluster identity [23, 24]. To 
normalize the gene expression matrix, CPM was applied 
to the read counts. To evaluate specificity of OBI1-AS1 as 
an astrocyte marker, ROC curve analysis was performed 
based on CPM expression for OBI1-AS1, GFAP, S100B, 
ALDOC, SLC1A3, AQP4, and ALDH1L1 across all cells.

Single‑cell RNA sequencing (GBM)
Seurat object of GBM samples from the CPTAC-3 pro-
ject was used for downstream analysis [25, 26]. IDs of 
samples used in this study are presented in Additional 
file 1. Initially, low quality cells were filtered out by call-
ing isOutlier function from scater package in R [27]. 
Afterward, single-cell object was built in Seurat v4, and 
t-SNE was computed by top 30 principal components 
[28]. Next, clusters were generated by the Louvain algo-
rithm using the nearest 20 neighbors. Top markers for 
each cluster were obtained using FindAllMarkers func-
tion from Seurat v4. Clusters were manually annotated by 
cell type based on the expression pattern of the markers.

Patient samples for qRT‑PCR with IHC diagnosis
26 GBM and 26 LGG samples were collected from Sha-
riati Hospital affiliated with Tehran University of Medi-
cal Sciences (TUMS). All samples were primary tumors 
without any reported recurrence. There were 17 and 14 
males in GBM and LGG groups, respectively. Pathologi-
cal diagnosis and immunohistochemical analysis of the 
tumor type was carried out by an expert neuropatholo-
gist based on the World Health Organization classifica-
tion of tumors (grade I to IV). The histopathological 
diagnosis of the obtained tissue samples was conducted 
based on immunohistochemical detection of the follow-
ing proteins: GFAP, OLIG2, p53, KI67, IDH1, ATRX, and 
EGFR. All samples were evaluated by immunohistochem-
ical and real-time PCR analyses. Tumor samples were all 
collected in RNA Later immediately after surgical resec-
tion and stored at − 80° centigrade until RNA extraction. 
Written informed consent was obtained from all patients 
enrolled in this study. This study fully conformed with 
ethical standards of Tehran University of Medical Sci-
ences and the 1975 Helsinki Declaration.

RNA extraction, cDNA synthesis and quantitative RT‑PCR
RiboEx™ (GeneAll) was used for RNA extraction based 
on manufacturer’s protocol. Presence of genomic con-
tamination was checked by agarose gel electrophoresis 
before cDNA synthesis. RNA concentration and presence 
of contaminants were determined using the NanoDrop 

2000 spectrophotometer (Thermo Scientific). cDNA syn-
thesis was performed using the PrimeScript RT reagent 
(TakaraBio Inc, Shiga, Japan) and qRT-PCR was carried 
out using the AMPLIQON Real Q Plus 2 × Master Mix 
Green low ROX in the Light Cycler® 96 System (Roche 
Life Science, Germany) based on the manufacturer’s 
instructions. Real-time PCR was conducted in duplicates. 
Primers were designed using the Oligo software and 
were blasted to check their specificity afterward. Primer 
sequences are presented in Table 1. Standard curves were 
created to set-up the primers and the primers were set-
up with efficiency equal to 2. Relative quantification of 
target gene expression was performed using the 2–∆∆Ct 
method with B2M as the normalizer gene. The real-time 
procedure for each sample was as follows:

Incubation for 10 min at 95 °C followed by 40 cycles of 
elongation including 10 s at 95  °C and 30 s at 60  °C. To 
exclude presence of any primer dimers or by-products, 
dissociation curves were carefully analyzed to check 
the specificity of the product melting peak. The PCR 
products were ultimately confirmed by 2% agarose gel 
electrophoresis.

Statistical analysis
The Q-Q plot was used to assess normal distribution 
of the data. The Mann–Whitney test was carried out 
for comparison of groups. The ROC curve and the area 
under the curve (AUC) were used to evaluate the sensi-
tivity and specificity of the LncRNA in distinguishing 
GBM from LGG. A p value less than 0.05 was deemed 
statistically significant for a confidence interval of 
95%. Statistical analysis was performed with GraphPad 
Prism8.

Methylation
Illumina HumanMethylation450 (450  k) array data, 
which are available in Genomic Data Commons (GDC), 
have been used in the current study. Initially, matrix of 
beta-values for the samples was downloaded, and probes 
belonging to the sex chromosomes or those known to 
have common SNPs at CpG sites were removed. Addi-
tionally, SNP probes with minor allele frequencies greater 
than 0.05 besides those mapping to multiple locations 
in the genome (cross-reactive probes) were filtered out 
[29]. After probe filtering, M-values for further statisti-
cal analyses were calculated. To find differentially meth-
ylated CpGs (DMCs) between LGG and GBM, linear 
model on matrix of M-values in limma was applied [30]. 
The M-values matrix was then annotated and analyzed 
by DMRcate to find differentially methylated regions 
(DMRs) [31]. DMRs represent multiple proximal CpG 
sites in the genome that are differentially methylated 
between groups. Eventually, all p values were adjusted by 
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the Benjamini–Hochberg method and the results with 
FDR < 0.001 were considered significant.

Gene ontology (GO) and pathway enrichment
We used OBI1-AS1 co-expressed genes to perform func-
tional annotation. A list of OBI1-AS1 co-expressed genes 
from lncHub (https://​maaya​nlab.​cloud/​lnchub/) was 
obtained [32]. lncHub computes mRNA-lncRNA cor-
relations using the read counts of 11,284 TCGA RNA-
seq samples processed by Recount2. Read counts were 

normalized by quantile, and, subsequently, Pearson’s cor-
relation coefficient was computed across all genes. We 
selected genes with a Pearson correlation coefficient > 0.4 
for further functional analysis. Enrichment analysis for 
biological process, molecular function, cellular compo-
nent and pathways involved were conducted by DAVID 
[33, 34].

Results
Bulk RNA‑seq data indicate that expression of OBI1‑AS1 
in GBM is lower than LGG
In this study, 728 LncRNAs exhibited differential 
expression between LGG and GBM (FDR < 0.05). 
These LncRNAs were further filtered for |Log2 Fold 
change|> 2 and this reduced the number of validated 
DELncRNAs to only 84 (Additional file  2). Subse-
quently, the top 10 DELncRNAs with the lowest FDRs 
were prioritized and selected for further investigations 

Table 1  Primer sequence

Gene Forward primer Reverse primer

OBI1-AS1 GCC​CTG​AAG​CAT​ACC​AAA​
ATGT​

CAC​AGA​AAG​TAC​CCA​AGA​GGT​

B2M AGA​TGA​GTA​TGC​CTG​CCG​TG GCG​GCA​TCT​TCA​AAC​CTC​CA

Fig. 1  A In this volcano plot, differentially expressed LncRNAs in GBM compared to LGG are presented. The names of the top 10 with the least 
FDR are displayed in the figure with OBI1-AS1 having the highest |Log2FC|. Positive values on the x-axis indicate increased expression in LGG vs 
GBM. B RNA-Seq Analysis of 120 glioma samples revealed decreased of OBI1-AS1 expression in GBM compared to LGG by Log2FC = − 3.67. C 
Based on survival analysis of 338 glioma patients, those with low expression of OBI1-AS1 exhibited significantly poorer prognosis with Hazard 
Ratio (HR) = 0.14. D Real-time PCR results confirmed our DEA findings. As is presented, OBI1-AS1 was overexpressed in non-GBM glioma samples 
by log2FC = − 3.54 which was in accordance with our RNA-Seq data analysis findings (p value < 0.0001). E The ROC curve illustrated AUC equal to 
81% and 85% for real-time PCR and RNA-seq data, respectively, with 52 samples (26 for GBM and 26 for LGG) for real-time PCR and 698 for RNA-seq 
investigation. These AUCs also highlight agreement between RNA-seq and real-time PCR findings. F Expression of OBI1-AS1 decreased after 
recurrence (p value = 0.005). In 12 of the 14 patient, OBI1-AS1 expression decreased after recurrence

https://maayanlab.cloud/lnchub/
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as presented in the volcano plot in Fig.  1A. OBI1-AS1 
was chosen because it displayed the highest level of 
|Log2 Fold change|= 3.67 (Fig.  1B). Furthermore, high 
expression level of this gene showed tight association 
with prolonged patient survival period as illustrated in 
Fig.  1C. Interestingly, thus far, no previous studies or 
investigations were conducted on this gene. To further 
validate the results obtained from our bioinformatics 
analyses, 26 GBM and 26 LGG tumor samples were col-
lected and checked utilizing the qRT-PCR technique for 
confirmation of RNA-Seq findings. qRT-PCR confirmed 
lower expression of OBI1-AS1 in GBM samples com-
pared with LGG. The relative expression level of this 
gene is illustrated in Fig. 1D. Real-time PCR showed that 
Log2FC was − 3.54 which was completely compatible 
with our DEA results (Log2FC = − 3.67). To analyze the 
sensitivity and specificity of OBI1-AS1 in distinguish-
ing GBM from LGG, ROC curve was created and area 
under the curve (AUC) was measured (Fig. 1E). In addi-
tion, we performed differential expression analysis using 
all recurrent LGG samples (14 samples) and their pair 
before recurrence (before and after recurrence). The 
results showed that OBI1-AS1 was downregulated after 
recurrence by FDR = 0.005 and Log2FC = − 2.11(Fig. 1F, 
Additional file 3).

Single nuclei RNA sequencing (snRNA‑Seq) analysis 
revealed that OBI1‑AS1 is a super‑exclusive marker 
for astrocytes
Different cell populations in snRNA-Seq of normal 
brain are illustrated with t-SNE in Fig. 2A. As presented 
in Fig.  2B and Additional file  10: Figure S1, OBI1-AS1 
is exclusively expressed in astrocytes. Co-expression of 
GFAP, S100B and SLC1A3, well-established astrocyte 
markers in the red cluster, confirms that this cluster 
belongs to astrocytes (Fig.  2C–E). Other markers were 
presented in Additional file  11: Figure S2. The expres-
sion pattern of OBI1-AS1 across all cell types is plotted 
in Fig. 2F. In Fig. 2G, ROC curve analysis was presented 
to assess OBI1-AS1 and six other outstanding astro-
cyte markers’ power to differentiate astrocytes from 
other brain cells. As illustrated, OBI1-AS1 was signifi-
cantly more accurate than the other markers. To fur-
ther clarify this point, comparison between Fig.  2B, D 
demonstrated that S100B has high expression in both 
oligodendrocytes and astrocytes, while OBI1-AS1 was 
expressed exclusively in astrocytes. The area under the 
curve (AUC) and p values for these genes are shown in 
Table  2. Remarkably, AUC for OBI1-AS1 was equal to 
0.99, introducing this gene as a very specific marker for 
astrocytes.

Single‑cell RNA sequencing of GBM samples showed low 
expression of OBI1‑AS1 in GBM cells
Subsequently, GBM scRNAseq data were further ana-
lyzed to ascertain cell types in GBM tumors demon-
strating elevated expression of OBI1-AS1. Our study 
showed that expression of OBI1-AS1 in tumor cells was 
very low. In most patients, expression of this gene was 
not observed in any of the clusters (Additional file  12: 
Figure S3). In one patient (Fig.  3A), this gene showed 
high expression only in one small cluster (Fig.  3B, C). 
As shown in Fig. 3C, this small cluster mainly expresses 
astrocytic markers (AQP4, SLC1A3). A complete list of 
cluster markers for this dataset is available in Additional 
file 4. Evaluation of markers for the OBI1-AS1 expressing 
cluster in different databases shows that most of these 
genes had the highest expression in astrocytes. Actually, 
astrocyte markers separate this cluster from other cell 
populations. Since these cells are present in small distinct 
clusters, they seem unlikely to be a derivative of tumor 
cells; hence, they seem to be normal astrocytes in the 
tumor microenvironment. This finding was consistent 
with qRT-PCR and RNA-Seq results because our previ-
ous results showed very low expression of this gene in 
GBM tumors.

OBI1‑AS1 locus was hypermethylated in low‑grade gliomas
Certainly, DNA methylation plays a pivotal role in regula-
tion of gene expression, which encourages us to evaluate 
methylation to discover any possible association between 
OBI1-AS1 expression and methylation. Surprisingly, 
this locus was found to be markedly hypermethylated in 
LGG. Our analyses revealed three differentially methyl-
ated regions (DMRs) with significant hypermethylation 
in LGG. The most significant was located upstream of 
OBI1-AS1, displaying overlap with a CpG island. This was 
an unexpected finding because it was in stark contrast 
with OBI1-AS1 upregulation in LGG while hypermeth-
ylation usually suppresses gene expression. Statistical 
details for each DMR are available in Table 3. A complete 
list of DMRs and differentially methylated CpGs (DMCs) 
is available in Additional file 5.

Hypermethylated CpGs demonstrated significant overlap 
with the CTCF binding site in midpoint of OBI1‑AS1
The question raised at this point was whether there was 
the possibility of OBI1-AS1 being expressed at higher 
levels as a consequence of DNA hypermethylation in the 
region. Recent studies revealed that IDH1 mutant glio-
mas showed CpG island methylator phenotype (CIMP) 
[35]. Given this, it is possible that IDH1 mutations may 
also affect the methylation of this region and expression 
of OBI1-AS1. To evaluate this, LGG samples were divided 
into normal and mutant groups based on IDH1 mutation 
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status and DEA and methylation analysis was performed. 
As expected, CpGs were hypermethylated in IDH1mut 
samples at this locus (Fig. 4A). Also, DEA revealed IDH-
1mut samples displayed higher levels of OBI1-AS1 expres-
sion (Log2FC = 1.4 and FDR = 2.9 ∗ 10−15 ) (Fig.  4C and 
Additional file  6). In addition, Methylation of the three 
probes demonstrated a significant positive correla-
tion with OBI1-AS1 expression (Fig. 4B). These findings 
suggest that these CpGs may play a role in regulating 
OBI1-AS1 expression. ChIP-seq analysis of glioma sam-
ples showed that CTCF has several strong binding sites 
surrounding OBI1-AS1 (Fig.  4A and Additional file  7). 
Interestingly, these sites overlap with DMCs that are 

Fig. 2  A t-SNE of 19 brain cell types. Each point is a cell. Red cluster belongs to astrocytes. B–E The expression pattern of astrocyte markers 
including GFAP (C), S100B (D) and SLC1A3 (E) confirmed that the red cluster in A belonged to the astrocyte. OBI1-AS1 expression was also plotted in 
t-SNE (B), and the pure red color in this figure indicated that OBI1-AS1 is exclusively expressed in astrocytes. F Violin graph shows that OBI1-AS1 is 
significantly expressed in astrocytes. Each point is a cell. G ROC curve analysis of GFAP, S100B, SLC1A3, ALDOC, AQP4, ALDH1L1, and OBI1-AS1 showed 
that OBI1-AS1 had significantly higher specificity and sensitivity compared to other markers for differentiating astrocyte from other cell types

Table 2  AUCs of Astrocyte markers in single-cell RNA-Seq

Marker name AUC​ p value

OBI1-AS1 0.99 < 0.0001

SLC1A3 0.99 < 0.0001

GFAP 0.81 < 0.0001

ALDH1L1 0.85 < 0.0001

AQP4 0.90 < 0.0001

S100B 0.81 < 0.0001

ALDOC 0.63 < 0.0001
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significantly hypermethylated in IDH1mut LGG samples 
(Fig. 4A and Additional file 8).

CTCF is considered as a well-known insulator with 
a crucial role in formation of topological associated 
domains (TADs). Therefore, organization of TADs in 
cells expressing OBI-AS1 and also in GBM cells was ana-
lyzed to see whether CTCF is implicated in regulation of 
chromatin interactions at this locus. To accomplish this, 
Hi-C data of GBM and astrocytes publicly available in the 
3D genome browser were used [15, 36, 37]. A compari-
son is presented in Fig.  4D, E. A strong TAD boundary 
at midpoint of OBI1-AS1 in GBM Hi-C was seen. This 
is where the CTCF binding site is located and divides 
OBI1-AS1 into two different TADs. As demonstrated, 

this boundary prevents interaction of upstream areas 
with the downstream sequence in GBM. In astrocytes, on 
the other hand, a lot of interaction at the same region was 
seen. This is more obvious in Fig. 4E. Hot colors in this 
figure indicate more interactions in astrocytes compared 
to GBM. Additional file 13: Figure S4 shows TADs along 
with histone modifications, CTCF ChIP-seq and chroma-
tin accessibility at this locus.

Potential role of OBI1‑AS1 in synaptic signal transduction
Gene Ontology results for OBI1-AS1 are presented in 
Fig.  5. The top significant GO terms in biological pro-
cess (BP) (Fig.  5A) were pertinent to synaptic formation 
and signal transduction. This was compatible with other 

Fig. 3  A t-SNE plot of GBM sample. B Feature plot for glioma stem cell markers(PROM1, PDGFRA, MKI67) and OBI1-AS1. Note that stemness markers 
are scattered throughout the tumor cluster. C Cells in A were manually annotated by cell type based on marker expression. As shown, OBI1-AS1 was 
expressed only in the astrocyte cluster and not in tumor cells
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GO terms in molecular function (MF) and cellular com-
ponent (CC). GO: CCs (Fig. 5B) showed that most of the 
genes were located in the plasma membrane of neurons 
especially in axon, neural projections, dendrites, synapses, 
and postsynaptic density. Microtubules were another cell 

compartment where significant number of genes were 
located. Interestingly, the most significant molecular 
function GO terms were related to the microtubule bind-
ing domains which have an important role in formation of 
axon and postsynaptic density complexes (Fig. 5C). Other 

Fig. 4  A Methylation status of probes between IDH1wt LGG and IDH1Mut LGG at OBI1-AS1 locus. Most probes were hypermethylated in IDH1Mut 
samples (orange point and line). Probes located in the intronic region of OBI1-AS1 showed significant overlap with CTCF binding sites based on 
glioma ChIP-Seq data. B Correlation of OBI1-AS1 expression with probe methylation. As is presented, there was a positive correlation between 
OBI1-AS1 expression and methylation of probes that are in overlap with the CTCF binding site. C OBI1-AS1 expression in GBM and LGG based 
on IDH1 mutation status. Cells were colored in orange and blue for IDH1wt and IDH1mut, respectively. Median of each group was shown by a 
black line. Expression was higher than median in IDH1mut samples in each group. D Hi-C interactions are shown for a 3-Mb region comprising 
OBI1-AS1. In GBM, a strong TAD boundary in the intronic region of OBI1-AS1 (blue circle) was seen while this boundary site was eliminated in 
OBI1-AS1-expressing cells (astrocytes). There are multiple binding sites for CTCF at the boundary region. E Hi-C interactions for astrocytes and 
GBM are shown in subtracted heatmap. Hot color indicates areas in close contact in astrocytes compared to GBM. The reddest region was located 
precisely in the middle of OBI1-AS1, where in GBM, CTCF binds DNA with a high affinity. This finding confirmed the close contact between OBI1-AS1 
promoter with its downstream region in astrocytes, while CTCF prevented this contact in GBM
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GO: MF terms were linked to glutamate and ionotropic 
glutamate receptors or ion trafficking across the neural 
membrane, which indicate that most of the OBI1-AS1 
co-expressed proteins have a binding domain for gluta-
mate and ions like calcium. When we conducted pathway 
enrichment analysis, hsa04724: Glutamate synapse was 
found to be the most significant pathway (Fig. 5D). That’s 
an interesting result because the greatest fold enrichment 
in BP and MF was also attributed to glutamate receptors. 
This signaling pathway has a crucial role in response to 
glutamate in postsynaptic neurons at the postsynaptic 
density. Some other signaling pathways which were signif-
icantly enriched were related to circadian rhythm, secre-
tion and synaptic communication (find the complete list 
of GO terms and pathways in Additional file 9).

In summary, most GO terms and pathways were attrib-
uted to signal transduction at synapses (especially glu-
tamate) and formation of synapses and axons. These are 
consistent with well-known roles for astrocytes in syn-
apse formation and maintenance of glutamate toxic effect 
and axon guidance. We emphasize that these findings are 
based on bioinformatics analysis and functional studies 
are necessary to make a definite statement in this regard.

Discussion
In this study, results of bulk RNA-Seq analysis revealed 
that OBI1-AS1 has higher expression in LGG samples 
compared with GBM specimens and this was confirmed 

by qRT-PCR. In addition, patients with low expression 
levels of OBI1-AS1 demonstrated poor prognosis. Also, 
we showed that this gene was downregulated after glioma 
recurrence. These findings suggest association of OBI-
AS1 with glioma progression. Furthermore, single-cell 
RNA sequencing revealed that expression of OBI1-AS1 is 
confined to astrocytes. That is an attention-worthy find-
ing which introduces OBI1-AS1 as a candidate marker for 
distinction of astrocytes from other brain cell types dur-
ing cell annotation in the single-cell analysis process.

Astrocytes are known as principal glial cells involved 
in maintenance of brain homeostasis. Synaptic support, 
neural protection from glutamate cytotoxic effects, and 
contribution to axon guidance and synaptogenesis are 
among some of the most pivotal astrocyte functions. 
Since very little is known about OBI1-AS1, precise elu-
cidation of its functions in astrocytes remains elusive. 
Hence, GO term analysis of OBI1-AS1 co-expressed 
genes is currently the only tool that can be used to 
speculate on plausible functions this gene fulfills. Our 
pathway enrichment analysis revealed that OBI1-AS1 
has a potential role in glutamate receptor signaling and 
synaptic responses, which is compatible with astrocyte 
functions. Synaptic long-term depression is another 
attractive pathway which was enriched in our analysis. 
Some studies in recent years have attributed pathophysi-
ology of depression and mood disorders to astrocytes 
[38–40]. As previously mentioned, our pathway analysis 

Fig. 5  Gene Ontology results for genes significantly co-expressed with OBI1-AS1. The color intensity of each bar indicated the fold enrichment 
score in that GO term. In addition, the exact score is shown in parentheses. FDR values were calculated based on the Benjamini–Hochberg 
adjustment method. Total number of genes was 293
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findings for OBI1-AS1 were pertinent to astrocyte func-
tions, which was not an unusual finding given the scR-
NAseq results. These findings can possibly be attributed 
to the fact that this gene is expressed solely in astrocytes, 
justifying the existing overlap between GO findings and 
astrocyte functions. Thus, at this point, no assertion can 
be made regarding whether there is a causative relation-
ship between GO terms and OBI1-AS1 function, and 
further functional studies are required. However, path-
way enrichment of OBI1-AS1 co-expressed genes can 
currently be used to propose possible signaling path-
ways OBI1-AS1 is implicated in, which can be helpful for 
future functional studies.

Why is OBI1‑AS1 downregulated in GBM and what 
is the molecular mechanism behind its regulation 
in glioma?
One possible explanation for the major difference in 
expression of OBI1-AS1 in LGG versus GBM is prob-
ably the small number of astrocytes found in GBM sam-
ples, which is consistent with snRNA-seq results. If this 
is true, expression of other astrocyte markers in GBM 
should also be decreased. In Additional file  14: Figure 
S5, we have presented expression of astrocyte markers in 
both groups. As demonstrated, expression of these mark-
ers (except OBI1-AS1) did not show any significant differ-
ence between LGG and GBM. It does not seem that the 
difference in expression of OBI1-AS1 between the two 
groups is due to the difference in the number of astro-
cytes because the expression of other astrocytic markers 
does not differ much between the two groups. Further 
exploration of OBI1-AS1 expression in LGG at single-cell 
level can clarify this. Unfortunately, we were not able to 
find such data. Perhaps future studies will help to resolve 
this issue.

It is known that GBM is comprised of a greater propor-
tion of cancer stem cells than low-grade gliomas. Thus, 
GBM tumors display greater cellular heterogeneity, higher 
invasive properties, and, consequently, a more aggressive 
phenotype [41, 42]. On the other hand, majority of cells in 
low-grade tumors differentiate into an endpoint glial lin-
eage like astrocytes, oligodendrocytes or a mixture of the 
two. Since we know that OBI1-AS1 is exclusively expressed 
in astrocytes, it is reasonable to assume that OBI1-AS1 
exhibits higher expression in LGG than in GBM, as was 
the case in our results (Fig. 1A–C). One possible scenario 
is that upregulation of OBI1-AS1 in glial stem cells results 
in differentiation of these cells to astrocytes.

As mentioned previously, OBI1-AS1 and its surround-
ing region are significantly hypermethylated in LGG 
compared to GBM. This is somewhat unexpected, as 
it is generally believed that methylation usually sup-
presses gene expression. Since the genome is globally 

hypermethylated in LGG patients, increased expres-
sion of OBI1-AS1 and hypermethylation at this locus 
in LGG could be a coincidence. On the other hand, one 
might entertain the idea that there might be a causa-
tive relationship between methylation level at these 
CpG sites and expression of OBI1-AS1. This possibility 
is reinforced when we know that these CpGs overlap 
with CTCF binding sites in this region. Flavahan and 
Drier demonstrated that methylation of CTCF bind-
ing sites in IDH1mut samples was the main reason for 
the difference in expression profile of IDH1mut versus 
IDH1wt in samples [43]. They showed that CTCF regu-
late enhancer-promoter contact by managing chromatin 
interactions. These sites are highly sensitive to methyla-
tion and hypermethylation and can disrupt CTCF-DNA 
interaction and TAD structure [44–46]. If this is the 
case, expression of OBI1-AS1 should increase in IDH-
1mut compared to IDH1wt specimens. Moreover, a posi-
tive correlation between methylation of CpGs on CTCF 
binding sites and OBI1-AS1 expression will be expected. 
As we showed in Fig.  4C, B, OBI1-AS1 has higher 
expression level in IDH1mut samples, and methylation 
of CTCF binding sites had a positive correlation with 
OBI1-AS1 expression. All findings strongly suggested 
that CTCF served an important role in modulation of 
OBI1-AS1 expression. Presence of a strong TAD bound-
ary at midpoint of OBI1-AS1 in GBM samples, where 
CTCF bind, supports this hypothesis. This boundary 
can prevent transcription of this gene by preventing 
the effect of potential downstream enhancers of OBI1-
AS1 with its promotor or creating a physical barrier to 
RNA polymerase movement along the gene. Based on 
available evidence, this is the best explanation that can 
be provided presently. In the current study, we demon-
strated that TAD boundary formation correlates with 
the expression pattern of this lncRNA. Although these 
correlations were strong, specific functional studies 
are required to prove this regulatory mechanism in the 
future. This study, for the first time, is providing prelim-
inary evidence for significance of this non-coding RNA, 
but accurate understanding of the regulatory mecha-
nisms affecting this gene require further research.

Conclusion
For the first time in this study, we presented data to 
implicate of OBI1-AS1 in astrocytes and glioma tumors. 
This gene shows extremely tissue-specific expression pat-
tern which is of great importance. This emphasizes the 
role of OBI1-AS1 in astrocytes, but the exact role of this 
gene in these cells remains an open question that makes 
this gene an attractive target for future studies on glial 
cells.
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