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The heart must consume a significant amount of energy to sustain its contractile activity.

Although the fuel demands are huge, the stock remains very low. Thus, in order to supply

its daily needs, the heart must have amazing adaptive abilities, which are dependent on

dioxygen availability. However, in myriad cardiovascular diseases, “fuel” depletion and

hypoxia are common features, leading cardiomyocytes to favor low-dioxygen-consuming

glycolysis rather than oxidation of fatty acids. This metabolic switch makes it challenging

to distinguish causes from consequences in cardiac pathologies. Finally, despite the

progress achieved in the past few decades, medical treatments have not improved

substantially, either. In such a situation, it seems clear that much remains to be learned

about cardiac diseases. Therefore, in this review, we will discuss how reconciling

dioxygen availability and cardiac metabolic adaptations may contribute to develop full

and innovative strategies from bench to bedside.

Keywords: cardiac metabolism, cardiac function, heart failure, oxidative stress, hypoxia, fatty acids β-oxidation,

glycolysis

INTRODUCTION

In eukaryotes, dioxygen and metabolism are intrinsically bound to energy production. And the
major issue of cell metabolism is to supply the tricarboxylic cycle (TCA cycle, also called Krebs cycle
or citrate cycle) in acetyl-CoA molecules and to reduce the oxido-reduction coenzymes (FADH2,
NADH,H+), in order to continuously sustain the production of ATP by the mitochondrial
respiratory chain. In the presence of dioxygen, cell respiration is thus hugely preferred, due to their
more positive ATP production efficiency. However, any disturbance, which targets these metabolic
pathways, couldmake the cell metabolism switch into anaerobic process, disrupting the equilibrium
between oxidation/reduction processes. During the last decade, modification of both redox state
and metabolism imbalance were found to be crucial factors in various physiological pathways from
development to aging, and pathological processes including cancer, diabetes mellitus, neurological
disorders and cardiovascular diseases (Douglas, 1963; Cunnane et al., 2011; Ma and Li, 2015).

Cardiovascular diseases represent the leading cause of mortality worldwide, while their
morbidity is considered as an important economic burden for patients and for their society
(Braunwald, 2013, p. 1). Heart failure is a clinical syndrome characterized by the low contractile
ability of themyocardium. In the United States, more than 5million people suffer from heart failure
(HF) (Roger et al., 2012). In addition, in spite of significant declines in mortality, the 5-year survival
rate is still 50% worse than cancers (Levy et al., 2002; Askoxylakis et al., 2010). Despite advances in
our understanding and knowledge of HF, the complexity of the pathophysiology remains a barrier
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to effective therapeutic strategies. Although there are numerous
etiologies that can make a heart fail, alterations of cardiac
metabolism and redox-status can be depicted together as a fatal
cocktail, dramatically propelling the disease to its lethal outcome
(Tsutsui et al., 2011; Wang et al., 2014).

The heart is particularly sensitive to a wide range of
environmental parameters, such as glucose and fatty acids (FA)
blood levels or blood pressure, which are directly influenced
by paracrine, endocrine hormones or neural regulators (Gordan
et al., 2015). Hence, any disturbance will be able to affect
its function. As a high consumer of energy, the heart must
adapt its contractile activity and metabolic function to fit with
the environmental availability of fuel sources and dioxygen.
However, such a liability has its pros and cons. In this review,
we will examine the cardiac metabolism and its involvement in
cardiac disease and, conversely, how the metabolic switch from
fatty acid oxidation to glycolysis and the alteration of dioxygen
availability take part in the pathological progression of HF.

CARDIAC METABOLISM

Beating 100,000 times every day to pump about 7,500 l of blood,
the heart must consume a large amount of energy in order to
sustain critical and constant contraction (Abozguia et al., 2009).
Although the energy demand is huge, the cardiac stock of fuel
is very low, (5µg of ATP and 8µg of phosphocreatine per
gram of tissue) sufficient for only 10 beats (Beer et al., 2002).
Consequently, ATP productionmust be at a high rate all the time.
In the adult human heart, ATP production is estimated at 6 kg
per day, representing more than 20–30 times its own mass (Opie,
1968, 1969, 2004; Abozguia et al., 2009; Lopaschuk et al., 2010),
demonstrating the enormous capacity of cardiac metabolism.

Under physiological conditions, cardiac metabolism
involves three main steps: utilization of substrates; oxidative
phosphorylation; ATP transfer and use. Changes in either of
these steps may affect the myocardial energy metabolism. In the
first step, cardiomyocytes take up and breakdown fuel sources.
The heart is an “omnivore” organ, consuming a variety of
substances to support its energy needs. A healthy adult heart
mainly uses fatty acids (90%) and glucose (10%) as substrates,
which are then metabolized by FA β-oxidation (FAO) and
glycolysis respectively (Lopaschuk et al., 2010). FA are provided
within the cells in the form of triglycerides, which are insoluble
lipid complexes associated with lipoproteins or chylomicrons.
Cardiomyocyte uptake of fatty acids across the plasmid
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membrane has been considered a passive diffusion process, but
it can be usually facilitated by the fatty acid translocase CD36
(Campbell et al., 2004). Inside the cytosol, free FA are converted
into fatty acyl-CoA by fatty acyl-CoA synthase. Then, the second,
and most rate limiting, step is the transport of FA across the
double mitochondrial membrane into the mitochondrial matrix,
when the FAO occurs. For long-chain FA, a carnitine shuttle
is required, facilitated by the carnitine-palmitoyl transferase
1 (CPT1) (Saggerson, 1982; Bonnefont et al., 2004). CPT1B
is the major isoform located at the outer membrane of the
cardiomyocyte mitochondria (Saggerson, 1982; Leij et al., 2002;
Hada et al., 2012). In the heart, CPT1B represents a checkpoint
that responds to metabolic feedback for FAO (He et al., 2012).
Indeed, when citrate TCA intermediates are accumulated
within the cells, they can be converted into MalonylCoA
molecules, which represses CPT activity in a negative feedback
loop, thus modulating efficiently the FAO (Saggerson, 1982;
Awan and Saggerson, 1993; Reszko et al., 2004). CPT enzymes
belong to the larger family of carnitine acyltransferases, which
includes the carnitine O-acetyl transferases (CRATs) and the
carnitine octanoyltransferases (COTs) (Hsiao et al., 2006). In
this family, the carnitine binding site and the catalytic domain
are particularly well-conserved. However, according to their
respective ultrastructure, each subfamily would hold specific
substrates preferences, these being long-chain FA for CPTs,
medium-long FA for COTs and short-chain FA for CRATs (Cox
et al., 1998; van der Leij et al., 2000; Hsiao et al., 2006; Seiler et al.,
2014). This biochemical data could suggest that the involvement
of CRATs and/or COTs in FAO is more substantial than usually
thought.

Within mitochondria, fatty acyls are finally included
into the β-oxidation breakdown process. FAO is a complex
catabolic process comprising a sequence of four reactions: 1-
Dehydrogenation, 2- Hydration, 3- Oxidation, 4- Thiolysis. Each
sequence leads to the cleavage of a n carbons fatty acyl-CoA into
an acetyl-CoA and a (n-2) carbons fatty acyl-CoA. Meanwhile
the steps 1 and 3 require the reduction of FAD and NAD+
coenzymes respectively. Hence, finally, in theory, for a 2n
carbons fatty acyl, it can be produced n acetyl-CoA, consuming n
H2O and reducing back n-1 FADH2 and NADH,H+ coenzymes
which will lead to ATP production (Lopaschuk et al., 2010).

Notwithstanding the efficiency of FAO, glycolysis forms
an integral part in cardiac metabolism. Glycolysis is able to
supply in coenzymes for the TCA cycle in a less-oxygen
dependent way, which preserves an equilibrium with the
high-oxygen consumer FAO. In addition, beyond to the net
metabolic imbalance, glycolysis intermediates can also initiate
the production of the indispensable pentoses (riboses and
desoxyriboses) within the cardiac cells (Wisneski et al., 1985;
Barcia-Vieitez and Ramos-Martínez, 2014). Glucose cell uptake
involves specific glucose transporters (GLUT), located at the
plasmamembrane. In cardiacmuscle, GLUT1 andGLUT4 are the
most represented transporters and GLUT4 endocytosis depends
on insulin (Watson and Pessin, 2001, p. 4; Abel, 2004; Luiken
et al., 2004; Aerni-Flessner et al., 2012). Glycolysis is a complex
enzymatic process involving cytosolic kinases, isomerases and
dehydrogenases (Opie, 2004). Finally, from each molecule of
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glucose, 2 pyruvates, 2 ATP and 2 NADH,H+ can be produced.
Then, pyruvate can cross the double mitochondrial membrane,
driven by specific carriers (mitochondrial pyruvate carriers,
MPC1 and MPC2 (Bricker et al., 2012). On site within the
matrix, pyruvate conversion into acetyl-coA is an oxidative step,
which can be catalyzed by the pyruvate dehydrogenase (PDH)
(Hansford and Cohen, 1978; Gray et al., 2014; Sun et al., 2015).
The PDH represents another key enzymemetabolically feedback-
sensitive enzyme (Stanley et al., 1996; Sugden andHolness, 2006),
such that a high-amount of acetyl-CoA and NADH,H+ repress
its activity, while a bigger pool of CoA and NAD+ is able to
boost it (Gray et al., 2014). Finally, both glycolysis and FAO
provide acetyl-CoA to fuel the TCA cycle (Barry, 2004). The TCA
cycle uses acetyl-CoA as a carbon-pair donor to synthetize citrate
from oxaloacetate by aldol condensation. The following steps are
oxidoreduction processes, ensuring the reduction of coenzymes
QH2 and NAD+/NADH,H+. The net ATP production is based
on a proton electrochemical gradient established by the five
mitochondrial respiratory chain complexes (complexes I-V),
transferring an electron from NADH,H+ to oxygen. The proton
uptake across the mitochondrial membrane by the F0-F1 ATP
synthase (complex V) ensures the phosphorylation of ADP to
ATP. Lastly, to ensure contraction of the heart muscle cells,
ATP must be brought into the proper utilization site, the muscle
fibers. However, the mitochondrial double membrane is roughly
permeable to this molecule. Local mitochondrial creatine kinase
initiates the energy shuttle to the cytosol by catalyzing the
transfer of a high-energy phosphate from ATP to creatine,
releasing ADP and a high-energy phosphocreatine (Ingwall et al.,
1985; Wallimann et al., 1998; Schlattner et al., 2006; Figure 1).
Due to its smaller size, phosphocreatine easily diffuses from
mitochondria to myofibrils, where the muscular creatine kinase
converts back energy from phosphocreatine into ATP, releasing
creatine (Ingwall et al., 1985; Schlattner et al., 2006; Zervou et al.,
2016). In turn, this ATP is used by actin-myosin complexes inside
the myofibrils and converted into mechanical force.

OXYGEN CONSUMPTION AND THE
DOUBLE-EDGED REDOX SIGNALING IN
CARDIAC CELLS

The heart is the highest dioxygen consumer of all organs.
Globally, 8–15 mL of dioxygen are perfused per min per 100 g
of resting heart, and this rate can increase up to 6–7-fold
during exercise, to match closer to ATP needs (Klabunde, 2012).
Almost 90% of dioxygen is burnt within the mitochondria as
an electron donor for oxidative phosphorylation. However, a
lesser amount of dioxygen is used by the oxidase enzymes,
mainly NADPH oxidases (Bedard and Krause, 2007; Lassègue
et al., 2012) xanthine oxidases (Cantu-Medellin and Kelley, 2013;
Battelli et al., 2016) and monoamine oxidases in cardiac cells
(Viel et al., 2008; Kaludercic et al., 2014; Vendrov et al., 2015).
However, for a minor portion of dioxygen (<2%), reduction
is uncompleted, leading to the generation of reactive oxygen
species (ROS), and especially the most unstable superoxide anion
(O2•−), which can react with itself to produce the non-radical

hydrogen peroxide (H2O2), and then OH•− by the Fenton
reaction in presence of Fe2+, or OH by Haber-Weiss reaction
(Andreyev et al., 2005; Chen et al., 2012). In addition, Nitric oxide
synthase can also use O2•− to product nitric oxide (NO•), the
precursor of reactive nitrogen species (RNS), leading to ONOO-
and ONOOCO2 when they reacted with O2•− and CO2/HCO3-
respectively (Augusto et al., 2002).

Thus, ROS/RNS are a common by-product of cellular
respiration and metabolism, and their cellular level is tightly
regulated by antioxidant systems including enzymatic or non-
enzymatic scavenging strategies (β-carotene, ascorbic acid,
glutathione-SH, etc.) (Andreyev et al., 2005; Nediani et al., 2010;
Chen et al., 2012). Non-exhaustively, enzymatic ROS scavenging
system involves the superoxide dismutases that catalyze the
O2•− conversion to H2O2. Then, H2O2 can be decomposed in
H2O by glutathioneperoxidase-1 and -4 or catalases for a lesser
extent. However, an other important scavenging system involves
peroxiredoxin-3 (Prx3)/Thioredoxin 2 (Trx2) and Thioredoxin
Reductase-2 (TrxR2) axis (Stanley et al., 2011; Cunniff et al.,
2014; Li H. et al., 2017). Recent work described TrxR2 as a major
controller of H2O2 in mammalian heart mitochondria (Stanley
et al., 2011). Interestingly, it has also been demonstrated that
energization status of respiring mitochondria directly correlates
with Trx2 level, thus suggesting a crucial role of Trx2/TrxR2
and Prx3 axis in mitochondrial function and furthermore in
cardiomyocyte ATP production (Stanley et al., 2011).

Hence there are numerous and sophisticated scavenging
strategies within healthy cardiomyocytes, and yet ROS remain
at a minimal level. In fact, under physiological context,
ROS/RNS hold beneficial and protective virtues. For instance,
nitric oxide (NO•) regulates endothelium-dependant epicardial
and microvascular vasodilation, favoring dioxygen perfusion
in response to metabolic stimulation (Quyyumi et al., 1995).
Moreover, ROS/RNS are involved as upstream effectors of cell
signaling pathways via the now well-known redox signaling
(Burgoyne et al., 2007; Nediani et al., 2010). One of the most
redox-sensitive pathways is PI3K/AKT that plays a central role
in cardiac metabolism and insulin sensitivity (Cook et al., 2002;
Sugden, 2003; Morisco et al., 2005; O’Neill et al., 2007). As
upstream regulators of MAPK, ERK1/2, p38, and JNK signaling
pathways and kinases such as PKC or the histone deacetylates
HDAC4 class II, ROS can impact on main transcription
factors activity, such as NFAT, MEF2, SRF, and GATA4, which
finally orchestrates protein synthesis, cardiomyocyte survival
and differentiation, especially by Sabri et al. (1998), Wei
et al. (2001), Matsushima et al. (2013), Barajas-Espinosa et al.
(2015). In cardiac cells, redox signaling also impacts on main
steps of myocyte contractility by targeting Ca2+ exchangers
(SERCA2 or the ryanodine receptor) (Sharov et al., 2006;
Bellis et al., 2009; Nediani et al., 2010; Tang et al., 2010;
Snijder et al., 2011; Simon et al., 2014). Then, ROS have a
clear impact on mitochondrial permeability by promoting the
opening of the ATP potassium channel and the closure of the
mitochondrial permeability transition pore (MPTP) (Cho et al.,
2014). Furthermore, RNS (specifically the nitroxyl, HNO donor)
can modulate myofilaments Ca2+ sensitivity. In fact, they ensure
reversible formation of disulfite bonds between cysteine residues,
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FIGURE 1 | Focus on Creatine/ATP shuttle.

which improves heart muscle contractility (Gao et al., 2012).
Last but not least, according to recent studies, physiological
cardiomyocyte stretching leads to an increase of ROS production
by NOX2 in a microtubule-dependent manner. This mechano-
chemo transduction pathway, called “X-ROS,” favors a surge of
Ca2+ release due to a “tuning” of Ryanodine Receptors (Prosser
et al., 2011, 2013; Ward et al., 2014). In addition, NOX2-induced
oxidation of Ca2+/Calmoduline-dependant kinase, which has
been previously described as an intermediary Ca2+ signaling
and redox signaling, could be also involved in X-ROS redox
signaling (Erickson et al., 2008; Snijder et al., 2011; Ward et al.,
2014). Consequently, ROS/RNS are able to act as safeguards
of mitochondrial respiratory and metabolic activity, but they
remain at the border between physiological and maladaptive
cardiac remodeling processes.

Oxidative stress occurs when there is an imbalance between
production and scavenging of ROS, else due to an excess
of production by the main sources, and/or by a decrease
of antioxidant scavenging systems. Contrary to the virtues
mentioned previously, under such a context, ROS/RNS become
poisonous for the cells when the cellular antioxidant defenses
become overwhelmed (Djordjević et al., 2008; Csányi and Miller,
2014). Due its high amount of metabolic activity and dioxygen
consumption, the heart is particularly predisposed to excess of
ROS. And, since they are particularly unstable and deleterious,
ROS can combine with proteins or lipids in amore unspecific and
irreversiblemanner, which can thus disruptmembranes integrity,
cytoskeletal organization, metabolic and ionic homeostasis, and
enzymatic stoichiometry (Giordano, 2005; Misra et al., 2009;
Tsutsui et al., 2011; Csányi and Miller, 2014). During ischemia,
myofilaments oxidation by carbonylation leads to a decrease in

both Ca2+ sensitivity andmyosin Ca2+ ATPase activity, resulting
in a decrease in sarcomere contractility (Avner et al., 2012; Balogh
et al., 2014). In addition, contrary to physiological process,
ROS/RNS can trigger cellular Ca2+ overload, which can reduce
Ca2+ sensitivity within the muscle fibers, thus finally triggering
the contractility defect and rushing the cardiac cell toward
necrosis or apoptosis (Ferrari et al., 2004; Giordano, 2005). Excess
of ROS may exacerbate maladaptive process (Richters et al.,
2011; Penna et al., 2013). For instance, ERK1/2 and HDAC4
II activation will favor cardiomyocyte hypertrophy, while
overactivation of JNK could promote apoptosis (Matsushima
et al., 2013; Mutlak and Kehat, 2015; Kanaan and Harper,
2017). Oxidative stress could lead to cysteine oxidation of
cGMP-dependant protein kinase (PKG) (Burgoyne et al., 2007).
Recent studies demonstrates that expressing of a “redox dead”
PKG1αC42S relatively protects the mice from hemodynamic-
stress-induced adverse effects (Prysyazhna et al., 2012; Nakamura
et al., 2015). By affecting both mitochondrial proteins and
phospholipids, ROS also exacerbate the disruption of the
mitochondrial respiratory chain and the loss of ATP production.
Additional studies described that increase of ROS production
by xanthine oxidase is involved in impaired energy metabolism
during heart failure and myocardial infarction, and allopurinol
(inhibitor of xanthine oxidase) prevents these deleterious effects
(Wang Z. et al., 2016; Schuchardt et al., 2017).

Cardiac metabolism and adaptation are thus widely
dependent on redox balance within the cells of the myocardium.
Meanwhile, ROS level is deeply sensitive to the energy
performance within cardiomyocytes. Recently, it has been
demonstrated that oxygen consumption and H2O2 production
are directly proportional to level of long-chain palmitoyl-CoA
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concentration (Cortassa et al., 2017) which perfectly matches
with this concept. This also underlines the significant issues that
drive heart metabolic adaptions. Consequently, linked together,
this amount of knowledge emphasizes ambiguous roles of ROS
in cardiac physiology and pathology.

LABILITY AND PHYSIOLOGICAL
ADAPTATION WITHIN THE HEART

When the heart is correctly perfused with adequate dioxygen
concentration, up to 95% of the ATP production is due to
oxidative phosphorylation of FA inside the mitochondria, while
the remaining ∼5% is provided by glycolysis and to a lesser
extent the TCA cycle (<1%) (Scolletta and Biagioli, 2010). For
1 mole of an unsaturated long-chain fatty acids like palmitate,
the net energy production is estimated at 128 ATP, whereas
this rate reaches at only 38 ATP for 1 mole of glucose (Stanley
et al., 1997). However, in comparison to glycolysis, FAO uses
12% more dioxygen and thus FAO is considered less dioxygen-
efficient (Mjos, 1971; Grynberg and Demaison, 1996; Afanasiev
et al., 2016). Consequently, even a major component of cardiac
energy production, FAO is thus particularly sensitive to dioxygen
concentration, and a tight equilibrium must be kept between
availability of fuel sources. Dioxygen must be available during
ATP production, and ATP is consumed during contraction.
Therefore, the heart requires some flexibility and adaptability,
metabolically switching between FAO and glycolysis when
needed for optimal functionality. For almost five decades now, it
has been well established that a reciprocal imbalance links FAO
and glycolysis. This competitive process, historically described
as the “Randle cycle” (Neely et al., 1972; Randle, 1998), is such
that an increase of availability for one fuel source will favor its
use, repressing the use of the others. For instance, an excess in
acetyl-CoA production from FA breakdown inhibits PDH, thus
reducing the glycolytic rate (Stanley et al., 1996; Sharma et al.,
2005). By contrast, an activation of glycolysis favors the activity
of acetyl-CoA carboxylase, which in turns increases the level of
malonyl-CoA, thus reducing CPT1-dependant FA shuttle and
β-oxidation (Awan and Saggerson, 1993; Reszko et al., 2004).

However, additional regulatory processes participate in this
cardiac metabolic flexibility, beyond whatever substrate is
available. These processes involve a wide range of biomolecular
and biochemical parameters including protein activity and
translocation as well as allosteric modulation of enzymes but
also gene expression (nuclear and mitochondrial gene program).
Among them, PPARs and PGC-1α represent powerful regulators
of cardiac metabolism (Barger and Kelly, 2000; Campbell et al.,
2002; Duncan and Finck, 2008; Finck et al., 2008; Rowe et al.,
2010). PPAR isoforms (α, β, δ) can bind to Retinoid X Receptor
(RXR) transcriptional factor, whereas PGC-1α secondly acts
as a co-activator, increasing the transcriptional activity of the
RXR-PPAR heterocomplex. PPARα is the major isoform in
the cardiac muscle, whereas PGC-1α is more ubiquitous but
particularly sensitive to a wide number of extracellular or
physiological stimuli such as starvation and exercise in the
striated muscles (Lopaschuk and Spafford, 1990; Miura et al.,

2008; Chinsomboon et al., 2009). In intracellular compartment,
PGC-1α is also a downstream effector of AMPK as well as
cAMP and calcineurin signaling pathway (Schaeffer et al., 2004;
Jäger et al., 2007; Miura et al., 2008; Chinsomboon et al., 2009).
PPARα/RXR/PGC-1α heterocomplex is mostly dedicated to FA
activation, transport and breakdown, through the expression of
fatty acyl-CoA synthase, CPT1B, and long-chain fatty acyl-CoA
dehydrogenase, but also PDH (Barger and Kelly, 2000; Hopkins
et al., 2003; Duncan and Finck, 2008). By contrast, targets of
PPAR β/δ are involved in both FAO (CPT1B and malonyl-
CoA decarboxylase) and Glycolysis (activating especially GLUT4
receptor and Phosphofructokinase) (Burkart et al., 2007; Risérus
et al., 2008).

Also contributing to the metabolic homeostatis,
endocrine hormones (insulin or glucagon-like peptides)
and neurohormones (catecholamines) can adapt rapidly several
parameters such as blood FA or glucose levels, heartbeat or blood
pressure, thus connecting metabolic adaptation of the heart
to the whole organism and reciprocally (Gordan et al., 2015).
Whereas during normal homeostasis the maintenance of cardiac
metabolism is relatively subtle, the heart’s energy needs can
evolve suddenly and drastically. For example, athletic exercise
can increase cardiac output up to 6-fold from resting values, thus
requiring a proportional increase in ATP production (Warburton
et al., 2002). Under such a context, cardiac metabolism reaches
peak activity (Figure 2A). Increases in myocardial workload
typically boost FA uptake and FAO. But the glycolysis is also
stimulated by exercise in human, or by other stressors such as
β-adrenergic or workload stimulation in the hearts of both large
animals and rats (Andersson et al., 1991). In addition, exercise
increases lactate blood level, which leads to elevated lactate use
and oxidation by the cardiac muscle (Kaijser and Berglund, 1992;
Jeffrey et al., 1995; Goodwin and Taegtmeyer, 2000), notably
by decreasing fatty acids uptake and oxidation (Schönekess,
1997). By contrast, during prolonged exercise of more than 30
min, fatty acids are released by the adipose tissue in the blood
circulation, favoring their absorption by the heart (Martin et al.,
1993). Meanwhile, it has been demonstrated that the level of
malonyl-CoA decreases after 15–30min of high pacing-induced
stimulation in the hearts of pigs and rats, thus facilitating the
removal of CPT1 inhibition (Goodwin et al., 1998; Winder, 1998;
Zhou et al., 2008). According to this data, longer-term exercise
tolerance seems to be associated with the myocardial re-uptake
and breakdown of FA. However, an abrupt increase of workload
in pigs leads also to a 2.5-fold increase of FAO, although the
level of both malonyl-CoA or AMPK remains unchanged (King
et al., 2005). Seemingly contradictory, these studies suggest that
acute adaptation involves different pathways that remain poorly
investigated.

METABOLIC ADAPTATIONS, BEYOND
GOOD AND EVIL IN CARDIAC DISEASES

In cardiovascular diseases, regardless the etiology, energetic
starvation is described as a fairly common feature. However,
specific metabolic alterations can vary widely from one patient to
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FIGURE 2 | Metabolic adaptation in the cardiac muscle (A) Physiological, (B) Pathological.

another (Neubauer, 2007; Turer et al., 2010). This illustrates how
the whole complexity of cardiac metabolism under pathological
context remains fairly comprehended.

In hypertrophic remodeling, increases in hemodynamic
pressure and workload urge the heart to reinforce its contractile
strength by increasing its muscular mass. Contrary to most
somatic cell types, cardiomyocytes are no longer able to
proliferate (Ahuja et al., 2007; Zebrowski and Engel, 2013).
Hence, they must increase their size and their stock of
both sarcomeres and mitochondria to sustain the upgraded

myocardial needs. Cardiomyocyte hypertrophy also requires
some metabolic adaptation. Contrary to physiological
remodeling, pathological hypertrophy is characterized by a
return to fetal gene program that favors anaerobic glycolysis over
that of FA, pyruvate and lactate oxidative breakdown (Christe
and Rodgers, 1994; Sack and Kelly, 1998; Barger and Kelly,
1999; van der Vusse et al., 2000; Lehman and Kelly, 2002a,b;
Ingwall, 2009). In addition, data in both rat and human has
validated the switch toward anaerobic glycolysis in pathological
cardiac hypertrophy (Ritchie and Delbridge, 2006; Ma and Li,
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2015). In hypertrophied hearts, the level of PGC-1α and PPAR
is also decreased (Barger and Kelly, 2000; Duncan and Finck,
2008). Conversely, the same maladaptive fetal metabolic patterns
are observed in the heart of transgenic mice lacking PPARα,
and these are associated with a significant increase in malonyl-
CoA (Campbell et al., 2002; Finck et al., 2008). Moreover, an
overexpression of PPARα in neonatal rat cardiomyocytes is
able to counteract the hypertrophic remodeling process, which
suppresses protein synthesis and mitigates CPT1 reduction
Cardiac-specific disruption of PPARβ/δ is also associated
with cardiac hypertrophy development and a decrease of FA
oxidation (Cheng et al., 2004). Above-mentioned activation of
PPAR/PGC-1α pathway is sufficient to prevent the decline of
FAO, thus maintaining FA oxidation rate. Moreover, increased
cardiomyocyte size is associated with a decrease in oxygen
tension per area, stabilizing the hypoxia-inducible factor 1α
(HIF1α) (Des Tombe et al., 2002; Chu et al., 2012; He et al.,
2016). HIF1α takes part in the subtle readjustment of anaerobic
glycolysis by favoring fetal lactate dehydrogenase (LDH-A)
and pyruvate dehydrogenase kinase (PDK1) activity along
with hypoxia-induced GLUT1 expression (Brahimi-Horn et al.,
2007). Initially, the fact that GLUT1 expression now supersedes
GLUT4 favors insulin resistance. Then, despite glucose uptake
being particularly enhanced, pyruvate and lactate oxidation
remains low, because their activity is drastically repressed by the
increase of PDK1 and the replacement by LDH-A, respectively.
In addition, it also well known that hypoxia is able to repress
FA metabolism gene expression (Brahimi-Horn et al., 2007).
This further validates the relationship between HIF1α, PPAR
expression, and cardiac metabolism, thus accordingly reinforcing
the notion of the Randle cycle switch in heart failure scenarios
(Figure 2B).

Pathological hypertrophy can progress quickly toward HF.
Although etiology of HF is particularly complex, metabolic
disruption is clearly involved in this progression (Ingwall
and Weiss, 2004; Doenst et al., 2013; Abdurrachim et al.,
2015). In mild-to-moderate HF, it is generally thought that
phosphocreatine level decreases whereas upstream cardiac
metabolism toggles from FAO toward glucose/pyruvate
oxidation (Sack et al., 1996; Ye et al., 2001; Phillips et al., 2010).
As mentioned previously, phosphocreatine is the substrate of
creatine kinases that actively take part in ATP buffering. Gupta
et al. demonstrated that ATP flux and myocardial contractility
are directly related to myocardial CK (M-CK) expression and
activity (Gupta et al., 2012). In fact, while overexpression of M-
CK in mouse keeps higher ATP flux and better cardiac function,
especially at 4 weeks following thoracic aortic constriction; this
beneficial impact is lost when M-CK is raised back to the normal
level (Gupta et al., 2012). Hence the failing heart is definitively an
engine “out of fuel” (Neubauer, 2007), and this is directly related
toM-CK activity (Gupta et al., 2012). As long as it can be supplied
with adequate fuel, the heart is able to maintain its contractile
activity, albeit at a lower output. However in end-stage HF,
oxidation of FA, pyruvate and lactate is shunted, favoring the
lower dioxygen-consuming glycolytic pathway (Ussher, 2014). In
human idiopathic dilated cardiomyopathy, a common precursor
to HF, FA uptake and oxidation are substantially decreased in

patients (Dávila-Román et al., 2002). Furthermore, metabolic
assays performed in rat and human hearts (by mass spectrometry
or by 14C and 3H radioactivity measurements) strongly ascribed
a correlation between FA deregulation and HF severity (Turer
et al., 2009, 2010; Doenst et al., 2010). In addition, during pacing
stress, the over-activation of glucose uptake, usually occurring
in control groups, is disrupted in both human DCM patients
and canine models of DCM (Nikolaidis et al., 2004a,b; Bergman
et al., 2009). Taken together, this amount of data points out a lack
of metabolic-related responsiveness as a common feature of HF.

In addition, in such a context of failing heart, dioxygen
level (availability or starvation) represents another critical
point in occurring maladaptive process. Consequently, signaling
pathways that contribute to metabolic switching in the heart
differ significantly between non-ischemic HF (when dioxygen
remains perfused) and ischemic HF (when heart becomes
dioxygen-straved).

Metabolic disturbances, in non-ischemic HF, remain close
to those leading to HF, such as the switch from FA to glucose
utilization. For instance, in an experiment on pressure overload,
using mice, transverse aortic constriction (TAC) is followed by
an acute increase of myocardial glucose use in the day following
the experiment, and this rate reached at higher level 7 days
after TAC (Zhong et al., 2013). Additional data demonstrated
that the metabolic switch is still preserved 6–8 weeks after
TAC in mice (Kolwicz et al., 2012; Pereira et al., 2013, 2014),
and this has been also validated in other animal models of
pressure overload or volume overload or HF in rats, rabbits
and dogs (Taegtmeyer and Overturf, 1988; Allard et al., 1994;
Christe and Rodgers, 1994; Christian et al., 1998; Labinskyy
et al., 2007). Another study, this time in patients suffering
from non-ischemic DCM, right ventricle glucose uptake had
been monitored by PET imaging (using the radioactive isotope
[18F] fluodeoxyglucose) (Wang L. et al., 2016). Conclusions of
these experiments demonstrated a correlation between increased
right ventricle glucose uptake and dysfunction (Wang L. et al.,
2016). In addition, a recent paper established the metabolomics
profile of non-ischemic HF in patients (Mueller-Hennessen
et al., 2017). In this clinical study, plasma metabolite profile
has shown to widely differ between HF patients and controls,
even during resting time, while cardiopulmonary exercise testing
clearly exacerbated these differences (Mueller-Hennessen et al.,
2017). More precisely, in this article, it has been demonstrated
a clear decrease of complex lipids and FA, counterbalanced
by an increase in glutamate and purine byproducts, whereas
glycolysis was impaired (which is also established as a marker
of pre-diabetes) (Mueller-Hennessen et al., 2017). However, in
ischemic HF, inefficient blood supply by coronary arteries leads
to oxygen starvation within the myocardium, impairing both
contractile activity and metabolic imbalance. Not surprisingly,
it stands to reason that ischemia compromises all the oxidative
steps involved in cardiac metabolism. It reduces the ATP
production from both FA and pyruvate but increases anaerobic
glycolysis, in proportion with the degree of ischemia (Ferrari
et al., 2004; Turer et al., 2009). In such a low oxygen context,
the remaining part of oxidation always favors FAO rather than
pyruvate use. By contrast, pyruvate is mostly converted into
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lactate, in order to fuel anaerobic glycolysis in NADH,H+

coenzyme (Josan et al., 2014; Chen et al., 2015; Mariotti et al.,
2016). Consequently, to avoid a massive acidification inside
the failing cardiomyocytes, an extended part of this newly-
produced ATP is dedicated to ionic exchange and homeostasis.
The accumulation of reducing coenzymes (NADH,H+ and
FADH2) shunts the activity of several metabolic enzymes, such as
acyl-CoA dehydrogenase or 3-hydroxylacyl-CoA dehydrogenase,
which are directly sensitive to redox state (Nocito et al., 2015).
Thus, FA-derived intermediate metabolites accumulate rapidly
within the cardiac cells. Fatty acyl CoA favor mitochondrial
storage, whereas fatty acyl-carnitines may be accumulated in
both mitochondria and other cellular compartments (Kler et al.,
1991; Fukushima et al., 2015). Such a build-up of fatty acyl esters
and carnitine triggers disturbances in mitochondrial morphology
(irregular cristae, amorphous densities) which in turn impact
on metabolic function (Kuzmicic et al., 2014; Elezaby et al.,
2015). In the failing heart, mitochondrial dysfunction is, indeed, a
well-established common feature (Huss and Kelly, 2005; Banović
and Ristić, 2016; Goh et al., 2016). At first, their morphology
is usually affected, since they are described as smaller in size
with membrane disruption and matrix depletion. In these
morphologically altered mitochondria, the complex integrity of
the respiratory chain is abrogated, ATP production is reduced,
and the level of ROS dramatically increased (Banović and Ristić,
2016; Sverdlov et al., 2016). As previously mentioned, excess of
ROS will lead to protein degradation, loss of membrane integrity,
Ca2+ overload, thus propelling the cardiomyocytes to necrosis
and apoptosis (Giordano, 2005; Misra et al., 2009; Sanada et al.,
2011; Tsutsui et al., 2011; Csányi andMiller, 2014).While hypoxic
conditions leads cardiomyocytes to drastic adaptations, during
reperfusion phase following ischemia, cells suffer this time from
a sudden burst of dioxygen. Under such an acute re-oxygenation
context, a high and uncontrolled release of ROS occurs, due
to functional remaining mitochondria and re-activated xanthine
oxidase, and this reveals as particularly deleterious (Sanada
et al., 2011; Raedschelders et al., 2012; Zuo et al., 2013).
Myocardial infarction in mice is notably characterized by a
higher level of myosin and actin carbonylation, resulting in
a decrease in Ca2+ sensitivity and myocardial dysfunction
(Dalle-Donne et al., 2001; Castro et al., 2013; Balogh et al.,
2014). In addition, actin oxidation, which is NOX-dependent
phenomenon, reorganizes the thin filaments, which favor cell
survival in yeast (Farah et al., 2011; Wilson et al., 2016). In the
case of failing cardiomyocytes, we can suggest that myofilament
oxidation could prevent depolymerization and stabilize actin-
myosin complex, which finally reduces ATP needs. Hence,
resulting sarcomeres can sustain their contractility, even in a
slower, weaker but less energy-consuming fashion. While long-
term ischemia following by reperfusion is clearly a deleterious
cocktail for the heart, surprisingly, acute but repetitive periods of
ischemia is beneficial and cardioprotective (Eltzschig and Eckle,
2011; Frank et al., 2012; Zuo et al., 2013). In fact, this “warm up”
effect (called ischemic preconditioning, IPC) is able to improve
recovery after a myocardial infarction and to reduce the severity
of arrhythmia (Yang et al., 2010). A wide number of research
works was led in order to elucidate the mechanisms involved in

this surprising phenomenon. Briefly, it has been demonstrated
that IPC positively impacts on sarcolemmal and mitochondrial
ATP K+ channels. This prevents deleterious ischemia-induced
Ca2+ overload and could favor ATP production by impacting
on adenylate cyclase and muscular creatine kinase (Turrell et al.,
2011; Zuo et al., 2013; Donato et al., 2017). In addition, within
mitochondrial matrix, influx of K+ inhibits mitochondrial
respiratory chain (especially Complex II) and favors the matrix
swelling, which was described as an efficient enhancer of FAO
and ATP production (Kaasik et al., 2007; Zuo et al., 2013; Donato
et al., 2017; Javadov et al., in press). Due to the rapid switch
between oxygen starvation/reperfusion during this phenomenon,
the role of ROS was rapidly suspected in IPC (Bolli et al., 1989;
Qiu et al., 1997). An acute increase in ROS was indeed taken
in evidence when short periods of ischemia were challenged,
resulting in K+ ATP channels activation (Gross et al., 2007).
Furthermore, beneficial effects of IPC are critically blunted when
antioxidants are administrated, validating crucial and beneficial
impact of ROS in IPC (Skyschally et al., 2003; Khanna et al.,
2008). More specifically, a recent research study demonstrated
that a surge of O2•− arises within the first minute following
ischemia (Zhu and Zuo, 2013). In particular, this early burst of
ROS is due to myoglobin oxidation, releasing O2•− (Zhu and
Zuo, 2013). Myoglobin (Mb) is an oxygen- and iron-binding
hemoprotein that ensures buffering dioxygen in striated muscle
cells. Beyond this traditional function, myoglobin is also an
oxygen-sensitive safeguard of NO homeostasis, since oxygenated
Mb acts as NO scavenger in normoxia, while Mb oxidation
favors NO generation during hypoxia (Rassaf et al., 2007;
Totzeck et al., 2014). NO, generated from myoglobin oxidation
reduces cardiac oxygen consumption and energy status, which
helps to prevent myocardial damages during short phases of
hypoxia or ischemia/reperfusion (Hendgen-Cotta et al., 2017).
Moreover, based on its oxidation status, myoglobin can bind
to FA (especially with long chain oleate and palmitate) (Götz
et al., 1994; Shih et al., 2014, 2015; Jue et al., 2016). A recent
work (using Mb −/− mice) demonstrated that myoglobin has
a new crucial role in FAO by preventing lipid accumulation
and alleviating FAO in cardiomyocytes, which preserves cardiac
function (Hendgen-Cotta et al., 2017). Such an amount of data
reinforces the idea that dioxygen availability and metabolism
are deeply bounded in cardiac adaptation, and myoglobin
oxidation seems to actively take part in this process as being
a ROS/RNS/metabolic sensor in cardiomyocyte. More broadly,
while ROS/RNS have been described in a Manichean viewpoint
for years, ischemia/reperfusion and IPC provide evidences that
they definitively work as a double-edged sword, based on other
critical parameters influencing cardiomyocyte needs (especially
dioxygen and fuel).

This is the reason why therapeutic strategies are still such
challenging in cardiac diseases.

DISCUSSION: THERAPEUTIC STRATEGIES

Cardiac metabolism attracted closer attention in the last decade,
appearing as a promising therapeutic target. However, despite
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the range of accumulated data and technical skills dedicated
to assessing this topic (Taegtmeyer et al., 2016), the whole
understanding suffers from numerous gaps which remain poorly
explored.Meanwhile, although our knowledge of cardiac diseases
is expanding, most treatments are still only moderately effective.
Hence, many strategies have been envisaged for which we will
discuss below the pros and cons in the view of the most recent
publications.

Antioxidant Strategy
In the first instance, antioxidant agents demonstrated a
therapeutic appeal (for an exhaustive review and discussion about
this topic, refer to Goszcz et al., 2015). Briefly, twomain strategies
have been developed in the past decades: else supply in natural
antioxidants, or inhibit the main deleterious sources of ROS.

Primarily, several trials have used vitamins and enzymes,
due to their ROS scavenging properties. In particular, it
has been demonstrated that addition of retinoic acid and
catalase in the culture medium inhibits Angiotensine II/TNF-α-
induced hypertrophy in neonatal rat ventricular cardiomyocytes
(Nakamura et al., 1998). Following these promising results, a
larger-scale clinical study was launched in order to investigate
the clear impact of antioxidant treatment in HF. Called HOPE
(Heart Outcomes Prevention Evaluation), this study resulted
in disappointing results, taken in evidence that higher dose of
retinoic acid is pro-oxidant, worsening of the cardiac defect
(Sleight, 2000; Gerstein, 2001). In addition, some studies trend
to suggest vitamin E and vitamin C can be cardioprotective in
patients, even if these virtues remain slightly debated (Hemilä
and Kaprio, 2009, 2011).

Instead of focusing on ROS buffering strategies, other studies
tried to act more specifically on enzymatic sources of ROS. One
of them is the pharmacological inhibition of Xantine Oxidase,
by allopurinol. First, in both rat and mouse models of dilated
cardiomyopathy, administration of allopurinol is able to decrease
the level of ROS, which contributes to slow down the disease
(Engberding et al., 2004; Wang Z. et al., 2016). Interestingly,
in a clinical study led on HF patients, allopurinol was able to
restore M-CK activity, hence to sustain the transfer of energy
from mitochondria to sarcomere (Hirsch et al., 2012). More
recent study revealed an improvement of walk effort resistance
in patients suffering from left ventricular dysfunction, even
with higher administrated dose (300mg daily for 1 week then
600mg daily for 3 months) (Ansari-Ramandi et al., 2017).
However, in patients undergoing percutaneous intervention,
allopurinol pretreatment revealed as not effective enough to
modify cardiac biomarkers, and especially the level of creatine
kinase or troponin-T (Alemzadeh-Ansari et al., 2017; Ansari-
Ramandi et al., 2017). This last work may lead to suggest the
idea that relevance of such a treatment may depend on numerous
parameters.

More recently, ubiquinone (coQ10), another natural
antioxidant, has received attention, because it takes part in the
redox balance through the mitochondrial respiratory chain,
hence playing a critical role in OXPHOS. In addition, it has been
demonstrated that HF severity is proportional to the depletion
of coQ10, suggesting that a supply of this antioxidant could

really help in slowing down the fatal evolution of the disease
(Belardinelli et al., 2005). Consequently, many clinical trials have
been performed, with large patient cohorts. However, although
promising, comparison of the results was challenging due to
cohort heterogeneity and lack of randomization. Finally from
41 relevant studies, the most recent meta-analysis identified
only 13 accurate studies (Fotino et al., 2013). From this amount
of data, the beneficial effect of coQ10 on ejection fraction was
validated, but the impact on long-term survival rate following the
treatment remained unclear (Fotino et al., 2013). A more recent
randomized study including 420 HF patients for 2 years shed
new light concerning the coQ10 therapeutic strategy (Mortensen
et al., 2014). Called, Q-Symbio, this large-scale study has strongly
established a reduction of mortality due to cardiovascular causes
as well as a decrease of hospital admission for HF among patients
treated with coQ10 (Mortensen et al., 2014).

Finally, antioxidant strategy has carried out promising clinical
trials, but its whole efficiency remains mixed. These drugs
might mainly act as “redox sponges,” favoring ROS scavenging
in a certain extent, without addressing the pathogenesis. This
makes sense since deleterious oxidative stress is both a cause
and a consequence in cardiovascular diseases, especially in HF.
Consequently, therapeutic use of antioxidants would be a good
complementary to any other strategy.

By contrast, a growing number of clues suggest that restoring
the supply of “cardiac fuel” can bring sustainable solutions
(Fukushima et al., 2015; Salzman et al., 2017).

Facilitate FA Uptake and Oxidation
One approach involves refueling the heart, else by the
stabilization or by the increase of FA uptake and/or FAO.
However, this strategy seems to be dangerously close to
maladaptive processes, regarding the level of dioxygen available
that may not be matched. Consequently, there have been some
ambiguous and contradictory data, resulting from this approach.
For instance, high fat diet feeding to mice worsens TAC-induced
left ventricular remodeling and this is associated with insulin
resistance (Raher et al., 2008). By contrast, in hypertensive rat
model, the same high fat diet treatment seems to be beneficial,
as it is associated with reduction of the hypertrophic remodeling
process, mostly by improving cardiac contractility (Okere et al.,
2005). Equivalent results were obtained after lipid administration
on the hearts of arctic ground squirrels, protecting them against
adverse effects of ischemia/reperfusion (Salzman et al., 2017).
All these results match with several puzzling observations of
human patients (usually called the “obesity paradox”). Indeed,
the risk for developing cardiovascular disease is higher in obese
people, but the survival rate is also higher in these overweight
patients compared to normal or low-weight patients (Oreopoulos
et al., 2008; Clark et al., 2011; Nagarajan et al., 2016). By
contrast, clinical trials demonstrated that polyunsaturated fatty
acids administration (PUFAs) are beneficial for preventing or
delaying the progression of HF, whereas monounsaturated FA
supply in patients suffering from end-stage HF trigger the decline
of cardiac function (Mozaffarian et al., 2005; Xin et al., 2012;
Imamura et al., 2013; Masson et al., 2013).
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Decrease FA Uptake and Oxidation
As amirror effect, a preferred alternative consists in the reduction
of the FA uptake. This approach may avoid a toggling of
the metabolic machinery, hence matching better with oxygen
availability. Moreover, in accordance with the Randle cycle, a
decrease of FA uptake and oxidation would be able to increase
proportionally glucose use and breakdown.

As a key checkpoint in mitochondrial FA uptake, CPT1
represents a prime target in order to reduce FAO, thus,
several CPT1 inhibitors have been designed. Among them,
etomoxir and perhexeline received previously closer attention.
Several studies in both human patients and rodent models
validated some beneficial effects, and particularly their anti-
ischemic virtues, by favoring the switch to glucose oxidation
(Fillmore and Lopaschuk, 2013). A recent study focused on
Mitochondrial Trifunctional Protein Deficiency (MTFD), a
genetic disease of which the most severe neonatal form leads
to cardiomyopathy and hepatic dysfunction. In this study,
etomoxir-treated MTFD fibroblasts exhibited a clearing of
cytotoxic fatty-acyls carnitine and improved mitochondrial
respiration rate and ATP production (Lefort et al., 2017). Due to
its ability to boost glucose utilization, etomoxir was previously
used as an anti-diabetic agent. In addition, a 3-month treatment,
led in a small group of patients, demonstrated an improvement
of LV ejection fraction and exercise tolerance as well as a better
overall medical condition (Schmidt-Schweda and Holubarsch,
2000). Beyond cardiac metabolism, the treatment with etomoxir
can improve Ca2+ handling by increasing SERCA2a expression
(Zarain-Herzberg et al., 1996; Rupp and Vetter, 2000). However,
a larger-scale study (Etomoxir for the Recovery of Glucose
Oxidation, ERGO) had been hastily stopped because HF patients
rapidly exhibited a disturbing increase of transaminase blood
level, suggesting a severe hepatotoxicity (Holubarsch et al., 2007).
Thus, the irreversible impact of etomoxir on the hepatic tissue
seems to supersede its potential beneficial effects on cardiac
function.

New challenging approaches carry on more specifically
targeting CPT1B, the more cardiac specific isoform. In such a
purpose, oxfenicine (Sepa-Kishi et al., 2016) or perhexeline (ex
anti-angina agent from the 1970’s) (Chong et al., 2016) hold
promising data both in vitro and in animal studies.

While high doses of these agents were associated with
neurotoxicity and hepatotoxicity (Shah et al., 1982), more
interestingly, clinical trials demonstrated that a lower dose of
perhexeline plasma level specifically inhibits cardiac CPT1B
(Kennedy et al., 1996). Although perhexiline virtues on LV
function were demonstrated decades ago in an ex vivo canine
model (Ono et al., 1982), there is a recent growth of interest
for this metabolic agent (Chong et al., 2016). Notably, it has
been demonstrated that mice fed with perhexiline preserve partly
the cardiac function, reducing FAO and increasing glucose use
(Yin et al., 2013). Several clinical trials in patients also validate
a positive impact in electrophysiological parameters. However,
recent studies trend to demonstrate that this metabolic agent
also exhibits many beneficial side effects on other main effectors
involved in maladaptive cardiac remodeling, such as NOX2
complex (Liberts et al., 2007; Gatto et al., 2013), Kruppel-like

factor 14 (Guo et al., 2015) andmTORC1 (Balgi et al., 2009), thus,
reducing inflammation, lipid metabolism and autophagy.

In addition, as a natural feedback inhibitor of CPT1,
MalonylCoA can be considered as another way of slowing down
FAO. Usually, this TCA byproduct is converted to AcetylCoA,
and this reaction is catalyzed by MalonylCoA Decarboxylase
(MCD) (Hamilton and Saggerson, 2000). Several recent data
trend to validate MCD inhibition as promising therapeutic
strategy. First, in a swine model of HF, administration of MCD
inhibitors improves cardiac function and upregulates glycolysis
(Dyck et al., 2004). More recently, MCD gene silencing in both
mouse and rat are associated with a better-preserved ejection
fraction following surgical induction of myocardial infarction
(Masoud et al., 2014; Wu et al., 2014). In such a situation, it has
been demonstrated that the preservation of cardiac function is
coupled with an upholding of ATP production. However, since
the experiments that yielded this information are particularly
recent, this strategy has not been tried yet on HF patients.

As the terminal enzyme of the β-oxidation cycle, 3-
KetoAcylCoAThiolase represents another interesting therapeutic
target. Its catalytic activity can be partly inhibited by the
trimetazidine. Usually used as an anti-angina treatment in more
than 90 countries through the world, trimetazidine is efficient
in decreasing FA oxidation, thus increasing glucose oxidation.
This drug holds beneficial impact on myocardial infarction and
HF (D’hahan et al., 1997; Belardinelli, 2000; Saeedi et al., 2005;
Belardinelli et al., 2008; Marazzi et al., 2009; Zhou and Chen,
2014). Trimetazidine is also associated with cardioprotective
effects in pressure-overload cardiac hypertrophy, where FA
oxidation is already disrupted. In fact, data suggest that
trimetazidine modulates the production of H+ and regulates
the Ca2+ handling (by acting on SERCA catalytic activity), thus
preserving ionic exchange and homeostasis inside the cardiac
cells, which contributes to an improvement of the cardiac
function (Meng et al., 2006). Ranolazine and Dichloroacetate are
two other anti-angina agents which act on cardiac metabolism
by increasing PDH activity, thus removing the FA-associated
negative feedback upon glucose oxidation (Scirica and Morrow,
2007; Scirica et al., 2007; Gutierrez et al., 2015). Research
and clinical trials demonstrated that their beneficial effects are
quite equivalent to trimetazidine (Clarke et al., 1993; Gralinski
et al., 1996; Battiprolu and Rodnick, 2014; Caminiti et al., 2016;
Coppini et al., 2017).

Modulate AMPK Signaling Pathway
In cardiac metabolism, the AMP-activated protein kinase
(AMPK) acts as a “fuel gauge” due to its sensitivity to AMP/ATP
and creatine/phosphocreatine ratios (Hardie, 2004; Shirwany and
Zou, 2014). AMPKmediates cell catabolism and ATP production
by different strategies. First, AMPK positively impacts on
GLUT1 expression, GLUT4 endocytosis, and phosphofructose
kinase 2 activity, thus promoting glucose uptake (Zhao et al.,
2017). AMPK can also increase FAO by decreasing acetylCoA
carboxylases activity, which consequently decreases the level
of malonyl CoA and thus release the CPT1 inhibition. In
addition, AMPK can inhibit mTORC1, which reduces protein
synthesis and favors autophagy. Meanwhile AMPK reversely
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activates FoxOs, which contributes to glycolysis by regulating
PGC1-α and Glucose-6-Phosphatase thus boosting both FAO
and glycolysis (Jäger et al., 2007; Zhu et al., 2010; Kousteni,
2012; Eijkelenboom and Burgering, 2013). Notably, AMPK
pathways are also involved in oxidative stress; AMPK/PKC-
2α can regulate NOX2 activity (Balteau et al., 2014), while
AMPK/FOXO3 activates Thrx2 in endothelial cells (Hou et al.,
2010). Lastly, AMPK works in a reverse crosstalk with AKT
signaling that usually favors anabolism and cell survival (Zhao
et al., 2017). Hence, AMPK activation is foreseen as an up-and-
coming therapeutic strategy (Beauloye et al., 2011). Among them,
metformin, a common drug for the treatment of Type 2 diabetes,
has caught careful attention. Indeed, metformin induced-AMPK
activation can protect from myocardial injury and cell apoptosis
following ischemia (Kim et al., 2011; Yin et al., 2011) and it
improves cardiac function (and oxidative metabolism) in rodent
models of HF (Benes et al., 2011; Fu et al., 2011). Yet, long-term
activation of AMPK is deleterious for cardiac function, due to
negative feedback on CPT1 expression and activity, thus reducing
FA use and metabolism. Cardioprotective effects of metformin
were also demonstrated in rat model of chronic HF (Wang et al.,
2011). However, a recent meta-analysis validates with caution
this beneficial impact only on experimental myocardial infarction
(Hesen et al., 2017). And this is the line with observations led
in clinical trials. In fact, in non-diabetic patients who underwent
acute myocardial infarction, clinical studies about metformin
treatment remain disappointing or contradictory (Lexis et al.,
2014). Moreover, although beneficial effects were suggested in
a clinical trial focusing in HF with preserved ejection fraction
(Shah et al., 2010), metformin seems to exacerbate cardiac
disruption in end-stage HF by increasing lactate acidosis (Wong
et al., 2009; Hou et al., 2010; Doenst et al., 2013). This data
validates the “Janus double-headed” role of AMPK in cardiac
metabolism. Thus, although interesting, AMPK treatment seems
to be case-by-case-dependent. Consequently, caution remains
needed concerning the use of AMPK activators in clinical trials.

Increase Blood Glucose Level and Release
In cardiac disease, insulin tolerance or resistance is a crucial
parameter. Upstream insulin and glycolysis, glucagon-like
peptide-1 (GLP-1) is a gut-secreted incretin (metabolic hormone)
which can promote the release of insulin after meals to activate
cell glucose uptake from blood (Nadkarni et al., 2014). In
experiments using dogs and rats, GLP-1 infusion can increase
glucose uptake and improve cardiac function (Nikolaidis et al.,
2004a; Sokos et al., 2006; Poornima et al., 2008). Regarding its
short half-life in plasma, pharmacological agonists of GLP-1 have
been developed with promising but sometimes contradictory
results (Liu et al., 2014; Margulies et al., 2014; Trujillo et al.,
2015). GLP-1 receptor blockage abolished IPC cardioprotective
effects in a rat model of myocardial infarction, suggesting a deep
impact of GLP-1 on pathways involved in IPC (Basalay et al.,
2016). Then, recent studies in H9c2 myoblasts demonstrated, in
particular, that GLP-1 and analogs can decrease oxidative stress
and also hypoxia/reoxygenation-induced apoptosis via activation
of PI3K/AKT pathway (Chang et al., 2014; Jiang et al., 2016;
Petersen et al., 2016). Another approach demonstrated that

GLP-1 can also activate AMPK, which reduces hyperglycemia-
inducedNOX2 activity in adult rat cardiomyocytes (Balteau et al.,
2014). Beyond glycemic control, GLP-1 and analogs exhibit side
anti-inflammatory and anti-atherogenic effects (Anagnostis et al.,
2011; Petersen et al., 2016). Such a pleiotropic action has thus very
recently led them to greater and promising interest from bench to
bedside.

Myocardial Stimulation by Catecholamines
Last but not least, neurotransmitters can be viewed as
other way of positively impacting in cardiac metabolism
(Slatton and Eichhorn, 1996; Bouzamondo et al., 2001; Lechat,
2004). Indeed, sympathetic and parasympathetic stimulations
by catecholamines are crucial in cardiac adaptive processes.
As previously described, metabolic demands increase during
rigorous exercise. It is well described that short-term β-
adrenergic stimulation increases glucose uptake and oxidation
(Morisco et al., 2005; Nagoshi et al., 2011). Stimulation
by the use of an agonist (epinephrine) can also favor
Ca2+ handling cycle, with potential beneficial in myocardial
contractility (Collins-Nakai et al., 1994; Briston et al., 2014;
Grimm et al., 2015; Ho et al., 2016). Moreover, recent study
demonstrated that a selective β3-adrenergic receptor agonist
(BRL37344) favors left ventricular relaxation in Langendorff-
perfused rat hearts via the NO/cGMP/PKG axis, thus by
activating specific redox signaling and favoring beneficial
adaptive process (Angelone et al., 2008; Cannavo and Koch,
2017). NMR spectroscopy in rat heart also demonstrated that
acute β-adrenergic receptor stimulation by isoprotenerol leads
to a sudden lactate production from glycogen stock (Khemtong
et al., 2015). However, long-term activation leads to insulin
resistance, making therapy challenging (Morisco et al., 2005;
Ciccarelli et al., 2011). In fact, β-adrenergic receptor stimulation
overactivates cAMP/PKA signaling pathway, leading to a
decrease in insulin-dependent GLUT4 membrane translocation
and expression, and thereby to a disruption of glucose uptake
(Mangmool et al., 2016).

By contrast, long-term blockade with a non-selective β-
adrenergic and α1-adrenergic antagonist (carvedilol) reduces
FA oxidation by favoring glucose use and breakdown in HF
patients, which may provide longer-term and more efficient
therapeutic benefits (Eichhorn et al., 1990; Eichhorn, 1998, 2000).
In fact, more recent studies demonstrated that carvedilol encloses
a bunch of beneficial side-effects including antioxidant, anti-
inflammatory and anti-apoptotic virtues, notably by favoring
ROS scavenging systems and by activating specific miRNA
involved in cardiomyocyte survival (miR-125b-5, miR-199-3p,
miR-214) (Bayoumi et al., 2017, p. 125; Park et al., 2016).
Networkmeta-analyses remain ambivalent concerning carvedilol
superiority on mortality benefits, when compared with specific
β1-adrenergic receptor blockers, but several bias (sampling, dose
administration) made these studies to be taken with caution
(Kveiborg et al., 2007; DiNicolantonio et al., 2013; Zhang et al.,
2016; Li J. et al., 2017).

Although non-exhaustive, these studies underline an updated
interest for β-blockers. Combined administration of carvedilol
with antioxidant could be an interesting therapeutic strategy in
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cardiac diseases, and first clinical trials have shown encouraging
potential (Budni et al., 2013; El-Shitany and El-Desoky, 2016).

CONCLUSIONS

Cardiac metabolism works in a finely tuned fashion: with enough
fuel and dioxygen, cardiomyocytes can rapidly and efficiently
generate ATP to convert into mechanical force. The current
body of research now clearly demonstrates that maladaptive
metabolic behaviors as well as ROS/RNS double-edged effects are
intimately involved in both the genesis as well as the progression
of cardiac diseases. As a result, though many therapies have
been developed for years, none of them can be considered as
a panacea, since the fact to reconcile fuel sources and oxidative
capacity is the toughest challenge. For now, the best therapeutic

approach may be a combination of drugs with complementary
virtues. On the bedside of patients, a case-by-case approach
is therefore necessary and based on specific patient clinical
history.
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