Differential Expression Profiling of Microspores During the Early Stages of Isolated Microspore Culture Using the Responsive Barley Cultivar Gobernadora

Sébastien Bélanger,* Suzanne Marchand,* Pierre-Étienne Jacques,[†] Blake Meyers,^{*,§} and François Belzile^{*,1}

*Département de Phytologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, Quebec, Canada, G1V 0A6, [†]Département de Biologie, Université de Sherbrooke, Quebec, Canada, J1K 2R1, [‡]Donald Danforth Plant Science Center, St. Louis, MO 63132, and [§]Division of Plant Sciences, University of Missouri, Columbia, MO 65211 ORCID ID: 0000-0002-6755-8207 (S.B.)

ABSTRACT In barley, it is possible to induce embryogenesis in the haploid and uninucleate microspore to obtain a diploid plant that is perfectly homozygous. To change developmental fates in this fashion, microspores need to engage in cellular de-differentiation, interrupting the pollen formation, and restore totipotency prior to engaging in embryogenesis. In this work, we used the barley cultivar Gobernadora to characterize the transcriptome of microspores prior to (day 0) and immediately after (days 2 and 5) the application of a stress pretreatment. A deep RNA-seq analysis revealed that microspores at these three time points exhibit a transcriptome of ~14k genes, ~90% of which were shared. An expression analysis identified a total of 3,382 differentially expressed genes (DEGs); of these, 2,155 and 2,281 DEGs were respectively identified when contrasting expression at days 0 and 2 and at days 2 and 5. These define 8 expression profiles in which DEGs share a common up- or down-regulation at these time points. Up-regulation of numerous glutathione S-transferase and heat shock protein genes as well as down-regulation of ribosomal subunit protein genes was observed between days 0 and 2. The transition from microspores to developing embryos (days 2 vs. 5) was marked by the induction of transcription factor genes known to play important roles in early embryogenesis, numerous genes involved in hormone biosynthesis and plant hormonal signal transduction in addition to genes involved in secondary metabolism. This work sheds light on transcriptional changes accompanying an important developmental shift and provides candidate biomarkers for embryogenesis in barley.

Pollen formation can be divided into two developmental processes named sporogenesis and gametogenesis. Sporogenesis corresponds to the production of spores and occurs when a diploid mother cell

KEYWORDS

barley transcriptome analysis isolated microspore culture

undergoes meiosis to produce four haploid cells called microspores. These then typically undergo gametogenesis, *i.e.*, mitotic divisions and maturation resulting in a mature pollen grain composed of three nuclei (two sperm and one vegetative nucleus). The microspore, with its single nucleus, haploid set of chromosomes, functional chloroplasts and a formidable cellular plasticity, constitutes prize material for studying developmental shifts. Indeed, via anther or microspore culture, it is possible to change the developmental fate of a microspore in such a way that it engages in an embryogenic path leading to a new plant. It is possible to produce diploid plants that are perfectly homozygous (doubled haploid or DH) thanks to a spontaneous or induced doubling of the set of chromosomes present in the microspore during the development of these new plants (Germanà 2011a). Protocols for DH production have been developed and applied to various species such as rapeseed (*Brassica napus*), pepper (*Capsicum annuum* L.), tobacco

Copyright © 2018 Belanger *et al.*

doi: https://doi.org/10.1534/g3.118.200208

Manuscript received October 14, 2017; accepted for publication March 6, 2018; published Early Online March 12, 2018.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplemental Material is available online at www.g3journal.org/lookup/suppl/doi:10.1534/g3.118.200208/-/DC1.

¹Corresponding author: Université Laval, 1030, Avenue de la Médecine, Québec, G1V 0A6, Canada, E-mail: Francois.Belzile@fsaa.ulaval.ca

(*Nicotiana tabacum* L.), wheat (*Triticum aestivum* L.), barley (*Hordeum vulgare* L.), rice (*Oryza sativa* L.) and several other species (Thomas *et al.* 2003; Dunwell 2010; Germanà 2011a). It has been reported that barley (Jacquard *et al.* 2003), wheat (Tuvesson *et al.* 2007), rapeseed (Custers 2003) and tobacco are model species due to their high response to embryogenic induction and their regeneration efficiency (Forster *et al.* 2007; Germanà 2011a,b; Soriano *et al.* 2013).

To change developmental fates, microspores need to engage in cellular de-differentiation, interrupting the transcriptional and translational activities leading to pollen formation (Maraschin et al. 2005), and restore totipotency (Elhiti et al. 2013) in view of engaging in a new developmental path, in this case embryogenesis (Hosp et al. 2007; Seifert et al. 2016). A few previous studies have characterized microspore gene expression to shed light on the mechanisms underlying microspore development in this context in barley (Vrinten et al. 1999; Maraschin et al. 2006; Muñoz-Amatriaín et al. 2006), wheat (Sánchez-Díaz et al. 2013; Seifert et al. 2016) and rapeseed (Joosen et al. 2007; Malik et al. 2007). In barley, experiments were performed either on isolated microspores (Vrinten et al. 1999; Maraschin et al. 2006) or whole anthers (Muñoz-Amatriaín et al. 2006). In wheat and rapeseed, gene expression profiling was performed on freshly and pretreated microspores in addition to embryogenic induced microspores (Joosen et al. 2007; Malik et al. 2007; Seifert et al. 2016). With the exception of Seifert et al. (2016) who used a comprehensive RNA-seq approach, all previous work was performed on candidate genes or using arrays that interrogated only a subset of all genes (from as few as ~ 10 candidate genes to 21k). Nonetheless, these studies provided interesting glimpses into the main genes and metabolic processes involved in this striking change of developmental fate.

In barley, Maraschin et al. (2006) used a specially designed gene chip containing 1,421 ESTs isolated from the early stages of barley zygotic embryogenesis. This tool was used to analyze either freshly isolated or pretreated uninucleate microspores (following four days of heat and osmotic stress). Globally, a total of 96 differentially-expressed ESTs were identified; these coded for genes involved in the activation of protein degradation, starch and sugar hydrolysis, stress responses and cell signaling metabolisms as well as in the inhibition of programmed cell death (Maraschin et al. 2006). As for the work of Muñoz-Amatriaín et al. (2006), because it was carried out on whole anthers, it is impossible to know which transcripts were expressed in the microspores inside the anthers vs. the rest of the anther. Among closely related cereals, in wheat, Seifert et al. (2016) characterized the transcriptome of freshly isolated microspores, microspores after a pretreatment (4° for 10 days) and microspores in culture (for \sim 8 days). These authors identified genes encoding transcription factors known to mark the induction of embryogenesis such as AINTEGUMENTA-like 5 (AIL5) and BABY BOOM (BBM). A differential gene expression analysis identified a group of up-regulated genes involved in various epigenetic metabolisms such as DNA methylation, histone methylation and histone deacetylation.

Although barley was among the first species studied for gene expression of pretreated microspores and anthers, as described above, no comprehensive study has explored the entire transcriptome of isolated barley microspores engaging in induced embryogenesis. Consequently numerous aspects still remain obscure such as the synthetic and response pathways for various plant growth regulators as well as key transcription factors. In this work, our objective was to extensively characterize the transcriptome of barley microspores prior to (day 0) and immediately after (days 2 and 5) the application of a 48h pretreatment (thermal and osmotic stress) that efficiently induces embryogenesis in the highly responsive barley cultivar Gobernadora. To investigate key

metabolic pathways involved in microspores at these stages of development, deep transcriptome sequencing was used to both catalog the genes expressed as well as those that were differentially expressed.

MATERIAL & METHODS

Plant materials

Donor plants of barley (H. vulgare ssp. vulgare cv Gobernadora, a two-row spring barley) were grown in a greenhouse and uniform immature spikes containing microspores at the mid-late to late-uninucleate stage were harvested as described by Esteves and Belzile (2014). We then isolated and purified microspores at three time points: Day 0 (freshly harvested spikes), Day 2 (immediately after completion of the pretreatment) and Day 5 (after three days in culture). Day 0 microspores were isolated from freshly harvested spikes containing haploid and uninucleate microspores and the uniformity of microspores was improved using gradient centrifugation (20% maltose-mannitol; 900xg at 12°). For day 2 and 5, the spikes were subjected to a 48-h pretreatment combining thermal (26°) and osmotic (0.3M; pH at 5.34) stresses. After pretreatment, microspores were harvested and purified using gradient centrifugation (as above). A ${\sim}0.5M$ of these isolated microspores were collected as samples of day 2 while the remaining microspores were plated on a two-layer (solidliquid) embryogenesis induction media developed by Li and Devaux (2003) and optimized by Esteves et al. (2014). The optimization consisted of: (i) use of 0.3 mg/l of Thidiazuron (Sigma-Aldrich, Oakville, Ontario, Canada) rather than BAP (at 1.0 mg/l), (ii) addition of 0.6 mg/l of Dicamba (Sigma-Aldrich, Oakville, Ontario, Canada), (iii) addition of 50 mg/l each of arabinogalactan (Sigma-Aldrich, Oakville, Ontario, Canada) and arabinogalactan proteins (Sigma-Aldrich, Oakville, Ontario, Canada) and (iv) removal of ovaries. Finally, to maximize the uniformity of the microspores harvested at day 5, we collected the liquid phase containing the microspores and enriched for embryogenic microspores using a 25% maltose-mannitol gradient centrifugation (300xg; 12°). Microspores were produced in four biological replicates and, after isolation, samples were immediately frozen in liquid nitrogen and kept at -80° prior to RNA isolation.

Cellular fixation and microscopy of microspores

Freshly isolated microspores at the three time points were collected, fixed and DAPI stained for microscopy exactly as described in González-Melendi *et al.* (2005) except for the washing step that was performed for 15 min twice. Microscopy was performed at the Plate-forme d'Imagerie Moléculaire et de Microscopie of the Institut de Biologie Intégrative et des Systèmes (Université Laval, Québec, Canada) using 10 μ l of stained microspores and observed in a Zeiss Axio Observer.Z1 (Zeiss, Gottingen, Germany) under a UV laser (excitation of 390/22 nm and emission of 460/50 nm).

RNA isolation, library construction and sequencing

Large molecular weight RNA was differentially isolated from the small molecular weight RNA fraction using the SPLIT RNA extraction kit (Lexogen, Vienna, Austria) as per the manufacturer's instructions. RNA quality was evaluated using the Agilent RNA 6000 Nano Kit on a Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA). Only RNA samples with an integrity number \geq 7.0 were kept for RNA-seq library construction. Each sample was quantified using a Nanodrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and, prior to constructing RNA-seq libraries, 1.5 µg of RNA was enriched in poly-A RNA using magnetic beads with poly-T oligonucleotides. Enriched poly-A RNA was used to construct libraries using the Illumina TrueSeq RNA sample prep kit v2 (llumina, San Diego, Ca,

USA) as per the manufacturer's instructions except that the RNA fragmentation step was performed during six minutes. Replicate libraries were indexed with a unique barcode identifier and then quantified and mixed to form a normalized 12-plex paired-end sequencing library. A single lane (50-nt paired-end reads) of an Illumina Hi-Sequation 2000 instrument (Illumina Inc, San Diego, CA, USA) was used to sequence the entire library at McGill University-Genome Quebec Innovation Centre (Montréal, Canada).

Data processing, analysis of differential gene expression and gene clustering

Using Trimmomatic v0.33 (Bolger et al. 2014), raw paired-end reads were pre-processed at a Phred quality score threshold of ≥ 25 for the 3' end and trimmed reads shorter than 25 nt were discarded. Trimmed reads were aligned to the barley reference genome (Hv_IBSC_PGSB_v2. dna.toplevel; ftp://ftp.ensemblgenomes.org/pub/release-36/) using Tophat v2.1.1 (Kim et al. 2013). Using HTSeq v0.6.1p1 (Anders et al. 2014), we calculated the number of reads mapped to exons using the reference transcriptome and generated a read-count matrix. Prior to performing differential gene expression analysis, we filtered the readcount matrix and kept only genes with ≥ 5 reads per million for a minimum of 4 samples and normalized gene expression based on the TMM method using edgeR (Robinson et al. 2010; Robinson and Oshlack 2010). In edgeR, we performed a multidimensional scaling (MDS) analysis to assess the degree of uniformity among replicates of the three developmental stages. Using edgeR, we examined the overlap among genes at the three stages of microspore development to identify genes exclusively expressed at a specific stage of development and clustered them under a category named ON/OFF genes. We then used edgeR to identify differentially expressed genes (DEGs) and measured the significance of expression changes using the generalized linear model (glm) test for two developmental transitions: (i) from day 0 to day 2 and (ii) from day 2 to day 5. Results were filtered and considered as significant if both $\log_2 FC \ge |2.0|$ and *q*-value ≤ 0.01 were observed. Finally, DEGs were clustered in eight groups representing their expression pattern (while the expression of a gene can go up, down or remain unchanged) between days 0 to 5 (successively from day 0 to day 2 and from day 2 to day 5).

Gene functional annotation

We retrieved functional annotation of barley genes using BioMart v0.7 available on Phytozome (https://phytozome.jgi.doe.gov) for KEGG functional orthologs (KO) and Panther description. Reference orthologous genes were retrieved using the online EMBL-EBI HMMER program (https://www.ebi.ac.uk/Tools/hmmer/) with the SwissProt database restricted to the *A. thaliana* and *O. sativa* species.

Data availability

The complete set of raw and mapped RNA-seq reads were deposited in the Sequence Read Archives (SRA) under accession number SRP127768.

RESULTS AND DISCUSSION

Isolation and purification of microspores at three key stages of IMC

To better understand the changes in gene expression that underlie the developmental switch that occurs during isolate microspore culture (IMC) in barley, we used the cv. Gobernadora known as one of the most responsive genotypes in anther culture (Marchand *et al.* 2008) and we characterized the transcriptome of microspores at days 0, 2 and 5. As

can be seen in Figure 1, without and with DAPI staining, on day 0, microspores were characterized by a single nucleus positioned across the cell wall (Figure 1a) corresponding to the late uninucleate stage known as the most embryogenic-responsive microspore (Kasha et al. 2001); on day 2, a little enlarged microspores showed a single nucleus migrating toward the center of the cells as well as a few microspores that had two nuclei (Figure 1b) and (iii) on day 5, some star-like microspores as well as many, more advanced, multicellular structures (MCSs) exhibiting 2 to 6 nuclei were seen (Figure 1c). No or very few damaged or dead cells were observed. Relative to the phenotypes described by Maraschin (2005), our samples can be described as highly similar to day 0, slightly more advanced at the enlarged microspore (EM) stage (day 2) and exceeded in many cases the star-like microspore (SL) stage (day 5) and mostly corresponded to the multicellular structure (MCS) stage indicating that microspores had engaged in embryogenesis. Such MCSs were typically observed 2 to 5 days later by Maraschin (2005). We suggest that the faster microspore development observed could be attributed to three factors: (i) a superior responsiveness of the genotype Gobernadora or (ii) the use of a more efficient stress pretreatment or (iii) the use of a better induction medium.

Transcriptomes at three stages of isolated microspore culture

To obtain a comprehensive overview of the set of genes expressed in microspores during the early stages of IMC, we used an RNA-seq approach. Four biological replicates at each stage yielded a total of more than 279M 50-nt paired-end reads, for an average of \sim 92M reads per cell type. To assess the degree of uniformity among replicates, we performed an MDS analysis based on genome-guided transcriptome assemblies. As can be seen in Figure 2a, we observed three highly distinctive and very tight clusters indicating that the different replicates were tremendously uniform and that each stage has a distinct transcriptomic signature. Even if some morphological heterogeneity was observed among day-5 microspore replicates, the tightest clustering of these replicates in the MDS plot suggested an enrichment of cells having a high homogeneity in their transcriptional response to embryogenesis induction.

Overall the analysis, a total of 14,367 genes was detected when summed across all three stages and the vast majority of these genes (13,037; 90.7%) were expressed at all three developmental stages (Figure 2b), although not necessarily in equal abundance. Among individual stages, we observed an increase in the number of genes expressed in microspores from a low of 13,105 at day 0, to 13,965 at day 2 and a maximum of 14,289 at day 5. Although small (2.9%), the number of genes expressed exclusively at a specific stage increased from 11 (day 0) to 34 (day 2) to 367 (day 5). Finally, the number of genes expressed in two of the stages was also relatively small (6.4%), ranging from 24 (day 0 and day 5) to 861 (day 2 and day 5). In the next section, we describe further some of the broad metabolic pathways in which genes expressed exclusively at a stage are involved. Mainly due to their microarray (1,421 ESTs) designed to interrogate genes expressed in early barley zygotic embryogenesis, Maraschin et al. (2006) detected a lower number of transcripts (418) representing only 2.9% of the genes interrogated in our work. In wheat microspores at comparable stages, Seifert et al. (2016) reported similar results both in terms of the number of genes (15,598) and the overlap of genes expressed across all developmental stages (11,765; 90.4%). These authors also observed an increase in the number of genes expressed in microspores from developmental stage 1 (14,470; similar to day 0 in this work) to stage 2 (14,666; day 2 here), while, in contrast, they reported a slightly decrease at stage 3 (13,128;

similar to day 5). They also detected a small (4.5%) number of genes expressed exclusively at a single stage: 24, 11 and 666 in stages 1, 2 and 3, respectively. In conclusion, we succeeded in isolating highly uniform populations of microspores at three phenotypically distinct stages of IMC and, while each exhibited a distinct transcriptomic profile, the number of genes underlying these different profiles via their presence or absence was rather small (dozens to at most a thousand).

Genes exclusively expressed in microspores at day 5 provided highlight About metabolism governing the embryogenesis induction

To provide a comprehensive overview of genes expressed exclusively at a specific stage of development, we explored metabolisms governed by these genes. While no or too low functional annotations were available for genes exclusively expressed in microspores at day 0 (only 11 genes) and 2 (34 genes), we limited the investigation to the 367 genes specifically expressed to microspores at day 5 and considered them as potential marks of the induction of embryogenesis. Interestingly, we observed genes (Table 1) encoding transcription factors such as *BABY BOOM* (*BBM*; HORVU3Hr1G089160), *AINTEGUMENTA-like 5* (*AIL5*;

HORVU7Hr1G111060) and WUSCHEL-RELATED HOMEOBOX 4 (WUS; HORVU5Hr1G022120). BBM and AIL5 are both AP2/ERF transcription factors known to be expressed early and to play important roles in embryo development in B. napus (Boutilier et al. 2002) and A. thaliana, respectively (Tsuwamoto et al. 2010). Orthologs of these genes were recently reported to be turn on early during microspores culture in wheat (Seifert and al. 2016). WUS is a homeobox transcription factor reported to play an essential role in maintaining cells in a state of proliferation and responsiveness to other developmental cues (Mayer et al. 1998; Gallois et al. 2002; Smertenko and Bozhkov 2014) in addition to inducing the vegetative-to-embryonic transition in A. thaliana somatic embryogenesis (Zuo et al. 2002; Smertenko and Bozhkov 2014). Together, the expression induction of these three genes in microspores at day 5 suggests the microspore commitment in the embryogenesis developmental pathway and is consistent with the phenotype previously observed.

Then, we inspected this set of 367 genes to look for other hallmarks of microspore transition not previously reported in microspore embryogenesis. The major finding was the detection of genes belonging to hormonal biosynthetic pathways in addition to genes involved in plant

Figure 2 Variation in gene expression profiles within and between microspore samples. An MDS plot shows the high degree of uniformity among replicates of the same stage as well as the distinctness between stages (a) and a Venn diagram illustrates the high degree of overlap among genes expressed in the different cell types (b).

hormones signal transduction processes (Table 1). For hormone biogenesis (Table 1), two genes encoding the linoleate 13S-lipoxygenase enzyme (LOX8; HORVU7Hr1G050660 and HORVU7Hr1G050670) known as the first enzyme involved in the synthesis of jasmonic acid (Wasternack 2007) were detected. Similarly, a gene encoding xanthoxin dehydrogenase (ABA2; HORVU2Hr1G015140) enzyme, involved in the abscisic acid biogenesis pathway was also detected only at day 5. Of plant hormones signal transduction pathways, we detected numerous genes involved in the signal transduction mediated by the cytokinin, abscisic acid, auxin, ethylene and brassinosteroid (Table 1). Of these genes, we detected few hormonal receptors homologous to the Arabidopsis PYL1 (HORVU1Hr1G050110) and the rice ETR4 (HOR-VU6Hr1G071860) and HK3 (HORVU3Hr1G094870) genes known to respectively encode abscisic acid, ethylene and a cytokinin receptors required to mediate the hormone transduction response. In addition, numerous genes involved in the signaling cascade related to auxin were detected such as IAA15 (HORVU1Hr1G025670), IAA26 (HOR-VU5Hr1G081180), IAA20 (HORVU7Hr1G026970) genes as well as GH3.2 (HORVU1Hr1G066340) and GH3.4 (HORVU3Hr1G074230) genes known as induced by this signal transduction pathway. Finally, we detected the expression a gene homolog to the rice CYCD3-2 (HOR-

VU5Hr1G050270) gene known as induced by the brassinosteroid hormone signal transduction and involved on cell division (Hu et al. 2000).

Interestingly, Zur et al. (2015a and 2015b) reported that the endogenous level of natural hormones (auxin/cytokinin/ABA) and its balance with exogenously applied hormones can be crucial both for the yield and quality of microspore-derived embryos and they suggested that hormonal homeostasis might be one of the most important factors determining cell embryogenic competency. Also, it was demonstrated that an addition of these three hormones to microspores in culture significantly increased embryogenesis when applied a couple of hours from the beginning of microspore culture (Ahmadi et al. 2014). Since only cytokinin and auxin were added to our culture medium, our results suggest that microspores of barley cv. Gobernadora can potentially rapidly activate hormone biogenesis and mediate hormonal signal transduction to other hormones within the first days of culture. This could explain in part its high aptitude to form embryos. Together, these results suggest that the transition toward embryogenesis involves the expression of genes governing hormonal biogenesis and signal transduction pathways. These genes could potentially serve as biomarkers to compare the efficiency of induction of embryogenesis following various pretreatments or in different genetic backgrounds.

-				
	Reference gene	Reference specie	KEGG reference	Barley gene name
Transcription factor				
Baby boom	BBM1	B. Napus		HORVU3Hr1G089160
Aintegumenta-like 5	AIL5	A. thaliana		HORVU7Hr1G111060
Wuschel-related homeobox 5	WOX5	O. sativa		HORVU5Hr1G022120
Hormones biogenesis				
Linoleate 13S-lipoxygenase	LOX8	O. sativa	EC:1.13.11.12	HORVU7Hr1G050660
Linoleate 13S-lipoxygenase	LOX8	O. sativa	EC:1.13.11.12	HORVU7Hr1G050670
Xanthoxin dehydrogenase	ABA2	A. thaliana	EC:1.1.1.288	HORVU2Hr1G015140
Plant hormone signal transduction				
Auxin-responsive protein	IAA15	O. sativa	K14484	HORVU1Hr1G025670
Auxin-responsive protein	IAA26	O. sativa	K14484	HORVU5Hr1G081180
Auxin-responsive protein	IAA20	O. sativa	K14484	HORVU7Hr1G026970
Indole-3-acetic acide-amido synthetase	GH3.2	O. sativa	K14487	HORVU1Hr1G066340
Indole-3-acetic acide-amido synthetase	GH3.4	O. sativa	K14487	HORVU3Hr1G074230
Cyclin D3	CYCD3-2	O. sativa	K14505	HORVU5Hr1G050270
Abscisic acid receptor PYR/PYL	PYL	A. thaliana	K14496	HORVU1Hr1G050110
Ethylene receptor 4	ETR4	O. sativa	EC:2.7.13	HORVU6Hr1G071860
Histidine kinase 2/3/4 (cytokinin receptor)	HK3	O. sativa	K14489	HORVU3Hr1G094870

Table 1 Subset of genes that were newly and specifically in microspores at day 5

Figure 3 Schematic clusters representing different patterns of gene expression among differentially expressed genes (DEGs). Clusters were intuitively generated by integrating each gene expression pattern (expression of a gene can go up, down or remain unchanged) at both developmental transitions (from day 0 to day 2 and from day 2 to day 5) producing a total of eight different expression patterns.

DEG analysis and clustering

In addition to genes that were only detected at a specific stage, changes occurring in the abundance of transcripts could help understand the developmental shift undergone by these microspores. In principle, when the developmental fate of the uninucleate microspore is shifted from pollen formation to embryogenesis, we would expect to see a decrease in expression of genes associated with pollen formation and an increase in genes associated with embryogenesis. Thus, differentially expressed genes (DEGs) could shed light on the key metabolic changes driving this switch. Overall, a total of 3,382 DEGs (23.5%) were significantly over- or under-expressed; of these genes, 2,155 and 2,281 DEGs, respectively, were identified when contrasting expression at day 0 and day 2, and when comparing day 2 and day 5. For both categories of DEGs, most transcripts were up-regulated (80.4% and 66.7%, respectively). Our

results are similar to those reported in wheat by Seifert *et al.* (2016) in terms of the number of DEGs when contrasting comparable stages of microspore development (6,385 out of 15,598), but contrast markedly in terms of up- or down-regulation. Indeed, these authors reported only 33.3% and 43.0% of up-regulated genes for the two transitions. This low proportion of up-regulated genes is rather atypical of what observed here or previously reported in barley (Maraschin *et al.* 2006).

To facilitate the analysis of this large set of DEGs, we grouped them into eight profiles (illustrated in Figure 3). Below, we describe broad metabolic changes associated with these various clusters of genes sharing a similar expression profile based on the KEGG and Panther annotations (the complete annotation is detailed in Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, Table S7, and Table S8 corresponding to each gene clusters).

Table 2 List of up-regulated genes in microspores from day 0 to day 2

Gene involved in cytoprotection	Reference gene	Reference specie	KEGG reference	Barley gene name
Glutathione S-transferase	GSTUD	O. sativa	EC:2.5.1.18	HORVU1Hr1G021170
Glutathione S-transferase	GSTUI	O. sativa	EC:2.5.1.18	HORVU5Hr1G058000
Glutathione S-transferase	GSTUI	O. sativa	EC:2.5.1.18	HORVU1Hr1G049250
Glutathione S-transferase	GSTUI	O. sativa	EC:2.5.1.18	HORVU1Hr1G049190
Glutathione S-transferase	GSTUH	O. sativa	EC:2.5.1.18	HORVU3Hr1G095670
Glutathione S-transferase	GSTUP	O. sativa	EC:2.5.1.18	HORVU5Hr1G103420
Glutathione S-transferase	GSTU3	O. sativa	EC:2.5.1.18	HORVU4Hr1G057910
Glutathione S-transferase	GSTU8	O. sativa	EC:2.5.1.18	HORVU3Hr1G107350
Glutathione S-transferase	GSTU8	O. sativa	EC:2.5.1.18	HORVU1Hr1G064890
HSP20 family protein	HS16	O. sativa		HORVU0Hr1G020420
HSP20 family protein	HS16A	O. sativa		HORVU3Hr1G007500
HSP20 family protein	HS16A	O. sativa		HORVU3Hr1G007380
HSP20 family protein	HS16A	O. sativa		HORVU2Hr1G120170
HSP20 family protein	HS16A	O. sativa		HORVU3Hr1G006530
HSP20 family protein	HSP17A	O. sativa		HORVU4Hr1G060760
HSP20 family protein	HSP232	O. sativa		HORVU2Hr1G077710
HSP20 family protein	HSP219	O. sativa		HORVU4Hr1G015170
HSP20 family protein	HS26P	O. sativa		HORVU4Hr1G063350
HSP70 family protein 5	BIP5	O. sativa		HORVU2Hr1G122760
HSP70 family protein 5	BIP5	O. sativa		HORVU5Hr1G078400
HSP70 family protein 5	BIP5	O. sativa		HORVU7Hr1G098810
HSP70 family protein 5	MD37A	A. thaliana		HORVU7Hr1G107190

Metabolisms controlled by differentially expressed genes in microspore from day 0 and 2

Of the eight clusters, three (4, 5 and 7) shared an up-regulation of genes between days 0 and 2, but only the latter two exhibited an increase occurring only at this stage. Among these, we found numerous genes belonging to four main categories: carbohydrate metabolism, hormonemodulated gene expression, proteolytic genes, cytoprotection and hormone biogenesis. These have been proposed to participate in the interruption of pollen development (Maraschin *et al.* 2005). Despite being reported in much greater numbers here, examples of such genes (especially among the first two categories) have already been described in barley by Maraschin *et al.* (2006). In what follows, we focus on genes involved in cytoprotection, proteolysis and genes related to hormone biogenesis, three previously poorly described categories.

Of genes involved in cytoprotection (Table 2), we detected nine genes coding Glutathione S-transferases (GSTs) and thirteen heat shock proteins (HSPs), both, known to be induced in response to stress and involved in cytoprotection. Specifically, GSTs act in the glutathionemediated detoxification metabolism protecting cells against reactive oxygen species (ROS) (Chen and Singh 1999; Garretón et al. 2002). This result is concordant with the findings of Maraschin et al. (2006) who reported the induction of a GST gene in microspores subjected to stress. Heat shock proteins (HSPs) are known to act in various ways to protect proteins such as by assisting in refolding, preventing aggregation or by acting as a co-chaperone (Park and Seo 2015) Previously, members of the HSP family have been reported to be highly expressed in microspores subjected to heat and starvation stresses: HSP90 in Brassica (Seguí-Simarro et al. 2003), HSP70 in Brassica (Cordewener et al. 1997; Seguí-Simarro et al. 2003) and Capsicum (Bárány et al. 2001), as well as HSP20 in tobacco (Zarsky et al. 1995). The two latter were detected in barley for the first time in this work, but with a distinct expression pattern. The 9 HSP20 genes were up-regulated from day 0 to day 2 (Figure 3; Cluster 5) while the five HSP70 genes were initially up-regulated and then down-regulated from day 2 to day 5 (Figure 3;

cluster 7). In addition to *HSPs*, we detected a gene encoding heat shock transcription factor (*HSF*) known to increase the transcriptional response of *HSP* genes (barley homolog of the HSFA4A (HOR-VU1Hr1G081300) gene).

Some of the proteolytic genes identified encode components of the proteasome and the ubiquitin-mediated proteolysis system as well as proteases. We detected an induction of proteolytic genes homologous to components of the 26S proteasome regulatory complex such as the ATPase RPT4 (HORVU4Hr1G027260) and PSMD10 (HORVU3Hr1G023740; HORVU3Hr1G033250; HORVU7Hr1G029900) as well as the proteasome endopeptidase complex (HORVU5Hr1G109720). In addition, we detected a few genes encoding a ubiquitin-ligase (UB-E3) protein. While expressed, no changes in expression were detected for the ubiquitinactivating (UB-E1) and the ubiquitin-conjugating (UB-E2) enzymes. In addition, numerous proteases were detected such as the cathepsin B-like protease 2 (CATHB2; HORVU4Hr1G010300), the serine carboxypeptidase 1 (CBP1; HORVU3Hr1G096830), the aminopeptidase M1 (APM1; HORVU5Hr1G057330), the endopeptidase Clp (CLPR1; HOR-VU1Hr1G094480) and numerous the aspartyl proteases (14 genes) such as the HORVU3Hr1G056630 gene coding for a phytepsin protein previously reported by Maraschin and al (2006). In wheat, Seifert et al. (2016) did not report the activation of such enzymes and metabolisms; rather, they reported an over-representation of genes related to proteolysis among a cluster of down-regulated genes when microspores underwent the transition toward the third stage of development studied.

Three clusters (1, 2 and 8) shared a down-regulation of genes between days 0 and 2, but only the second exhibited a decrease occurring exclusively at this stage (genes that decrease between days 0 and 2 and stay low expressed). Among these, the most highly represented categories were genes encoding proteins involved in genetic information processing and DNA organization such as nucleosome assembly factors. For genetic information processing, many genes (Table 3) involved in translation coding the small ribosomal subunit (a total of 7 genes encoding distinct proteins) or the large ribosomal subunit (a total of 15 genes) were observed. Down-regulation of these genes (a total of 22) coding for ribosomal components upon application of a stress is consistent with previous reports (Rashid et al. 1982, Hoekstra et al. 1992, Telmer et al. 1995, Maraschin et al. 2005). Nonetheless, Maraschin et al. (2006) detected an increased expression of the gene coding the 60S ribosomal protein L26A. While a gene coding exactly the same ribosomal protein was not detected in our experiment, our more extensive data suggests strongly a down-regulation of genes coding ribosomal proteins. In agreement with our results, Malik et al. (2007) also observed a down-regulation of several genes encoding the small and large ribosomal subunits in B. napus microspores after three days of heat and osmotic pretreatment. In addition to ribosomal protein genes, we detected a down-regulation of three homologs of the A. thaliana NOP5A (HORVU2Hr1G022140 and HORVU1Hr1G083960) and FIB1 (HOR-VU6Hr1G091860) genes, respectively coding for the nucleolar protein 56 and the rRNA 2'-O-methyltransferase fibrillarin protein (Table 3), all known to be required for 60S ribosomal subunit biogenesis. Concordantly, Maraschin et al. (2006) also observed a down-regulation of the gene coding for the fibrillarin protein in barley microspores after stress pretreatment. For the second category, we detected a total of 7 genes (Table 3) encoding all core histone components of the nucleosome: histones H2A (HORVU3Hr1G116550, HORVU4Hr1G008800, HORVU4Hr1G058940, HORVU6Hr1G092280), H2B (HORVU3Hr1G086610), H3 (HOR-

VU1Hr1G020050) and H4 (HORVU1Hr1G017830). Although that we observe few microspores having initiated a nuclear division at day 2, a reduction of expression for genes encoding these proteins may reflect the arrest of the pollen formation that involve two successive mitotic division during the gametogenesis.

Metabolisms controlled by differentially expressed genes in microspore from day 2 and 5

When then expanded our investigation to the other up-regulated DEGs between days 2 and 5 (clusters 6 and 8), *i.e.*, those that were also expressed at earlier stages but less strongly. First, numerous genes encoding enzymes involved in secondary metabolism were found, including enzymes of the phenylpropanoid pathway. For instance, we detected many genes encoding enzymes such as *shikimate O-hydroxycinnamoyltransferase* (*HCT1*; HORVU2Hr1G086380), *phe-nylalanine ammonia-lyase* (*PAL2*; HORVU2Hr1G038140, HORVU2Hr1G038120, HORVU0Hr1G016330), *cinnamoyl-CoA reductase* (*CCR1*; HORVU7Hr1G030380) and 4-*coumarate–CoA ligase* (*4CL3*; HORVU6Hr1G030390 and 4*CL4*; HORVU7Hr1G111130). In addition to the one mentioned above, we detected two supplementary genes encoding a *linoleate 13S-lipoxygenase* (homologous to *LOX6* and *LOX8*) and a *linoleate 9S-lipoxygenase* (homologous to *LOX4*) (Table 1). In addition to these enzymes, we detected *allene oxide synthase* (*AOS1*;

Table 3 List of down-regulated genes in microspores from day 0 to day 5

	Reference gene	Reference specie	KEGG reference	Barley gene name
Genes involved in translation				
40S ribosomal protein	RS4	O. sativa		HORVU1Hr1G021720
40S ribosomal protein	RS62	A. thaliana		HORVU2Hr1G029890
40S ribosomal protein	RS8	O. sativa		HORVU2Hr1G067370
40S ribosomal protein	RS92	A. thaliana		HORVU2Hr1G028510
40S ribosomal protein	RS101	A. thaliana		HORVU3Hr1G111760
40S ribosomal protein	RS174	A. thaliana		HORVU1Hr1G042220
40S ribosomal protein	RS26	O. sativa		HORVU5Hr1G111820
60S ribosomal protein	RL81	A. thaliana		HORVU4Hr1G077020
60S ribosomal protein	RL81	A. thaliana		HORVU5Hr1G021730
60S ribosomal protein	RLA0	O. sativa		HORVU7Hr1G073720
60S ribosomal protein	RLA25	A. thaliana		HORVU0Hr1G004480
60S ribosomal protein	RL3	O. sativa		HORVU4Hr1G019980
60S ribosomal protein	RL4A	A. thaliana		HORVU4Hr1G075710
60S ribosomal protein	RL51	O. sativa		HORVU5Hr1G092630
60S ribosomal protein	RL63	A. thaliana		HORVU6Hr1G052600
60S ribosomal protein	R10A1	A. thaliana		HORVU3Hr1G084310
60S ribosomal protein	RL171	A. thaliana		HORVU5Hr1G052280
60S ribosomal protein	RL18A	O. sativa		HORVU1Hr1G088040
60S ribosomal protein	RL212	A. thaliana		HORVU4Hr1G084420
60S ribosomal protein	RL321	A. thaliana		HORVU5Hr1G075420
60S ribosomal protein	RL371	O. sativa		HORVU3Hr1G062590
60S ribosomal protein	RL371	O. sativa		HORVU7Hr1G081910
Genetic information processing				
Nucleolar protein 56	NOP5A	A. thaliana		HORVU2Hr1G022140
Nucleolar protein 56	NOP5A	A. thaliana		HORVU1Hr1G083960
rRNA 2'-O-methyltransferase fibrillarin	FIB1	A. thaliana	EC:2.1.1	HORVU6Hr1G091860
Nucleosome assembly factors				
Histone H2A	H2A5	O. sativa		HORVU4Hr1G058940
Histone H2A	H2A5	A. thaliana		HORVU3Hr1G116550
Histone H2A	H2AXA	O. sativa		HORVU4Hr1G008800
Histone H2A	H2AXB	O. sativa		HORVU6Hr1G092280
Histone H2B	H2B11	O. sativa		HORVU3Hr1G086610
Histone H3	H32	A. thaliana		HORVU1Hr1G020050
Histone H4	H4	A. thaliana		HORVU1Hr1G017830

Table 4 List of up-regulated genes in microspores from day 2 to day 5

Phenylpropanoid biogenesis pathway CCR1 A. the lama EC:12.1.4 HORV/JFH1000300 4 counnants-CoA ligas 4CL3 O, sativa EC:62.1.12 HORV/JFH1000310 Phenylakine ammonia lysse PAL2 O, sativa EC:62.1.2 HORV/JFH1003310 Phenylakine ammonia lysse PAL2 O, sativa EC:63.1.3.4 HORV/JFH1003310 Shimate C-Hydrogenonamo/Intefense PAL2 O, sativa EC:23.1.3.1 HORV/JFH1008380 VacomptodeConsci call declutase OPR O sativa EC:13.1.12 HORV/JFH10095960 Linolexte SSI.gooxygenese 4 LOX6 O sativa EC:13.1.12 HORV/JFH10095960 Linolexte SSI.gooxygenese 4 LOX6 O sativa EC:13.3.1.42 HORV/JFH10059200 Allene oxide synthase AOS1 O sativa EC:13.3.1.5 HORV/JFH10059200 Allene oxide synthase AOS2 O sativa EC:12.3.1.4 HORV/JFH1005920 Allene oxide synthase AOC2 O sativa EC:12.3.1.6 HORV/JFH1005920 Allene oxide synthase AOC2 Sativa EC:13.3.6 HOR		Reference gene	Reference specie	KEGG reference	Barley gene name
Cremeny-CoA CRI A theliana EC:12.1.4 HOWU7H1030330 4-counsate-CoA ligase 4CL3 0. sativa EC:6.2.1.12 HOWU7H1030330 4-counsate-CoA ligase 4CL4 0. sativa EC:6.2.1.12 HOWU7H1030310 Pherylainine ammonia-lysse PAL2 0. sativa EC:4.3.1.2 HOWU2H1030310 Shikmate C-hydroxycinnamytransferase PAL2 0. sativa EC:4.3.1.2 HOWU2H1030310 Shikmate C-hydroxycinnamytransferase HCT1 0. sativa EC:4.3.1.2 HOWU2H10004330 Dimones biogenesis Tomones biogenesis Tomones biogenesis Tomones biogenesis Tomones biogenesis Tomolexis Shipoxygenase 6 LOX6 0. sativa EC:1.3.1.12 HOWU2H10005920 Linelaxis Shipoxygenase 3 LOX6 0. sativa EC:3.3.6 HOWU2H1005820 Aplic CA oxides ACCX2 A. thaliana HOWU2H1005820 ApliCA oxides ApliCAA oxides ACCX2 A. thaliana HOWU2H10078200 ApliCAA oxides HOWU2H10078200 Shikosandi protein S17, chitoroplastic RR57 O. sativa	Phenylpropanoid biogenesis pathway				
4-coursing-CA ligase 4C.3 O, sativa EC.6.2.1.2 HORVL/FH1030370 Phenylainine ammonia-jusase PAL2 O, sativa EC.6.2.1.2 HORVL/FH10303120 Phenylainine ammonia-jusase PAL2 O, sativa EC.4.3.1.2.4 HORVL/FH10303120 Phenylainine ammonia-jusase PAL2 O, sativa EC.4.3.1.2.4 HORVL/FH10303120 Phenylainine ammonia-jusase PAL2 O, sativa EC.3.3.1.42 HORVL/FH10095200 Sinkinabe C-Jnydroxycinnamorytansfrasse HCT1 O, sativa EC.1.3.1.1.2 HORVL/FH10095200 Linelaste Si-Ipoxygenase 4 LOX4 O, sativa EC.1.3.1.1.2 HORVL/FH10095200 Linelaste Si-Ipoxygenase 4 LOX6 O, sativa EC.1.3.1.1.2 HORVL/FH10095200 Allene oxide symhase AOS1 O, sativa EC.4.2.1.92 HORVL/FH10095200 Allene oxide symhase AOS2 O, sativa EC.4.2.1.92 HORVL/FH10052500 Allene oxide symhase AOS2 O, sativa EC.4.2.1.92 HORVL/FH10052500 Allene oxide symhase AOS2 O, sativa EC.4.2.1.92	Cinnamoyl-CoA reductase	CCR1	A. thaliana	EC:1.2.1.44	HORVU7Hr1G030380
4-cournant-CoA ligase 4C14 O, sativa ECA:3.1.2 HORV2/H10111130 Pherylainine ammonia-lysase PAL2 O, sativa ECA:3.1.24 HORV2/H1038120 Pherylainine ammonia-lysase PAL2 O, sativa ECA:3.1.24 HORV2/H1038120 Shikmato C-hydroxycinamonjtranefrase PAL2 O, sativa ECA:3.1.24 HORV2/H10361320 Shikmato C-hydroxycinamonjtranefrase PAL2 O, sativa ECA:3.1.24 HORV2/H10361320 Hommos biogenesis Toolea 95:Approxygenase 4 LOX4 O, sativa ECA:1.31:11.2 HORV2/H10369502 Linelate 135:Aippaxygenase 6 LOX6 O, sativa ECA:2.1.92 HORV2/H10369502 Allene code synthase AOS1 O, sativa ECA:2.1.92 HORV2/H10369502 Allene code synthase AOS2 O, sativa ECA:2.1.92 HORV2/H10369203 Allene code synthase AOS2 O, sativa ECA:2.1.92 HORV2/H1032020 Allene code synthase AOS2 O, sativa ECA:2.1.92 HORV2/H1032020 Sin choronal protein 51.7, chioroplastic RT7 O, sativa	4-coumarate-CoA ligase	4CL3	O. sativa	EC:6.2.1.12	HORVU6Hr1G030390
Phenylaiania ammonia-lysse PAL2 O. sativa EC:43.1.24 HORW2H1038140 Phenylaiania ammonia-lysse PAL2 O. sativa EC:43.1.24 HORW2H103330 Phenylaiania ammonia-lysse PAL2 O. sativa EC:43.1.24 HORW2H103330 Hormose biogenesis EC:13.1.42 HORW2H10698390 EC:12.3.1.42 HORW2H10698390 Linolated S1-bioxygenase 4 LOX4 O. sativa EC:1.3.1.1.12 HORW2H10699520 Linolated S1-bioxygenase 4 LOX4 O. sativa EC:1.3.1.1.1.2 HORW2H10699520 Linolated S1-bioxygenase 4 LOX4 O. sativa EC:1.3.1.1.2 HORW2H10699520 Allene coxide synthase AOS1 O. sativa EC:4.2.1.92 HORW2H10699520 Allene coxide synthase AOC2 O. sativa EC:1.3.3.6 HORW2H10699520 Allene coxide synthase ACOX2 A. thaliana EC:1.3.3.6 HORW2H10699520 S0 folosomal protein S17, chioroplastic R17 O. sativa HORW2H10699520 S0 folosomal protein S17, chioroplastic R12 O. sativa HORW2H10699530	4-coumarate-CoA ligase	4CL4	O. sativa	EC:6.2.1.12	HORVU7Hr1G111130
Phenylatanine ammonia-lyses PAL2 O. sativa EC:4.3.1.24 HORW2H1100383120 Shikmate C-hydroxycinamoytransferase HCT1 O. sativa EC:3.3.1.24 HORW2H101038300 Shikmate C-hydroxycinamoytransferase HCT1 O. sativa EC:1.3.1.42 HORW2H10095300 T2-oxophytochenoic acid reductase OPR7 O. sativa EC:1.3.1.1.12 HORW2H110095960 Linolester S1-hoxygenase 6 LOX4 O. sativa EC:1.3.1.1.12 HORW2H110095700 Linolester S1-hoxygenase 6 LOX8 O. sativa EC:1.3.1.1.12 HORW2H110095700 Allene oxide synthase AOS1 O. sativa EC:4.2.1.92 HORW2H110098700 Allene oxide synthase AOS2 O. sativa EC:1.3.3.6 HORW2H1100983400 Genes involved in translation UR S1.3.6 HORW2H1100983400 Genes involved in translation UR HORW2H1100983400 HORW2H1100983400 S0.5 ribosomal protein 1.3.1.6 HORW2H1100983400 HORW2H1100983400 HORW2H1100983400 S0.5 ribosomal protein 1.3.4 HORW2H1100983400 HORW2H1100083400 HORW2H1100983400	Phenylalanine ammonia-lyase	PAL2	O. sativa	EC:4.3.1.24	HORVU2Hr1G038140
Phenylalanine ammonia-lysae PAL2 O. sativa EC:4.3.1.24 HORWDH/1008330 Hormones biogenesis LCT1 O. sativa EC:3.1.13 HORWDH/10085300 Linoleate 153-lipoxygenase 4 LOX4 O. sativa EC:1.3.1.1.12 HORWDH/10095900 Linoleate 135-lipoxygenase 4 LOX4 O. sativa EC:1.3.1.1.12 HORWDH/10095920 Linoleate 135-lipoxygenase 8 LOX8 O. sativa EC:1.3.1.1.12 HORWDH/10095920 Allene coids grythase AOS1 O. sativa EC:4.2.1.92 HORWDH/1009500 Allene coids grythase AOS2 O. sativa EC:4.3.3.6 HORWDH/10082400 Agl-CoA coidse ACOX2 A. thaliana EC:1.3.3.6 HORWDH/10083570 Soft Adosonal protein 517, chloroplastic R17 O. sativa HORWDH/10083570 Soft Adosonal protein 110, chloroplastic RX1 A. thaliana HORWDH/10083570 Soft Adosonal protein 112, chloroplastic RX1 A. thaliana HORWDH/10083570 Soft Adosonal protein 112, chloroplastic RX1 A. thaliana HORWDH/10083570 Soft Adosona	Phenylalanine ammonia-lyase	PAL2	O. sativa	EC:4.3.1.24	HORVU2Hr1G038120
Shikmate C-hydroxycinnamoyltraneferase HCT1 O. salva EC2.3.1.133 HORW2H1008380 12-oxphytochenoic acid reductase OPR7 O. salva EC.1.3.1.42 HORW2H10095960 Linolaste SF1poxygenase 6 LOX6 O. salva EC.1.3.1.1.12 HORW2H110095960 Linolaste 13-lipoxygenase 6 LOX6 O. salva EC.1.3.1.1.12 HORW2H11005570 Linolaste S1-lipoxygenase 6 LOX6 O. salva EC.4.2.1.92 HORW2H110695800 Allene oxide synthase AOS1 O. salva EC.4.2.1.92 HORW2H110695800 Allene oxide synthase AOS2 O. salva EC.3.3.6 HORW2H110698100 Acyl-CA oxidase ACOX2 A. thaliana EC.1.3.3.6 HORW2H110038300 Genes involved in translation EC.3.3.6 HORW2H110038300 Sintisonami protein S.5, chioroplastic RK1 A. thaliana HORW2H11038309 S05 ribosomal protein 11.1, chioroplastic RK12 O. satva HORW2H10038300 S05 ribosomal protein 11.2, chioroplastic RK12 O. satva HORW2H1003830 S05 ribosomal protein 1.1, chioroplastic RK12<	Phenylalanine ammonia-lyase	PAL2	O. sativa	EC:4.3.1.24	HORVU0Hr1G016330
Hormones biogenesis Unotest 95-lipoxygenase 4 OPR7 O. sativa EC:1.3.1.4.2 HORVU/FH16039500 Linoleatu 135-lipoxygenase 6 LOX4 O. sativa EC:1.1.3.1.1.2 HORVU/FH16030520 Linoleatu 135-lipoxygenase 8 LOX8 O. sativa EC:1.3.1.1.2 HORVU/FH16030520 Allene oxide synthase AOS1 O. sativa EC:4.2.1.92 HORVU/FH16030500 Allene oxide synthase AOS2 O. sativa EC:4.2.1.92 HORVU/FH16030200 Allene oxide synthase AOC2 A. thaliana EC:1.3.3.6 HORVU/FH16030210 Agyl-CoA oxidase ACCX3 A. thaliana EC:1.3.3.6 HORVU/FH16038490 Gens involved in transition Transition EC:1.3.3.6 HORVU/FH16038490 Sof inosconal protein 112, chloroplastic RR17 O. sativa HORVU/H16038490 Sof inosconal protein 112, chloroplastic RR13 A. thaliana HORVU/H16038490 Sof inosconal protein 123, chloroplastic RK2 A. thaliana HORVU/H16038490 Sof inosconal protein 124, chloroplastic RK12 A. sthaliana HORVU/H16035030	Shikimate O-hydroxycinnamoyltransferase	HCT1	O. sativa	EC:2.3.1.133	HORVU2Hr1G086380
12-asophytodienoic acid reductase OPR7 O. sativa EC.13.142 HORVUPH1609590 Linolate 135-lipoxygenase 4 LOX6 O. sativa EC.113.11.12 HORVUPH16005920 Linolate 135-lipoxygenase 6 LOX6 O. sativa EC.113.11.12 HORVUPH16005920 Linolate 135-lipoxygenase 6 LOX6 O. sativa EC.42.1.92 HORVUPH16005920 Allene oxide synthase AOS1 O. sativa EC.42.1.92 HORVUPH16008100 Allene oxide synthase AOS2 O. sativa EC.53.39.6 HORVUPH16008100 Genes involved in translaton EC.13.3.6 HORVUPH16008100 HORVUPH16008100 305 ribosomal protein S1, chloroplastic RR17 O. sativa EC.13.3.6 HORVUPH16008430 505 ribosomal protein L11, dhoroplastic RR10 A. thaliana HORVUPH16008430 S55 ribosomal protein L12, chloroplastic RR12 O. sativa HORVUPH16008430 505 ribosomal protein L12, chloroplastic RR12 O. sativa HORVUH16008400 HORVUH16008400 505 ribosomal protein L12, chloroplastic RR12 A. thaliana HORVUH16008400 S56 ribos	Hormones biogenesis				
Linoleate 15:Jipoxygenase 4 LOX4 O. sativa EC.11.31.11.2 HORVUHr16005920 Linoleate 13:Jipoxygenase 6 LOX8 O. sativa EC.11.31.11.2 HORVUJHr16005920 Allene oxide synthase AOS1 O. sativa EC.42.1.92 HORVUJHr16005060 Allene oxide synthase AOS2 O. sativa EC.42.1.92 HORVUJHr16005200 Allene oxide cycles AOC O. sativa EC.53.97.6 HORVUJHr16002110 Acyl-CoA oxidase ACCX3 A. thaliana EC.13.3.6 HORVUJHr16022110 Sof chosomal protein 517, chloroplastic RB5 A. thaliana HORVUJHr160281400 Sof chosomal protein 112, chloroplastic RK11 A. thaliana HORVUJHr16028505 Sof chosomal protein 112, chloroplastic RK12 O. sativa HORVUJHr16028505 Sof chosomal protein 122, chloroplastic RK12 A. thaliana HORVUJHr16028505 Sof chosomal protein 123, chloroplastic RK27 O. sativa HORVUJHr16020505 Sof chosomal protein 124, chloroplastic RK13 A. thaliana HORVUJHr16020505 Sof chosomal protein 124, chloroplas	12-oxophytodienoic acid reductase	OPR7	O. sativa	EC:1.3.1.42	HORVU7Hr1G095960
Linekate 135-lipoxygenase 6 LOX6 O. sativa EC1.13.11.12 HORVUPH160305680 Allene oxide synthase AOS1 O. sativa EC.4.2.1.92 HORVUPH160305680 Allene oxide synthase AOS2 O. sativa EC.4.2.1.92 HORVUPH160305680 Allene oxide synthase AOS2 O. sativa EC.4.2.1.92 HORVUPH1603050680 Allene oxide synthase AOS2 A. staliane EC.1.3.3.6 HORVUPH160381200 Agl-CoA oxidase ACOX2 A. thaliane EC.1.3.3.6 HORVUPH16038270 Genes involved in translaton EC.1.3.3.6 HORVUPH16038270 EC.3.3.9.6 HORVUPH16038270 305 ribosomal protein L12, chloroplastic RK10 A. thaliana HORVUPH16038430 EC.3.3.6 HORVUPH16038430 505 ribosomal protein L12, chloroplastic RK12 O. sativa HORVUPH160364630 EC.3.3.6 HORVUPH160364630 505 ribosomal protein L2, chloroplastic RK12 O. sativa HORVUPH16036780 EC.3.3.6 HORVUPH16036780 505 ribosomal protein L2, chloroplastic RK27 O. sativa HORVUPH1603530 EC.3.3.6	Linoleate 9S-lipoxygenase 4	LOX4	O. sativa	EC:1.13.11.12	HORVU4Hr1G005920
Lindexter 135-lipoxygenase B LOXB O. sativa EC:11.11.12 HORVUTH1 GOSDB00 Allene oxide synthase AOS1 O. sativa EC:42.1.92 HORVUTH1 GOSDB00 Allene oxide cyclase AOS2 O. sativa EC:42.1.92 HORVUTH1 GOSDB00 Acyl-CoA oxidase AOC O. sativa EC:3.3.9.6 HORVUTH1 GOSDB00 Acyl-CoA oxidase ACOX2 A. thaliana EC:1.3.3.6 HORVUTH1 GOSDB00 Genes involved in translation Softhosomal protein 55, chloroplastic RR1 O. sativa EC:1.3.3.6 HORVUTH1 GOSDB00 Soft hosomal protein 112, chloroplastic RK1 A. thaliana HORVUTH1 GOSDB00 Softhosomal protein 112, chloroplastic RK11 A. thaliana HORVUTH1 GOSDB00 Soft hosomal protein 112, chloroplastic RK13 A. thaliana HORVUTH1 GOSD00 Soft hosomal protein 112, chloroplastic RK27 O. sativa HORVUTH1 GOSD00 Soft hosomal protein 124, chloroplastic RK27 O. sativa HORVUTH1 GOSD00 HORVUTH1 GOSD00 Soft hosomal protein 124, chloroplastic RK27 O. sativa HORVUTH1 GOSD00 HORVUTH1 GOSD00 <td>Linoleate 13S-lipoxygenase 6</td> <td>LOX6</td> <td>O. sativa</td> <td>EC:1.13.11.12</td> <td>HORVU4Hr1G076570</td>	Linoleate 13S-lipoxygenase 6	LOX6	O. sativa	EC:1.13.11.12	HORVU4Hr1G076570
Allene oxide synthase AOS1 O. sativa EC:42.1:92 HORVUSHI G098070 Allene oxide synthase AOS2 O. sativa EC:3.2:92 HORVUSHI G084270 Allene oxide synthase AOC2 O. sativa EC:3.3:6 HORVUSHI G081000 Acyl-CoA oxidase ACOX2 A. thaliana EC:1:3:3.6 HORVUTHI G081470 Genes involved in translation Soft chosomal protein 55, choroplastic RR17 O. sativa HORVUTHI G038470 S05 rhosomal protein 110, chloroplastic RK10 A. thaliana HORVUTHI G057450 S05 rhosomal protein 112, chloroplastic RK12 O. sativa HORVU3HI G057810 S05 rhosomal protein 112, chloroplastic RK13 A. thaliana HORVU3HI G057810 S05 rhosomal protein 112, chloroplastic RK12 O. sativa HORVU3HI G057810 S05 rhosomal protein 112, chloroplastic RK13 A. thaliana HORVU3HI G057810 S05 rhosomal protein 112, chloroplastic RK27 O. sativa HORVU3HI G057810 S05 rhosomal protein 112, chloroplastic RK3A A. thaliana HORVU3HI G060840 S05 rhososomal protein 112	Linoleate 13S-lipoxygenase 8	LOX8	O. sativa	EC:1.13.11.12	HORVU7Hr1G050680
Allene oxide synthase AOS2 O. sativa EC:42.192 HORVUHH (068/100) Allene oxide cyclase AOC O. sativa EC:53.39.6 HORVU/HH (029110) Acyl-CA oxidase ACOX2 A. thaliana EC:13.3.6 HORVU/HH (029110) Genes involved in translation EC:13.3.6 HORVU/HH (011504) EC:13.3.6 HORVU/HH (011504) 305 ribosomal protein 11, chloroplastic RR1 O. sativa HORVU/HH (011504) EC:13.3.6 HORVU/HH (0157450) 505 ribosomal protein 11, chloroplastic RK11 A. thaliana HORVU/HH (0298130) EC:15.3.97.6 EC:13.3.6 HORVU/HH (0291150) EC:15.3.97.6 E	Allene oxide synthase	AOS1	O. sativa	EC:4.2.1.92	HORVU5Hr1G098090
Allene oxide cyclase AOC O. sativa ECS.3.79.b HORVUHI G081000 Acyl-CAA xiddase ACOX3 A. thaliana EC:1.3.3.6 HORVU/HI G028190 Genes involved in translation EC:1.3.3.6 HORVU/HI G028190 BC 305 ribosomal protein 57, chloroplastic RR17 O. sativa HORVU/HI G115040 305 ribosomal protein 110, chloroplastic RK10 A. thaliana HORVU/HI G038570 505 ribosomal protein 112, chloroplastic RK11 A. thaliana HORVU/HI G058480 505 ribosomal protein 112, chloroplastic RK12 O. sativa HORVU/HI G062840 505 ribosomal protein 112, chloroplastic RK12 O. sativa HORVU/HI G062840 505 ribosomal protein 12, chloroplastic RK27 O. sativa HORVU/HI G062840 505 ribosomal protein 12, chloroplastic RK27 O. sativa HORVU/HI G062840 505 ribosomal protein 12, chloroplastic RK6 A. thaliana HORVU/HI G062840 505 ribosomal protein 12, chloroplastic RK6 A. thaliana HORVU/HI G035130 Sof ribosomal protein 12, chloroplastic RK6 A. thaliana	Allene oxide synthase	AOS2	O. sativa	EC:4.2.1.92	HORVU4Hr1G066270
Acyl-CoA CACX A thaliana EC1.3.3.6 HORVU7H1G029110 Acyl-CoA Modidase ACCX3 A thaliana EC1.3.3.6 HORVU7H1G029110 Genes involved in translation C Si ribosomal protein S5, chloroplastic RR5 A. thaliana HORVU7H11G028370 SOS ribosomal protein I.1, chloroplastic RK10 A. thaliana HORVU7H11G028370 SOS ribosomal protein I.1, chloroplastic RK11 A. thaliana HORVU3H11G0283830 SOS ribosomal protein I.1, chloroplastic RK12 O. sativa HORVU3H11G028340 SOS ribosomal protein I.1, chloroplastic RK192 A. thaliana HORVU3H11G0282040 SOS ribosomal protein I.2, chloroplastic RK28 A. thaliana HORVU3H11G028040 SOS ribosomal protein I.2, chloroplastic RK31 A. thaliana HORVU3H11G028303 SOS ribosomal protein I.3, chloroplastic RK31 A. thaliana HORVU3H11G058303 SOS ribosomal protein I.4, chloroplastic RK4 A. thaliana HORVU3H11G0583130 SOS ribosomal protein I.2, chloroplastic RK4 A. thaliana HORVU3H11G0393030 Nu	Allene oxide cyclase	AOC	O. sativa	EC:5.3.99.6	HORVU6Hr1G081000
AcyL-GA oxidase Act balana EC:1.3.3.6 HORVU/HrIG038470 Genes involved in translation 305 ribosomal protein 517, chloroplastic RR17 O. sativa HORVU/HrIG1315040 305 ribosomal protein 51, chloroplastic RK10 A. thaliana HORVU/HrIG03870 505 ribosomal protein 11, chloroplastic RK11 A. thaliana HORVU/HrIG0589710 505 ribosomal protein 112, chloroplastic RK12 O. sativa HORVU/HrIG0589710 505 ribosomal protein 112, chloroplastic RK12 O. sativa HORVU/HrIG058970 505 ribosomal protein 112, chloroplastic RK27 O. sativa HORVU/HrIG059330 505 ribosomal protein 124, chloroplastic RK28 A. thaliana HORVU/HrIG058300 505 ribosomal protein 124, chloroplastic RK34 A. thaliana HORVU/HrIG058303 505 ribosomal protein 134, chloroplastic RK31 A. thaliana HORVU/HrIG058303 505 ribosomal protein 134, chloroplastic RK9 A. thaliana HORVU/HrIG053303 505 ribosomal protein 142, chloroplastic RK9 A. thaliana HORVU/HrIG053303 505 ribosomal protein 142, chloroplastic RK9<	Acyl-CoA oxidase	ACOX2	A. thaliana	EC:1.3.3.6	HORVU/Hr1G029110
Genes involved in translation305 ribosomal protein 157, chloroplasticRR17O. sativaHORVU7H16115040305 ribosomal protein 110, chloroplasticRK10A. thalianaHORVU4H11G035570505 ribosomal protein 111, chloroplasticRK11A. thalianaHORVU4H11G054830505 ribosomal protein 112, chloroplasticRK12O. sativaHORVU3H11G07530505 ribosomal protein 112, chloroplasticRK12O. sativaHORVU3H11G07530505 ribosomal protein 122, chloroplasticRK28A. thalianaHORVU3H11G075330505 ribosomal protein 122, chloroplasticRK28A. thalianaHORVU3H11G075330505 ribosomal protein 124, chloroplasticRK31A. thalianaHORVU3H11G056800505 ribosomal protein 124, chloroplasticRK34A. thalianaHORVU3H11G056800505 ribosomal protein 124, chloroplasticRK6A. thalianaHORVU3H11G056800505 ribosomal protein 124, chloroplasticRK6A. thalianaHORVU3H11G0503300Nucleosome assembly factorH12AV2O. sativaHORVU3H11G0303030Hulcosome assembly factorsH12AQ. sativaHORVU3H11G0303120Histone H2AH2A5O. sativaHORVU3H11G0303120Histone H2AH2A5O. sativaHORVU3H11G030320Histone H2AH2A5O. sativaHORVU3H11G030320Histone H2AH2A5O. sativaHORVU3H11G030320Histone H2AH2A5O. sativaHORVU3H11G030320Histone H2AH2A5O. sativaHORVU3H11G037320 <td>Acyl-CoA oxidase</td> <td>ACOX3</td> <td>A. thaliana</td> <td>EC:1.3.3.6</td> <td>HORVU/Hr1G083490</td>	Acyl-CoA oxidase	ACOX3	A. thaliana	EC:1.3.3.6	HORVU/Hr1G083490
JDS incosomal protein S1/, chioroplastic RR1/ O. sativa HORVUHr1(S11948) S0S ribosomal protein L10, chioroplastic RK10 A. thaliana HORVUHr1(S05745) S0S ribosomal protein L11, chioroplastic RK11 A. thaliana HORVUHr1(S05745) S0S ribosomal protein L12, chioroplastic RK12 C. sativa HORVUBr1(S05745) S0S ribosomal protein L12, chioroplastic RK12 A. thaliana HORVUBr1(S05743) S0S ribosomal protein L27, chioroplastic RK27 O. sativa HORVUBr1(S05930) S0S ribosomal protein L3, chioroplastic RK28 A. thaliana HORVUBr1(S079330) S0S ribosomal protein L3, chioroplastic RK31 A. thaliana HORVUBr1(S01830) S0S ribosomal protein L4, chioroplastic RK9 A. thaliana HORVUBr1(S00930) Nudesome assembly factors HI2V2 O. sativa HORVUBr1(S011490) Nuscesome assembly factors HI2V2 O. sativa HORVUBr1(S0011490) Histone H2A H2A5 O. sativa HORVUBr1(S0011490) Histone H2A H2A5 O. sativa HORVUBr1(S002030) Histone H2A </td <td>Genes involved in translation</td> <td>5547</td> <td>0</td> <td></td> <td></td>	Genes involved in translation	5547	0		
JDS indesomal protein L0, Holoroplastic RKD A. thailana HORVUHH1G03287/450 SOS ribosomal protein L1, holoroplastic RK11 A. thailana HORVUHH1G037450 SOS ribosomal protein L12, holoroplastic RK12 O. sativa HORVUBH1G097530 SOS ribosomal protein L27, holoroplastic RK12 O. sativa HORVUBH1G070530 SOS ribosomal protein L27, holoroplastic RK27 O. sativa HORVUBH1G0070530 SOS ribosomal protein L27, holoroplastic RK27 O. sativa HORVUBH1G000400 SOS ribosomal protein L28, holoroplastic RK34 A. thailana HORVUBH1G000400 SOS ribosomal protein L31, holoroplastic RK34 A. thailana HORVUBH1G005830 SOS ribosomal protein L4, holoroplastic RK9 A. thailana HORVUBH1G005830 Nucleosome assembly factors H2AV O. sativa HORVUBH1G005330 Nucleosome assembly factors H2AV O. sativa HORVUBH1G003130 Histone H2A H2AS O. sativa HORVUBH1G003020 Histone H2A H2AS O. sativa HORVUBH1G003020 Histone H2A H2	305 ribosomal protein S17, chloroplastic	RR17	O. sativa		HORVU/Hr1G115040
Jobs Indesomal protein L10, chiloroplastic RK10 A. thaliana HORVUHH1G08/430 JOS ribosomal protein L12, chiloroplastic RK11 A. thaliana HORVU3H1G059810 JOS ribosomal protein L12, chiloroplastic RK13 A. thaliana HORVU3H1G059810 JOS ribosomal protein L27, chiloroplastic RK12 A. thaliana HORVU3H1G062300 JOS ribosomal protein L3, chiloroplastic RK28 A. thaliana HORVU3H1G062303 JOS ribosomal protein L3, chiloroplastic RK31 A. thaliana HORVU3H1G062303 JOS ribosomal protein L3, chiloroplastic RK31 A. thaliana HORVU3H1G062580 JOS ribosomal protein L4, chiloroplastic RK4 A. thaliana HORVU3H1G04093030 Nucleosome assembly factors HIZAV2 O. sativa HORVU3H1G04093030 Nucleosome assembly factors HIZAV2 O. sativa HORVU3H1G04093030 Histone H2A H2AV2 O. sativa HORVU3H1G04093030 Histone H2A H2AV2 O. sativa HORVU3H1G043130 Histone H2A H2AV2 O. sativa HORVU3H1141001030 Histone H2A H2A	305 ribosomal protein 55, chloroplastic	KK5	A. thaliana		HORVU4Hr1G038570
305 thosomal protein L12, chloroplastic RK11 A. thailana HORVJAH1000463J 505 ribosomal protein L13, chloroplastic RK12 O. sativa HORVJ3H1007153J 505 ribosomal protein L27, chloroplastic RK12 O. sativa HORVJ3H1007153J 505 ribosomal protein L27, chloroplastic RK27 O. sativa HORVJ3H1000240J 505 ribosomal protein L31, chloroplastic RK28 A. thailana HORVJ3H100040J 505 ribosomal protein L31, chloroplastic RK3A A. thailana HORVJ3H100040J 505 ribosomal protein L31, chloroplastic RK6 A. thailana HORVJ3H1005583D 505 ribosomal protein L3, chloroplastic RK6 A. thailana HORVJ3H1005583D S05 ribosomal protein L9, chloroplastic RK6 A. thailana HORVJ3H1005558D S05 ribosomal protein L9, chloroplastic RK9 A. thailana HORVJ3H11000100 Histone H2A H2A2 O. sativa HORVJ3H11600100 Histone H2A H2A5 O. sativa HORVJ3H11600100 Histone H2A H2A5 O. sativa HORVJ3H116001000 Histone H2A H2A5 O. sativa HORVJ3H1160005870 Histone H2	505 ribosomal protein L10, chloroplastic		A. thaliana		HORVU4Hr1G057450
Jos Biosonia protein L12, Choroplastic RK12 O. Sativa HORVJ3H10059610 SOS ribosonal protein L13-2, chloroplastic RK12 A. thaliana HORVJ3H10059610 SOS ribosonal protein L24, chloroplastic RK27 O. sativa HORVJ3H10059610 SOS ribosonal protein L34, chloroplastic RK28 A. thaliana HORVJ3H10059610 SOS ribosonal protein L34, chloroplastic RK31 A. thaliana HORVJ3H10059610 SOS ribosonal protein L34, chloroplastic RK31 A. thaliana HORVJ3H10059610 SOS ribosonal protein L34, chloroplastic RK6 A. thaliana HORVJ3H1003030 Nuclesome assembly factors RK9 A. thaliana HORVJ3H10030310 Nuclesome assembly factors Histone H2A H2A4 O. sativa HORVJ3H10030120 Histone H2A H2A5 O. sativa HORVJ3H10030120 Histone H2A Histone H2A H2A5 O. sativa HORVJ3H10030120 Histone H2A H2A5 O. sativa HORVJ3H10030120 Histone H2A H2A5 O. sativa HORVJ3H10030120 Histone H2A H2A5	505 ribosomal protein L11, chioroplastic		A. thallana		
Jos incosofina protein 1-19, ChiooplasticRK13A thalianaHORVUSHITG07330SOS ribosomal protein 127, chioroplasticRK27O. sativaHORVUSHITG072330SOS ribosomal protein 128, chioroplasticRK28A thalianaHORVUSHITG0702330SOS ribosomal protein 131, chioroplasticRK3AA thalianaHORVUSHITG0708830SOS ribosomal protein 131, chioroplasticRK6A thalianaHORVUSHITG0708830SOS ribosomal protein 12, chioroplasticRK6A thalianaHORVUSHITG070870300Nucleosome assembly factorsKK6A thalianaHORVUSHITG070301Histone H2AH2AV2O. sativaHORVUSHITG070301Nucleosome assembly factorsH2A4O. sativaHORVUSHITG01100Histone H2AH2A5O. sativaHORVUSHITG01100Histone H2AH2A5O. sativaHORVUSHITG0120Histone H2AH2A5O. sativaHORVUSHITG005870Histone H2AH2A5O. sativaHORVUSHITG073130Histone H2AH2A5O. sativaHORVUSHITG073130Histone H2AH2A5O. sativaHORVUSHITG073130Histone H2AH2A5O. sativaHORVUSHITG073130Histone H2AH2B7O. sativaHORVUSHITG073130Histone H2BH2B7O. sativaHORVUSHITG073130Histone H2BH2B7O. sativaHORVUSHITG073130Histone H3H32A. thalianaHORVUSHITG07340Histone H3H32A. thalianaHORVUSHITG07340Histone H3H32A. th	505 ribosomal protein L12, chloroplastic		O. sativa		
Jos incosonia protein L27, chioroplasticNK12A thalianaHORVU3Hr1G05230SOS ribosomal protein 128, chioroplasticRK28A. thalianaHORVU3Hr1G055330SOS ribosomal protein 131, chioroplasticRK3AA. thalianaHORVU3Hr1G056580SOS ribosomal protein 131, chioroplasticRK3A. thalianaHORVU3Hr1G056580SOS ribosomal protein 131, chioroplasticRK6A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK6A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK6A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK9A. thalianaHORVU4Hr1G01400750SOS ribosomal protein 12, chioroplasticRK9A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK6A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK6A. thalianaHORVU4Hr1G040950SOS ribosomal protein 12, chioroplasticRK6A. thalianaHORVU4Hr1G040950Nistone H2AH2AO. sativaHORVU4Hr1G01100Histone H2AH2A5O. sativaHORVU1Hr1G035130Histone H2AH2A5O. sativaHORVU1Hr1G02820Histone H2AH2A5O. sativaHORVU1Hr1G028500Histone H2BH2B7O. sativaHORVU1Hr1G07350Histone H2BH2B7O. sativaHORVU1Hr1G07850Histone H2BH2B7O. sativaHORVU1Hr1G07850Histone H3H32A. thalianaHORVU1Hr1G0787	505 ribosomal protein L19.2, chloroplastic	RKIJ DK102	A. thaliana		
Jos incosofinal protein L2, chloroplasticRK2C. SativaHORVUH11G00040505 ribosomal protein 1,3-1, chloroplasticRK3AA. thalianaHORVUH11G00040505 ribosomal protein 1,3-1, chloroplasticRK31A. thalianaHORVUH11G00050505 ribosomal protein 1,4, chloroplasticRK6A. thalianaHORVUH11G000300Nucleosome assembly factorsNucleosome assembly factorsHZAV2O. sativaHORVUH11G0011490Histone HZAHZAV2O. sativaHORVUH11G0011490Histone HZAHZASO. sativaHORVUH11G0011490Histone HZAHZASO. sativaHORVUH11G003102Histone HZAHZASO. sativaHORVUH11G001120Histone HZAHZASO. sativaHORVUH11G003202Histone HZAHZASO. sativaHORVUH11G003202Histone HZAHZASO. sativaHORVUH11G003202Histone HZAHZASO. sativaHORVUH11G0037333Histone HZAHZASO. sativaHORVUH11G005830Histone HZAHZASO. sativaHORVUH11G073333Histone HZAHZASO. sativaHORVUH11G073330Histone HZAHZB7O. sativaHORVUH11G078530Histone HZBHZB7O. sativaHORVUH11G078530Histone HZBHZB7O. sativaHORVUH11G078530Histone HZBH32A. thalianaHORVUH11G074340Histone H3H32A. thalianaHORVUH11G074340Histone H3H32A. thalianaHORVUH11G074340H	505 ribosomal protein L17-2, chloroplastic	RK172 PK27	A. trialiana \bigcirc sativa		
Job Indoornal Protein 12-1, chloroplasticRK3AA. thalianaHORVU6Hr1G0003040SOS ribosomal protein L3-1, chloroplasticRK31A. thalianaHORVU6Hr1G01830SOS ribosomal protein L4, chloroplasticRK6A. thalianaHORVU6Hr1G01830SOS ribosomal protein L9, chloroplasticRK6A. thalianaHORVU6Hr1G018300Nucleosome assembly factorsHistone H2AH2AY2O. sativaHORVU6Hr1G013010Histone H2AH2AO. sativaHORVU6Hr1G011490Histone H2AH2ASO. sativaHORVU6Hr1G011490Histone H2AH2ASO. sativaHORVU6Hr1G011200120Histone H2AH2ASO. sativaHORVU6Hr1G012020Histone H2AH2ASO. sativaHORVU6Hr1G005020Histone H2AH2ASO. sativaHORVU6Hr1G009200Histone H2AH2ASO. sativaHORVU6Hr1G009200Histone H2AH2ASO. sativaHORVU6Hr1G009200Histone H2AH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H3H32A. thalianaHORVU1Hr1G078540Histone H3H32A. thalianaHORVU1Hr1G078540Histone H3H32A. thalianaHORVU1Hr1G078540Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU1Hr1G022400	505 ribosomal protein L27, chloroplastic	RK28	O. saliva A thaliana		
Dot incontrolHornA thillingHORVU3H1G056580DS ribosomal protein L5, chloroplasticRK6A thalianaHORVU3H1G056580SDS ribosomal protein L6, chloroplasticRK9A. thalianaHORVU4H1G093030Nucleosome assembly factorsH2AV2O. sativaHORVU4H1G012030Nucleosome assembly factorsH2AV2O. sativaHORVU4H1G012030Nucleosome assembly factorsH2AV2O. sativaHORVU4H1G011490Histone H2AH2A4O. sativaHORVU7H1G010200Histone H2AH2A5O. sativaHORVU7H1G001201Histone H2AH2A5O. sativaHORVU7H1G0030120Histone H2AH2A5O. sativaHORVU7H1G002020Histone H2AH2A5O. sativaHORVU7H1G002020Histone H2AH2A5O. sativaHORVU7H1G12470Histone H2AH2A5O. sativaHORVU7H1G12470Histone H2AH2A5O. sativaHORVU7H1G12470Histone H2AH2B7O. sativaHORVU7H1G1078530Histone H2BH2B7O. sativaHORVU1H1G078530Histone H2BH2B7O. sativaHORVU1H1G078540Histone H3H32A. thalianaHORVU1H1G062720Histone H3H32A. thalianaHORVU1H1G062700Histone H3H32A. thalianaHORVU1H1G062700Histone H3H32A. thalianaHORVU1H1G0622400Histone H3H32A. thalianaHORVU1H1G024900Histone H3H32A. thalianaHORVU1H1G024000<	505 ribosomal protein L2-0, chloroplastic	RK30	A. thaliana		HORV/16Hr1G018830
Sob Robothal protein L6, chloroplasticRK1A thalianaHORVUHI1G040950S05 ribosomal protein L9, chloroplasticRK9A. thalianaHORVUH11G040950S05 ribosomal protein L9, chloroplasticRK9A. thalianaHORVUH11G040950Nucleosome assembly factorsH2A4O. sativaHORVUH11G011490Histone H2AH2A4O. sativaHORVUH11G0110100Histone H2AH2A5O. sativaHORVUH11G010100Histone H2AH2A5O. sativaHORVUH11G002920Histone H2AH2A5O. sativaHORVUH11G029200Histone H2AH2A5O. sativaHORVUH11G029200Histone H2AH2A5O. sativaHORVUH11G029200Histone H2AH2A5O. sativaHORVUH11G029200Histone H2AH2A5O. sativaHORVUH11G07310Histone H2BH2B7O. sativaHORVUH11G058500Histone H2BH2B7O. sativaHORVUH11G05530Histone H2BH2B7O. sativaHORVUH11G054970Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G07430Histone H3H32A. thalianaHORVUH11G025160Histone H3H32A. thalianaHORVUH11G025160Hist	505 ribosomal protein L31, chloroplastic	RK31	Δ thaliana		HORVU3Hr1G056580
505 ribosomal protein L9, chloroplasticRK9A. thalianaHORVU6H1G093030Nuclessome assembly factorsHistone H2AH2AV2O. sativaHORVU6H1G035130Histone H2AH2A4O. sativaHORVU6H1G035130Histone H2AH2A4O. sativaHORVU7H1G030120Histone H2AH2A5O. sativaHORVU7H1G030120Histone H2AH2A5O. sativaHORVU7H1G0305070Histone H2AH2A5O. sativaHORVU7H1G0305070Histone H2AH2A5O. sativaHORVU7H1G005870Histone H2AH2A5O. sativaHORVU6H1G005870Histone H2AH2A5O. sativaHORVU6H1G005870Histone H2AH2A5O. sativaHORVU6H1G005870Histone H2AH2A5O. sativaHORVU4H1G078130Histone H2AH2A5O. sativaHORVU4H1G07830Histone H2BH2B7O. sativaHORVU1H1G058500Histone H2BH2B7O. sativaHORVU1H1G07830Histone H3H32A. thalianaHORVU1H1G074340Histone H3H32A. thalianaHORVU1H1G074340Histone H3H32A. thalianaHORVU1H1G074340Histone H3H32A. thalianaHORVU1H1G074370Histone H3H32A. thalianaHORVU1H1G074570Histone H3H32A. thalianaHORVU1H1G074870Histone H3H32A. thalianaHORVU1H1G074870Histone H3H32A. thalianaHORVU1H1G074870Histone H3H32A	50S ribosomal protein L6, chloroplastic	RK6	A thaliana		HORVI J4Hr1G040950
Nucleosome assembly factorsHistone H2AH2AVO. sativaHORVUH1G035130Histone H2AH2A4O. sativaHORVUH1G011490Histone H2AH2A5O. sativaHORVUTH1G0100Histone H2AH2A5O. sativaHORVUTH1G035130Histone H2AH2A5O. sativaHORVUTH1G03120Histone H2AH2A5O. sativaHORVUTH1G005870Histone H2AH2A5O. sativaHORVUH1G029220Histone H2AH2A5O. sativaHORVUH1G079202Histone H2AH2A5O. sativaHORVUH1G073130Histone H2BH2B7O. sativaHORVUH1G078300Histone H2BH2B7O. sativaHORVUH1G078300Histone H2BH2B7O. sativaHORVUH1H1G078500Histone H2BH2B7O. sativaHORVUH1H1G078500Histone H2BH2B7O. sativaHORVUH1H1G078500Histone H2BH2B7O. sativaHORVUH1H1G078300Histone H3H32A. thalianaHORVUH1H1G074340Histone H3H32A. thalianaHORVUH1H1G074340Histone H3H32A. thalianaHORVUH1H1G074340Histone H3H32A. thalianaHORVUH1H1G025160Histone H3H32A. thalianaHORVUTH1G025100Histone H3H32A. thalianaHORVUTH1G025100Histone H3H32A. thalianaHORVUTH1G025100Histone H3H32A. thalianaHORVUTH1G025100Histone H3H32A. thalianaHORV	50S ribosomal protein L9, chloroplastic	RK9	A thaliana		HORVU6Hr1G093030
Histone H2AH2AV2O. sativaHORVU1Hr1G035130Histone H2AH2A4O. sativaHORVU6Hr1G011490Histone H2AH2A5O. sativaHORVU7Hr1G100100Histone H2AH2A5O. sativaHORVU7Hr1G100100Histone H2AH2A5O. sativaHORVU7Hr1G000120Histone H2AH2A5O. sativaHORVU7Hr1G000870Histone H2AH2A5O. sativaHORVU6Hr1G029220Histone H2AH2A5O. sativaHORVU7Hr1G1112470Histone H2AH2A5O. sativaHORVU7Hr1G073130Histone H2AH2A7O. sativaHORVU7Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H3H32A. thalianaHORVU1Hr1G07470Histone H3H32A. thalianaHORVU1Hr1G07430Histone H3H32A. thalianaHORVU1Hr1G07430Histone H3H32A. thalianaHORVU7Hr1G02400Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G02530Histone H3H32A. thalianaHORVU7Hr1G02530 <t< td=""><td>Nucleosome assembly factors</td><td></td><td>, a chanana</td><td></td><td></td></t<>	Nucleosome assembly factors		, a chanana		
Histone H2AH2A4O. sativaHORVU6Hr1G011490Histone H2AH2A5O. sativaHORVU7Hr1G100100Histone H2AH2A5O. sativaHORVU7Hr1G00120Histone H2AH2A5O. sativaHORVU7Hr1G005870Histone H2AH2A5O. sativaHORVU6Hr1G002220Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2A5O. sativaHORVU7Hr1G102470Histone H2AH2A5O. sativaHORVU7Hr1G102470Histone H2AH2A7O. sativaHORVU7Hr1G102470Histone H2BH2B7O. sativaHORVU1Hr1G078300Histone H2BH2B7O. sativaHORVU1Hr1G078500Histone H2BH2B7O. sativaHORVU1Hr1G078500Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G02400Histone H3H32A. thalianaHORVU1Hr1G02400Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G03270Histone H3H32A. thalianaHORVU1Hr1G025100Histone H3H32A. thalianaHORVU1Hr1G05300Histone H3H32A. thalianaHORVU1Hr1G025300 <td< td=""><td>Histone H2A</td><td>H2AV2</td><td>O. sativa</td><td></td><td>HORVU1Hr1G035130</td></td<>	Histone H2A	H2AV2	O. sativa		HORVU1Hr1G035130
Histone H2AH2A5O. sativaHORVUTHr1G100100Histone H2AH2A5O. sativaHORVUTHr1G030120Histone H2AH2A5O. sativaHORVUTHr1G030120Histone H2AH2A5O. sativaHORVUGHr1G029220Histone H2AH2A5O. sativaHORVUGHr1G029220Histone H2AH2A5O. sativaHORVUGHr1G029220Histone H2AH2A5O. sativaHORVUGHr1G112470Histone H2BH2B7O. sativaHORVUHHr1G073130Histone H2BH2B7O. sativaHORVUHHr1G078530Histone H2BH2B7O. sativaHORVUHHr1G078530Histone H2BH2B7O. sativaHORVUHHr1G078540Histone H2BH2B7O. sativaHORVUHHr1G078400Histone H3H32A. thalianaHORVUHHr1G047970Histone H3H32A. thalianaHORVUHHr1G047400Histone H3H32A. thalianaHORVUHHr1G03490Histone H3H32A. thalianaHORVUTHr1G03490Histone H3H32A. thalianaHORVUTHr1G03470Histone H3H32A. thalianaHORVUTHr1G03470	Histone H2A	H2A4	O. sativa		HORVU6Hr1G011490
Histone H2AH2A5O. sativaHORVU7Hr1G030120Histone H2AH2A5O. sativaHORVU1Hr1G005870Histone H2AH2A5O. sativaHORVU6Hr1G029220Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2A5O. sativaHORVU7Hr1G112470Histone H2AH2A7O. sativaHORVU7Hr1G112470Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G072400Histone H3H32A. thalianaHORVU1Hr1G072400Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU7Hr1G0225106Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G025207Histone H3H32A. thalianaHORVU7Hr1G052507<	Histone H2A	H2A5	O. sativa		HORVU7Hr1G100100
Histone H2AH2A5O. sativaHORVU1Hr1G005870Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2AXBO. sativaHORVU7Hr1G112470Histone H2BH2B7O. sativaHORVU1Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H3H2B7O. sativaHORVU1Hr1G078530Histone H3H2B7O. sativaHORVU1Hr1G07470Histone H3H32A. thalianaHORVU1Hr1G074300Histone H3H32A. thalianaHORVU1Hr1G074300Histone H3H32A. thalianaHORVU1Hr1G072400Histone H3H32A. thalianaHORVU7Hr1G022400Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G073670Histone H3H32A. thalianaHORVU7Hr1G073670Histone H3H32A. thalianaHORVU7Hr1G023207Histone H3H32A. thalianaHORVU7Hr1G032500Histone H3H32A. thalianaHORVU7Hr1G032200Histone H3H32A. thalianaHORVU7Hr1G032200	Histone H2A	H2A5	O. sativa		HORVU7Hr1G030120
Histone H2AH2A5O. sativaHORVU6Hr1G029220Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2AXBO. sativaHORVU7Hr1G112470Histone H2BH2B7O. sativaHORVU1Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G073130Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G024900Histone H3H32A. thalianaHORVU1Hr1G072160Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G02307Histone H3H32A. thalianaHORVU1Hr1G02307Histone H3H32A. thalianaHORVU1Hr1G02490Histone H3H32A. thalianaHORVU1Hr1G02500 <t< td=""><td>Histone H2A</td><td>H2A5</td><td>O. sativa</td><td></td><td>HORVU1Hr1G005870</td></t<>	Histone H2A	H2A5	O. sativa		HORVU1Hr1G005870
Histone H2AH2A5O. sativaHORVU6Hr1G009020Histone H2AH2AXBO. sativaHORVU7Hr1G112470Histone H2BH2B7O. sativaHORVU4Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G08500Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G079530Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G07770Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU1Hr1G031580Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G05270Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU7Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G027090Histone H3H32A. thalianaHORVU1Hr1G022700<	Histone H2A	H2A5	O. sativa		HORVU6Hr1G029220
Histone H2AH2AXBO. sativaHORVU7Hr1G112470Histone H2BH2B7O. sativaHORVU1Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B7O. sativaHORVU1Hr1G079700Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G024920Histone H3H32A. thalianaHORVU1Hr1G024920Histone H3H32A. thalianaHORVU1Hr1G024920Histone H3H32A. thalianaHORVU1Hr1G024920Histone H3H32A. thalianaHORVU1Hr1G024900Histone H3H32A. thalianaHORVU1Hr1G024900Histone H3H32A. thalianaHORVU7Hr1G024900Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G025200Histone H3H32A. thalianaHORVU1Hr1G025230Histone H3H32A. thalianaHORVU1Hr1G025230Histone H3H32A. thalianaHORVU1Hr1G025230Histone H3H32A. thalianaHORVU1Hr1G025230Histone H3H32A. thalianaHORVU1Hr1G025230 </td <td>Histone H2A</td> <td>H2A5</td> <td>O. sativa</td> <td></td> <td>HORVU6Hr1G009020</td>	Histone H2A	H2A5	O. sativa		HORVU6Hr1G009020
Histone H2BH2B7O. sativaHORVU4Hr1G073130Histone H2BH2B7O. sativaHORVU1Hr1G058500Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B9O. sativaHORVU1Hr1G078540Histone H2BH2B7O. sativaHORVU1Hr1G07970Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G024000Histone H3H32A. thalianaHORVU1Hr1G024000Histone H3H32A. thalianaHORVU1Hr1G024000Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G07870Histone H3H32A. thalianaHORVU1Hr1G07870Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G025170Histone H3H32A. thalianaHORVU1Hr1G025470Histone H3H32A. thalianaHORVU1Hr1G025470Histone H3H32A. thalianaHORVU1Hr1G025170Histone H3H32A. thalianaHORVU1Hr1G025470Histone H3H32A. thalianaHORVU1Hr1G025470Histone H3H32A. thalianaHORVU1Hr1G025030<	Histone H2A	H2AXB	O. sativa		HORVU7Hr1G112470
Histone H2BH2B7O. sativaHORVU1Hr1G058500Histone H2BH2B7O. sativaHORVU1Hr1G07830Histone H2BH2B9O. sativaHORVU1Hr1G078540Histone H2BH2B7O. sativaHORVU1Hr1G049920Histone H3H32A. thalianaHORVU1Hr1G049700Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G049200Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU3Hr1G0499205Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G078670Histone H3H32A. thalianaHORVU7Hr1G025106Histone H3H32A. thalianaHORVU7Hr1G032270Histone H3H32A. thalianaHORVU7Hr1G032270Histone H3H32A. thalianaHORVU7Hr1G025330Histone H3H32A. thalianaHORVU7Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G020400 <td>Histone H2B</td> <td>H2B7</td> <td>O. sativa</td> <td></td> <td>HORVU4Hr1G073130</td>	Histone H2B	H2B7	O. sativa		HORVU4Hr1G073130
Histone H2BH2B7O. sativaHORVU1Hr1G078530Histone H2BH2B9O. sativaHORVU1Hr1G085540Histone H2BH2B7O. sativaHORVU1Hr1G049920Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU7Hr1G024990Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G032270Histone H3H32A. thalianaHORVU1Hr1G032270Histone H3H32A. thalianaHORVU1Hr1G032270Histone H3H32A. thalianaHORVU1Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H4H4A. thalianaHORVU1Hr1G020400 <td>Histone H2B</td> <td>H2B7</td> <td>O. sativa</td> <td></td> <td>HORVU1Hr1G058500</td>	Histone H2B	H2B7	O. sativa		HORVU1Hr1G058500
Histone H2BH2B9O. sativaHORVU1Hr1G085540Histone H2BH2B7O. sativaHORVU1Hr1G049920Histone H3H32A. thalianaHORVU1Hr1G0770Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G0224000Histone H3H32A. thalianaHORVU1Hr1G063270Histone H3H32A. thalianaHORVU4Hr1G031580Histone H3H32A. thalianaHORVU7Hr1G0224900Histone H3H32A. thalianaHORVU7Hr1G02370Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU7Hr1G025270Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H32A. thalianaHORVU1Hr1G020400Histone H4H4A. thalianaHORVU1Hr1G020400	Histone H2B	H2B7	O. sativa		HORVU1Hr1G078530
Histone H2BH2B7O. sativaHORVU1Hr1G049920Histone H3H32A. thalianaHORVU4Hr1G067970Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU7Hr1G024990Histone H3H32A. thalianaHORVU7Hr1G024990Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G03670Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G03670Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G025160Histone H3H32A. thalianaHORVU1Hr1G025170Histone H3H32A. thalianaHORVU1Hr1G02270Histone H3H32A. thalianaHORVU1Hr1G025300Histone H3H32A. thalianaHORVU1Hr1G020400Histone H3H4A. thalianaHORVU1Hr1G020900Histone H3H4A. thalianaHORVU1Hr1G029090Histone H3H4A. thalianaHORVU1Hr1G029090Histone H3H4A. thalianaHORVU1Hr1G029090 <td>Histone H2B</td> <td>H2B9</td> <td>O. sativa</td> <td></td> <td>HORVU1Hr1G085540</td>	Histone H2B	H2B9	O. sativa		HORVU1Hr1G085540
Histone H3H32A. thalianaHORVU4Hr1G067970Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU3Hr1G05270Histone H3H32A. thalianaHORVU7Hr1G021490Histone H3H32A. thalianaHORVU7Hr1G021490Histone H3H32A. thalianaHORVU7Hr1G024910Histone H3H32A. thalianaHORVU7Hr1G024910Histone H3H32A. thalianaHORVU7Hr1G024910Histone H3H32A. thalianaHORVU7Hr1G024910Histone H3H32A. thalianaHORVU7Hr1G024910Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G022470Histone H3H32A. thalianaHORVU1Hr1G022270Histone H3H32A. thalianaHORVU1Hr1G022330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G022030Histone H4H4A. thalianaHORVU1Hr1G022030	Histone H2B	H2B7	O. sativa		HORVU1Hr1G049920
Histone H3H32A. thalianaHORVU1Hr1G074340Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU6Hr1G031580Histone H3H32A. thalianaHORVU7Hr1G024990Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G075070Histone H3H32A. thalianaHORVU7Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G07367070Histone H3H32A. thalianaHORVU7Hr1G0251300Histone H3H32A. thalianaHORVU7Hr1G022490Histone H3H32A. thalianaHORVU7Hr1G025330Histone H3H32A. thalianaHORVU7Hr1G022270Histone H3H32A. thalianaHORVU7Hr1G022330Histone H3H32A. thalianaHORVU7Hr1G022330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H4H4A. thalianaHORVU1Hr1G020900Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G052030Histone H4H4A. thalianaHORVU1Hr1G052030	Histone H3	H32	A. thaliana		HORVU4Hr1G067970
Histone H3H32A. thalianaHORVU1Hr1G022400Histone H3H32A. thalianaHORVU3Hr1G063270Histone H3H32A. thalianaHORVU6Hr1G031580Histone H3H32A. thalianaHORVU7Hr1G024990Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G025160Histone H3H32A. thalianaHORVU7Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G058490Histone H3H32A. thalianaHORVU7Hr1G02270Histone H3H32A. thalianaHORVU7Hr1G022330Histone H3H32A. thalianaHORVU7Hr1G022330Histone H3H32A. thalianaHORVU1Hr1G020400Histone H4H4A. thalianaHORVU1Hr1G020900Histone H4H4A. thalianaHORVU1Hr1G020040Histone H4H4A. thalianaHORVU1Hr1G020040	Histone H3	H32	A. thaliana		HORVU1Hr1G074340
Histone H3H32A. thalianaHORVU3H11G063270Histone H3H32A. thalianaHORVU6H11G031580Histone H3H32A. thalianaHORVU7H11G024990Histone H3H32A. thalianaHORVU7H11G025160Histone H3H32A. thalianaHORVU7H11G025160Histone H3H32A. thalianaHORVU7H11G073670Histone H3H32A. thalianaHORVU1H11G073670Histone H3H32A. thalianaHORVU1H11G058490Histone H3H32A. thalianaHORVU7H11G032270Histone H3H32A. thalianaHORVU7H11G025330Histone H3H32A. thalianaHORVU7H11G025330Histone H3H32A. thalianaHORVU1H11G020400Histone H4H4A. thalianaHORVU1H11G020900Histone H4H4A. thalianaHORVU1H11G020040Histone H4H4A. thalianaHORVU1H11G020040Histone H4H4A. thalianaHORVU1H11G020040	Histone H3	H32	A. thaliana		HORVU1Hr1G022400
Histone H3H32A. thalianaHORV06HTIG031580Histone H3H32A. thalianaHORVU7HTIG024990Histone H3H32A. thalianaHORVU7HTIG025160Histone H3H32A. thalianaHORVU7HTIG02504Histone H3H32A. thalianaHORVU7HTIG025060Histone H3H32A. thalianaHORVU1HTIG073670Histone H3H32A. thalianaHORVU1HTIG058490Histone H3H32A. thalianaHORVU7HTIG032270Histone H3H32A. thalianaHORVU7HTIG032270Histone H3H32A. thalianaHORVU7HTIG025330Histone H4H4A. thalianaHORVU1HTIG020040Histone H4H4A. thalianaHORVU1HTIG029090Histone H4H4A. thalianaHORVU1HTIG022030	Histore H3	H32	A. thaliana		HORVU3Hr1G063270
Histone H3H32A. thalianaHORVU7H1G024990Histone H3H32A. thalianaHORVU7H1G025160Histone H3H32A. thalianaHORVU7H1G100450Histone H3H32A. thalianaHORVU1H1G073670Histone H3H32A. thalianaHORVU1H1G058490Histone H3H32A. thalianaHORVU7H1G032270Histone H3H32A. thalianaHORVU7H1G025330Histone H3H32A. thalianaHORVU7H1G025330Histone H3H32A. thalianaHORVU1H1G080190Histone H4H4A. thalianaHORVU1H1G02040Histone H4H4A. thalianaHORVU1H1G020900Histone H4H4A. thalianaHORVU1H1G052030	Historie H3	H32	A. thallana		HORVU6Hr1G031580
Histone H3H32A. thalianaHORVU7H1G022160Histone H3H32A. thalianaHORVU7H1G100450Histone H3H32A. thalianaHORVU1H1G073670Histone H3H32A. thalianaHORVU1H1G058490Histone H3H32A. thalianaHORVU7H1G032270Histone H3H32A. thalianaHORVU7H1G025330Histone H3H32A. thalianaHORVU7H1G025330Histone H3H32A. thalianaHORVU1H1G080190Histone H4H4A. thalianaHORVU1H1G020040Histone H4H4A. thalianaHORVU1H1G0209090Histone H4H4A. thalianaHORVU1H1G052030	Histone H3	H32	A. thallana		
Histone H3H32A. thalianaHORV07H1G100430Histone H3H32A. thalianaHORVU1Hr1G073670Histone H3H32A. thalianaHORVU1Hr1G058490Histone H3H32A. thalianaHORVU7Hr1G032270Histone H3H32A. thalianaHORVU7Hr1G025330Histone H3H32A. thalianaHORVU1Hr1G080190Histone H4H4A. thalianaHORVU1Hr1G020040Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G029090	Histone H2	⊓3Z ⊔22	A. thaliana		
Historie H3H32A. thalianaHORVUTH1G073070Histore H3H32A. thalianaHORVU1Hr1G058490Histore H3H32A. thalianaHORVU7Hr1G032270Histore H3H32A. thalianaHORVU7Hr1G025330Histore H4H4A. thalianaHORVU1Hr1G020040Histore H4H4A. thalianaHORVU1Hr1G020900Histore H4H4A. thalianaHORVU1Hr1G029090Histore H4H4A. thalianaHORVU1Hr1G029090	Histone H3	H32	A. thaliana		HORVU11Hr1G073670
Histone H3H32A. thalianaHORVUTHTIG032470Histone H3H32A. thalianaHORVUTHTIG032270Histone H3H32A. thalianaHORVUTHTIG025330Histone H4H4A. thalianaHORVU1HTIG020040Histone H4H4A. thalianaHORVU1HTIG020900Histone H4H4A. thalianaHORVU1HTIG020900Histone H4H4A. thalianaHORVU1HTIG020900Histone H4H4A. thalianaHORVU1HTIG020040	Histone H3	H32	A thaliana		$H \cap \mathbb{R} \setminus [1] H_r 1 \cap \mathbb{R} \setminus [0]$
Histore H3H32A. thalianaHORVU7H1G025230Histore H3H32A. thalianaHORVU1Hr1G020330Histore H4H4A. thalianaHORVU1Hr1G020040Histore H4H4A. thalianaHORVU1Hr1G020900Histore H4H4A. thalianaHORVU1Hr1G020900Histore H4H4A. thalianaHORVU1Hr1G020900	Histone H3	H32	Δ thatiana		$HORV[17H_r1G030470]$
Histone H3H32A. thalianaHORVU1Hr1G082536Histone H4H4A. thalianaHORVU1Hr1G020040Histone H4H4A. thalianaHORVU1Hr1G02090Histone H4H4A. thalianaHORVU1Hr1G02090Histone H4H4A. thalianaHORVU1Hr1G052030	Histone H3	H32	A thaliana		HORVU7Hr1G025330
Histone H4H4A. thalianaHORVU1Hr1G020040Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G052030	Histone H3	H32	A thaliana		HORVU1Hr1G080190
Histone H4H4A. thalianaHORVU1Hr1G029090Histone H4H4A. thalianaHORVU1Hr1G052030	Histone H4	H4	A, thaliana		HORVU1Hr1G020040
Histone H4 A. thaliana HORVU1Hr1G052030	Histone H4	H4	A. thaliana		HORVU1Hr1G029090
	Histone H4	H4	A. thaliana		HORVU1Hr1G052030

(continued)

Table 4, continued

	Reference gene	Reference specie	KEGG reference	Barley gene name
Histone H4	H4	A. thaliana		HORVU2Hr1G097990
Histone H4	H4	A. thaliana		HORVU3Hr1G023460
Histone H4	H4	A. thaliana		HORVU6Hr1G011020
Histone H4	H4	A. thaliana		HORVU6Hr1G011710
Histone H4	H4	A. thaliana		HORVU6Hr1G029210
Histone H4	H4	A. thaliana		HORVU3Hr1G087170
Histone H4	H4	A. thaliana		HORVU1Hr1G080200
Histone H4	H4	A. thaliana		HORVU6Hr1G013530
Histone H4	H4	A. thaliana		HORVU5Hr1G087830
DNA replication and repair				
minichromosome maintenance protein	MCM2	O. sativa	EC:3.6.4.12	HORVU1Hr1G063700
minichromosome maintenance protein	MCM3	O. sativa	EC:3.6.4.12	HORVU1Hr1G070110
minichromosome maintenance protein	MCM6	O. sativa	EC:3.6.4.12	HORVU1Hr1G029770
minichromosome maintenance protein	MCM7	O. sativa	EC:3.6.4.12	HORVU5Hr1G028260

HORVU5Hr1G098090 and *AOS2*; HORVU4Hr1G066270), *allene oxide cyclase* (*AOC*; HORVU6Hr1G081000), acyl-CoA oxidase (*ACOX2*; HORVU7Hr1G029110 and *ACOX3*; HORVU7Hr1G083490) and 12-oxophytodienoic acid reductase (*OPR7*; HORVU7Hr1G095960) genes, all involved in jasmonic acid synthesis. Jacquard *et al.* (2009) similarly reported an up-regulation of genes encoding enzymes involved in the synthesis of jasmonic acid and in the phenylpropanoid pathway in barley anther culture. In contrast, in wheat, Seifert *et al.* (2016) did not report the activation of such enzymes and metabolisms. It remains too early to establish direct roles for such genes and pathways as functional analyses would need to be conducted to validate their function in microspore embryogenesis.

Previously, we reported a reduction in the expression of genes encoding both ribosomal protein subunits and nucleosome assembly components during the transition from day 0 to 2. It is interesting to observe a massive increase in the expression of genes encoding these proteins as the microspore transitions from day 2 to day 5. Indeed, we observed a total of 13 genes contributing to the synthesis of the small and large ribosomal subunits with, respectively, 2 and 11 genes (Table 4). However, these ribosomal genes encode the 30S and 50S subunits that make up the 80S ribosome found in organelles such as the chloroplast and mitochondria. In addition, we detected a total of 38 genes (Table 4) encoding all core histone components of the nucleosome: histones H2A (8 genes), H2B (5 genes), H3 (13 genes) and H4 (12 genes). Since we observe that a majority of microspores have initiated a nuclear division by day 5, an increase in the expression of genes encoding these proteins may reflect that the microspore is preparing for a first cell division as a first step in the embryogenic pathway.

Some genes exhibiting the expression profile corresponding to cluster 8, successively down- and up-regulated from day 0 to day 2 and from day 2 to day 5 (Figure 3), were homologous to the rice minichromosome maintenance proteins *MCM2* (HORVU1Hr1G063700), *MCM3* (HORVU1Hr1G070110), *MCM6* (HORVU1Hr1G029770) and *MCM7* (HORVU5Hr1G028260). These are known components of a DNA helicase involved in DNA replication and cell cycle (Table 4). To date, minichromosome maintenance protein genes have not been reported in the microspore embryogenesis system. Nonetheless, evidence has been found that the *MCM2* (Ni *et al.* 2009) and *MCM7* (Springer *et al.* 2000; Holding and Springer 2002) genes were essential during the early stages of zygotic embryogenesis in *A. thaliana.* Interestingly, Ni *et al.* (2009) showed that a disruption of MCM2 gene is lethal early during embryogenesis and, by contrast, its over-expression results in an

inhibition of endoreduplication. The expression profile of these genes in our system (down- then up-regulated) and the phenotype observed in our cells at day 5 (endoreduplicated cells) lead us to think that these genes might be a major regulators contributing to the induction of microspore embryogenesis.

Concluding remarks

In barley, doubled haploid technology is widely used to develop new cultivars. Despite the wide use and economic impact of this technology, little is known about the metabolisms and pathways involved. The work presented here provides a descriptive and comprehensive overview of gene expression changes in the early stages of IMC in barley. While microspores were highly distinct phenotypically, we observed that among a gene set of $\sim \! 14k$ genes expressed across all three stages, a small set of \sim 500 genes were uniquely expressed at a single stage. These included transcription factors associated with early embryogenesis as well as genes involved in the synthesis and response to growth regulators. Among differentially expressed genes, we saw signs of cellular responses to stress (decrease in translation, increase in GSTs, HSPs, secondary metabolism and hormone biogenesis and signal transduction). Thanks to the depth of this transcriptomic analysis, we are confident in stating that this is the most extensive characterization of the barley microspore transcriptome in IMC and provides candidate biomarkers for embryogenesis in barley.

ACKNOWLEDGMENTS

S. Bélanger gratefully acknowledges graduate studentships from the National Sciences and Engineering Research Council of Canada. This work was also supported by a research grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to F. Belzile.

LITERATURE CITED

- Ahmadi, B., M. E. Shariatpanahi, and J. A. Teixeira da Silva, 2014 Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in *Brassica napus* L. Plant Cell Tissue Organ Cult. 116(3): 343–351. https://doi.org/10.1007/s11240-013-0408-x
- Anders, S., T. P. Pyl, and W. Huber, 2014 HTSeq A Python framework to work with high-throughput sequencing data. bioRxiv. https://doi.org/ 10.1101/002824
- Bárány, I., P. S. Testillano, J. Mitykó, and M. C. Risueno, 2001 The switch of the microspore program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int. J. Dev. Biol. 45: 39–40.

Bolger, A. M., M. Lohse, and B. Usadel, 2014 Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15): 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Boutilier, K., R. Offringa, V. K. Sharma, H. Kieft, T. Ouellet *et al.*, 2002 Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryogenic growth. Plant Cell 14(8): 1737–1749. https:// doi.org/10.1105/tpc.001941

Chen, W. Q., and K. B. Singh, 1999 The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 19(6): 667–677. https://doi.org/10.1046/j.1365-313x.1999.00560.x

Cordewener, J. H. G., G. Hause, E. Görgen, R. Busink, B. Hause *et al.*, 1997 Changes in synthesis and localization of members of the 70-kDa class of heat-shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta 196: 747–755.

Custers, J. B. M., 2003 Microspore culture in rapeseed (Brassica napus L.), pp. 185–193 in Doubled haploid production in crop plants—a manual, edited by Maluszynski, M., K. J. Kasha, B. P. Forster, and I. Szarejko. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-017-1293-4_29

Dunwell, J. M., 2010 Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 8(4): 377–424. https://doi.org/10.1111/j.1467-7652.2009.00498.x

Elhiti, M., C. Stasolla, and A. Wang, 2013 Molecular regulation of plant somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant 49(6): 631–642. https://doi.org/10.1007/s11627-013-9547-3

Esteves, P., I. Clermont, S. Marchand, and F. Belzile, 2014 Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep. https://doi.org/10.1007/s00299-014-1563-1

Esteves, P., and F. Belzile, 2014 Improving the efficiency of isolated microspore culture in six-row spring barley: I-optimization of key physical factors. Plant Cell Rep. https://doi.org/10.1007/s00299-014-1583-x

Forster, B. P., E. Herberle-Bors, K. J. Kasha, and A. Touraev, 2007 The resurgence of haploids in higher plants. Trends Plant Sci. 12(8): 368–375. https://doi.org/10.1016/j.tplants.2007.06.007

 Gallois, J. L., C. Woodward, G. V. Reddy, and R. Sablowski,
 2002 Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129: 3207–3217.

Garretón, V., J. Carpinelli, X. Jordana, and L. Holuigue, 2002 The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130(3): 1516–1526. https://doi.org/10.1104/pp.009886

Germanà, M. A., 2011a Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 30(5): 839–857. https://doi.org/10.1007/s00299-011-1061-7

Germanà, M. A., 2011b Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult. 104(3): 283–300 (PCTOC). https://doi.org/10.1007/s11240-010-9852-z

González-Melendi, P., C. Ramírez, P. S. Testillano, J. Kumlehn, and M. C. Risuenõ, 2005 Three dimensional confocal and electron microscopy imaging define the dynamics and mechanisms of diploidisation at early stages of barley microspore-derived embryogenesis. Planta 222(1): 47–57. https://doi.org/10.1007/s00425-005-1515-7

Hoekstra, S., M. H. van Zijderveld, J. D. Louwerse, F. Heidekamp, and F. van der Mark, 1992 Anther and Microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci. 86(1): 89–96. https://doi.org/10.1016/0168-9452(92)90182-L

Holding, D. R., and P. S. Springer, 2002 The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214(3): 373–382. https://doi.org/10.1007/s00425-001-0686-0

Hosp, J., S. F. de Maraschin, A. Touraev, and K. Boutilier, 2007 Functional genomics of microspore embryogenesis. Euphytica 158(3): 275–285. https://doi.org/10.1007/s10681-006-9238-9

Hu, Y., F. Bao, and J. Li, 2000 Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J. 24(5): 693–701. https://doi.org/10.1046/j.1365-313x.2000.00915.x Jacquard, C., G. Wojnarowiez, and C. Clément, 2003 Anther culture in barley, pp. 21–27 in FAO-IAEA. Doubled haploid production in crop plants. A manual, edited by Maluszynsky, M., K. J. Kasha, B. P. Forster, and I. Szaejko. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-017-1293-4_4

Jacquard, C., F. Mazeyrat-Gourbeyre, P. Devaux, K. Boutilier, F. Baillieul et al., 2009 Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229(2): 393–402. https:// doi.org/10.1007/s00425-008-0838-6

Joosen, R., J. Cordewener, E. D. J. Supena, O. Vorst, M. Lammers et al., 2007 Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol. 144(1): 155–172. https://doi.org/10.1104/pp.107.098723

Kasha, K. J., E. Simion, R. Oro, Q. A. Yao, T. C. Hu *et al.*, 2001 An improved in vitro technique for isolated microspore culture of barley. Euphytica 120(3): 379–385. https://doi.org/10.1023/A:1017564100823

Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., 2013 TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4): R36. https://doi.org/ 10.1186/gb-2013-14-4-r36

 Li, H., and P. Devaux, 2003 High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci. 164(3): 379– 386. https://doi.org/10.1016/S0168-9452(02)00424-7

Malik, M. R., F. Wang, J. M. Dirpaul, N. Zhou, P. L. Polowick *et al.*, 2007 Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol. 144(1): 134–154. https://doi.org/10.1104/pp.106.092932

Maraschin, S. F., 2005 Androgenic switch in barley microspores, Leiden University, Faculty of Mathematics & Natural Sciences, Institute of Biology. https://openaccess.leidenuniv.nl/handle/1887/606

Maraschin, S. F., W. de Priester, H. P. Spaink, and M. Wang, 2005 Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J. Exp. Bot. 56(417): 1711–1726. https:// doi.org/10.1093/jxb/eri190

Maraschin, S. F., M. Caspers, E. Potokina, F. Wülfert, A. Graner *et al.*, 2006 DNA array analysis of stress-induced gene expression in barley androgenesis. Physiol. Plant. 127(4): 535–550. https://doi.org/10.1111/ j.1399-3054.2006.00673.x

Marchand, S., G. Fonquerne, I. Clermont, L. Laroche, T. T. Huynh et al., 2008 Androgenic response of barley accessions and F1s with Fusarium head blight resistance. Plant Cell Rep. 27(3): 443–451. https://doi.org/ 10.1007/s00299-007-0477-6

Mayer, K. J. X., H. Schoof, A. Haecker, J. Lenhard, G. Jürgens et al., 1998 Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6): 805–815. https://doi.org/10.1016/S0092-8674(00)81703-1

Muñoz-Amatriaín, M., J. T. Svensson, A. M. Castillo, L. Cistué, T. J. Close et al., 2006 Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiol. Plant. 127(4): 551–560. https://doi.org/10.1111/j.1399-3054.2006.00729.x

Ni, D. A., R. Sozzani, S. Blanchet, S. Domenichini, C. Reuzeau *et al.*,
2009 The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol. 184(2): 311–322. https://doi.org/10.1111/j.1469-8137.2009.02961.x

Park, C. J., and Y. S. Seo, 2015 Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol. J. 31(4): 323–333. https://doi.org/10.5423/PPJ.RW.08.2015.0150

Rashid, A., A. W. Siddiqui, and J. Reinert, 1982 Subcellular aspects of origin and structure of pollen embryos of Nicotiana. Protoplasma 113(3): 202– 208. https://doi.org/10.1007/BF01280908

Robinson, M. D., D. J. McCarthy, and G. K. Smyth, 2010 edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1): 139–140. https://doi.org/10.1093/ bioinformatics/btp616

Robinson, M. D., and A. Oshlack, 2010 A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11(3): R25. https://doi.org/10.1186/gb-2010-11-3-r25

- Sánchez-Díaz, R. A., A. M. Castillo, and M. P. Vallés, 2013 Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. Plant Reprod. 26(3): 287–296. https://doi. org/10.1007/s00497-013-0225-8
- Seguí-Simarro, J. M., P. S. Testillano, and M. C. Risueno, 2003 Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J. Struct. Biol. 142(3): 379–391. https://doi.org/10.1016/S1047-8477(03)00067-4
- Seifert, F., S. Bössow, J. Kumlehn, H. Gnad, and S. Scholten, 2016 Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena". BMC Plant Biol. 16(1): 97. https://doi.org/10.1186/s12870-016-0782-8
- Smertenko, A., and P. Bozhkov, 2014 The life and death signalling underlying cell fate determination during somatic embryogenesis, pp. 131–178 in Applied plant cell biology, edited by Nick, P., and Z. Opatrny. Springer, Berlin. https://doi.org/10.1007/978-3-642-41787-0_5
- Soriano, M., H. Li, and K. Boutilier, 2013 Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod. 26(3): 181–196. https://doi.org/10.1007/s00497-013-0226-7
- Springer, P. S., D. R. Holding, A. Groover, C. Yordan, and R. A. Martienssen, 2000 The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development 127: 1815–1822.
- Telmer, C. A., W. Newcomb, and D. H. Simmonds, 1995 Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma 185(1-2): 106–112. https://doi.org/10.1007/BF01272758
- Thomas, W. T. B., B. P. Forster, and B. Gertsson, 2003 Doubled haploids in plant breeding, pp. 337–349 in Haploid production in crop plants: a manual, edited by Maluszynski, M., and I. Szarejko. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-017-1293-4_47
- Tsuwamoto, R., S. Yokoi, and Y. Takahata, 2010 Arabidopsis Embryomaker encoding an AP2 domain transcription factor plays a key role in devel-

opmental change from vegetative to embryonic phase. Plant Mol. Biol. 73(4-5): 481-492. https://doi.org/10.1007/s11103-010-9634-3

- Tuvesson, S., C. Dayteg, P. Hagberg, O. Manninen, P. Tanhuanpaa et al., 2007 Molecular markers and doubled haploids in European plant breeding. Euphytica 158(3): 305–312. https://doi.org/10.1007/s10681-006-9239-8
- Vrinten, P. L., T. Nakamura, and K. J. Kasha, 1999 Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol. Biol. 41(4): 455–463. https://doi. org/10.1023/A:1006383724443
- Wasternack, C., 2007 Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. Ann. Bot. (Lond.) 100(4): 681–697. https://doi.org/10.1093/aob/ mcm079
- Zarsky, V., D. Garrido, N. Eller, J. Tupy, O. Vicente *et al.*, 1995 The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ. 18(2): 139–147. https://doi.org/10.1111/j.1365-3040.1995. tb00347.x
- Zuo, J., Q. W. Niu, G. Frugis, and N. H. Chua, 2002 The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J.

30(3): 349–359. https://doi.org/10.1046/j.1365-313X.2002.01289.x

- Żur, I., E. Dubas, M. Krzewska, P. Waligórski, M. Dziurka et al.,
 2015a Hormonal requirements for effective induction of microspore embryogenesis in triticale (×*Triticosecale* Wittm.) anther cultures.
 Plant Cell Rep. 34(1): 47-62. https://doi.org/10.1007/s00299-014-1686-4
- Żur, I., E. Dubas, M. Krzewska, and J. Janowiak, 2015b Current insights into hormonal regulation of microspore embryogenesis. Front. Plant Sci. 6: 424. https://doi.org/10.3389/fpls.2015.00424

Communicating editor: M. Axtell