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Using attendance data from the 2020 National Football League (NFL) regular season
and local COVID-19 case counts, we estimate the public health impact of opening
NFL stadiums to fans during the COVID-19 pandemic. Data are analyzed using
robust synthetic control, a statistical method that is employed to obtain counterfactual
estimates from observational data. Unlike previous studies [J. Kurland et al., SSRN,
2021], which do not consider confounding factors such as evolving policy landscapes
in different states, the synthetic control methodology allows us to account for effects
that are county specific and may be changing over time. We find it is likely that opening
stadiums had no impact on local COVID-19 case counts; this suggests that, for the
2020 NFL season, the benefits of providing a tightly controlled outdoor spectating
environment—including masking and distancing requirements—counterbalanced the
risks associated with opening. These results are specific to the 2020 NFL season, and
care should be taken in generalizing our conclusions. In particular, 1) these data reflect a
period during which earlier strains of COVID-19 were dominant prior to the emergence
of more-transmissive strains such as the Delta and Omicron variants, and 2) the data are
restricted to outdoor environments; hence our results cannot be applied to small indoor
spaces where transmission-restricting controls are essential.
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A year and a half into the global COVID-19 pandemic, we have an opportunity to
analyze and reflect upon the policies and decisions enacted over the past 18 mo. Given
the distributed nature of policy decisions in the United States, we find ourselves in a
unique position in which states and municipalities have explored different strategies to
combat the virus, and the efficacy of those policies has been imprinted in the local case
counts, hospitalizations, and death records. In particular, these data contain a wealth of
information about which policies have proven to be effective in preserving the health and
safety of our communities.

One activity that one may wish to consider is the opening of outdoor sporting events to
spectators. This question has recently generated quite a bit of interest as ballparks across
the nation open for summer and events such as the 2021 Summer Olympics in Japan
take place.* On the one hand, governing bodies are naturally wary of opening stadiums
given the well-documented importance of avoiding large gatherings. On the other hand,
sporting events are often held outdoors, where airflow is largely unobstructed (1), and in
venues where crowd density can be carefully controlled if the event is properly managed.
In the absence of a detailed analysis, it is not immediately obvious which of these effects
dominates.

Data from the National Football League (NFL) may provide an answer to this question.
During the 2020 regular season, teams in the NFL collaborated with local communities
to determine whether or not to allow fans in the stadiums during the pandemic. In
general, stadiums that opened their doors to fans adopted pandemic requirements for all
in attendance (1), which typically include some combination of staggered entry, required
masking, health questionnaires, temperature checks for staff, deployment of compliance
officers, modified concessions, social distancing in seating and lines, mobile ticketing,
enhanced cleaning protocols, amplified health and safety communications, and capacity
limitations. The highest capacity that any NFL stadium allowed during the 2020 regular
season was 30% (Dallas), with most other stadiums considerably below that limit (2).
These policy decisions were made based on local guidelines, local prevalence, community
risk tolerance, and other localized considerations; some stadiums ultimately decided to
allow fans at the games, while others remained closed, providing perhaps the first set of
natural experiments that can be analyzed to investigate the impact of opening stadiums

*Note that these comments reflect the spring 2021 timing of the writing of this manuscript.
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on COVID-19 case rates. In the words of Kurland et al. (3), who
recently provided a first look at this data, “Scant evidence has been
gathered in the extant literature on the impact of sport venues
on local public health, influenza-related mortality rates, or disease
contagion more generally. There is a complete absence of any
evidence related to the impact of fans gathering at sporting events,
or mass gatherings more generally, on incidence of COVID-19
at the local-level.” The natural experiments from the 2020 NFL
season and other sports leagues present a golden opportunity
to address these questions in the context of the original 2020
COVID-19 strain (4, 5).

In the Kurland et al. (3) study, the authors compared COVID-
19 case data from NFL stadium counties that allowed fans in the
stadium to counties that did not allow fans, and looked for spikes
in the data in the weeks following a game; the authors concluded,
from this analysis, that the presence of large numbers of fans at
NFL games led to “tangible increases” in the local incidence of
COVID-19 cases. However, this type of analysis may be problem-
atic: In this context, the control stadiums (i.e., those without fans)
tend to be embedded in states with stricter COVID-19 policies—
rather than a random control—so the sample of control counties is
strongly biased. New York and Dallas, for example, are immersed
in very different environments with different pandemic policies,
and it is not at all obvious that one can attribute the differences
in case spikes to the stadiums, given the enormous number of
confounding factors.

Fortunately, there exists a rich literature of techniques—
longitudinal methods, hierarchical methods, factor model
methods, synthetic control, etc.—that we can draw upon to
account for these confounding factors. In this particular analysis,
we turn to synthetic control (6–9), which has been applied in a
diversity of fields—criminology (10), healthcare (11), sports (12),
and political science and policy evaluation (13–15), to name a
few. At its heart, synthetic control is a method for estimating a
counterfactual in the absence of an intervention, in this case, what
would have happened if stadiums had not opened. The method
provides a systematic way to choose relevant comparison units
when randomized controls are not available.

To illustrate the power of synthetic control, imagine the ideal
experiment one would like to run in order to quantify the impact
of opening the Dallas stadium to fans. In principle, we would like
to have COVID-19 case counts from Dallas County throughout
the season with the stadium open to fans and case counts from
a Dallas twin—with identical people and policies to the first
Dallas—in which the stadium did not open for comparison. The
first set of data (Dallas open to fans) is readily available. The
second set of data can be constructed from information from
other counties in Texas—hereafter referred to as donor counties—
which have policies and characteristics similar to Dallas. Synthetic
control provides a methodology to build a weighted combina-
tion of these Dallas-like counties, which can then be used as a
control group, that is, a “synthetic” Dallas twin. In particular,
we seek the linear combination of case counts from other Texas
counties that most closely mirrors the Dallas case counts prior
to the stadium opening. Given that none of these non-Dallas
counties have a stadium, this linear combination can be extended
postintervention (i.e., after opening the stadium) to estimate what
would have happened in the synthetic Dallas in which no stadium
opened. Once it has been established that the stadium county
and the synthetically generated county have similar behavior over
extended periods of time prior to the intervention, a discrepancy
in the number of COVID-19 cases following the intervention may
be interpreted as a result of allowing fans in the stadium. One
of the advantages of this method is that it can account for the

effects of confounding factors that are county specific and may be
changing over time, which is crucial in the ever-evolving policy
landscape of a pandemic (16). In particular, our methodology al-
lows for correlation between the decision to open the stadium and
characteristics that define the county (cultural or political leaning,
population density, demographics, etc.), but cannot account for
correlations between the decision and exogenous noise.

At this point, it is reasonable to speculate whether one should
expect linear combinations of donor counties to accurately rep-
resent stadium counties (both observed and counterfactual). In
general, assuming linearity is appropriate provided there exists an
underlying low-dimensional structure to the case count data, that
is, if the matrix containing discretized time series of donor county
case counts is approximately low rank. Under a such a setting,
linearity between counties is an almost immediate consequence
(see Materials and Methods for details). This low-rank assumption
is common in the matrix completion literature; notably, low-
rank matrices have also been shown to naturally arise in modern
datasets and emerge from “well-behaved” generative models (e.g.,
Lipschitz functions) (17–20). This point will be revisited in Re-
sults, where we test for low rankedness empirically in the context
of our dataset.

Finally, the selection of donor units is a critical step in the
successful implementation of creating a synthetic control. In
particular, donor units (in our case, counties) should have the
following characteristics:

1) Counties affected by the intervention or by events of a similar
nature should be excluded from the donor pool.

2) Counties that may have suffered large “idiosyncratic shocks”
(7, 21) during the preintervention period should be excluded.

3) The donor pool should be restricted to counties with charac-
teristics similar to the stadium county; in this case, we restrict
our pool to counties from the same state to maintain some
consistency in COVID-19 policies.

4) Case counts that cover an extended period of time prior to the
intervention are required for both stadium counties and donor
counties.

In order to establish which counties satisfy these constraints,
the NFL provided us with aggregate attendance data indicating
the percentage of fans from each county in each state (2). In
general, 10% or more of the fans come from the county in which
the stadium is located. Hence, we designate counties that provided
more than 10% of the fan base as stadium counties. In addition,
there are a number of counties that are home to many fans but
not to the same extent as that of the stadium counties. Since
there is some ambiguity as to whether these counties should be
counted as stadium counties or donor counties, we designate
counties that supply between 1% and 10% of the fan base as buffer
counties and, in light of the first criterion above, do not include
them as either stadium or donor counties. Second, to address
criterion 3, we only include counties in the donor pool that come
from the same state as the stadium county. Although there is
variation at the county level, overarching COVID-19 guidance,
in general, comes from the states; hence, we assume that policies
are relatively consistent within states and allow that they may
vary dramatically from state to state. In addition, we only retain
counties in which at least 200 cases have been recorded, in order to
eliminate donor counties that are either markedly underreporting
or undertesting. Finally, we are fortunate that football season starts
in September, which allows us to address criterion 4; given that
relatively reliable COVID-19 case count data have been available
since approximately April 2020, we have 4 mo of training data
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Fig. 1. Comparison of the measured COVID-19 case counts from Hamilton
County, OH (red line), and COVID-19 case counts from the counterfactual
synthetic county (blue line). The vertical gray line indicates the date of the first
home game that allowed fans in the stadium. In this example, the stadium
county recorded fewer cases than the counterfactual after fans were allowed
in the stadium, suggesting that, for Hamilton County, the benefit of moving
fans into a controlled outdoor environment outweighed the potential harm
associated with large gatherings.

at our disposal to learn the weights for the synthetic counties.
Criterion 2 is trickier, given that we do not necessarily know, a
priori, all events that could cause a shock to the system; however,
a posteriori, we can investigate the outcomes and look for signs of
such a shock.†

Results

Using measured county-level COVID-19 case data (22), synthetic
counties were constructed for all NFL stadium counties except
for Maricopa County, home of the Arizona Cardinals. Unlike
the other stadiums, fan origin county data were not available
for Maricopa; hence the Cardinals were omitted from our study.
In all cases, rather than considering individual games, which
rapidly becomes murky given that the long-term impact of one
game may overlap with the next, we simply identify stadiums
as open or closed for the season starting with the first game in
which fans were allowed in the stadium. COVID-19 case counts
in the synthetically constructed counties were then generated
and compared to measured case counts. Precisely, we define the
difference between the synthetic county and the measured county
as

Δ(t) = c(t)− csynth(t), [1]

where c(t) is the cumulative number of reported COVID-19
cases in the stadium county, and csynth(t) represents the coun-
terfactual number of cases in the synthetic county, that is, the
number of cases one would expect if the stadium remained closed
(see Materials and Methods). Positive Δs indicate excess cases in
stadium counties; negative Δs indicate fewer than expected cases
in stadium counties relative to the counterfactual.

A sample county—Hamilton, OH, home of the Cincinnati
Bengals—is shown in Fig. 1. Prior to the intervention (i.e.,
opening the stadium), the measured COVID-19 case counts (red

†An example of such a shock that occurred in Green Bay is presented in Discussion.

line) and the case counts from the synthetic county (blue line)
are indistinguishable. Given the physiological characteristics of
the virus, we should not expect the impact of the intervention
to appear in the case count data until 1 wk to 2 wk after the
event. This is indeed the case for Hamilton County, where the
real data continue to closely track the measured date for ∼14 d.
Following this 14-d period, measured case counts begin to deviate
from the counterfactual; interestingly, the measured counts are
slightly lower than the projected counts, suggesting that, in this
particular county, opening the stadium may have modified fan
behavior in a way that was helpful to the community, and not
harmful.

Similar plots for all NFL stadium counties are shown in Fig. 2.
In addition to considering case counts in stadiums that opened to
fans, we also computed expected case counts in stadium counties
that did not open to fans. If the synthetic control approach is
performing properly, we should not see any difference between the
synthetic control counties and the measured data in the counties
where stadiums remained closed to fans. As expected, on average,
stadiums without fans show no significant difference from the
synthetic counties.

Discussion

Impact of Opening Stadiums to Fans. The most remarkable
feature of our results is how unremarkable they are. By and
large, the synthetic counties are well behaved (exceptions will
be discussed below), and the analysis shows no indication that
opening stadiums had any impact on community spread. In
contrast to the Kurland et al. (3) study, we find that counties
which allowed fans in the stadium show no statistically significant
difference from the synthetic counties; that is, there is no evidence
that the NFL’s controlled opening of stadiums to fans led to any
increase in COVID-19 cases. Fig. 3 shows the interquartile range
(IQR) difference between synthetic case counts and measured
case counts for stadiums that opened to fans (blue) and those
that did not (gray). Neither are statistically different from zero,
although data from stadiums with fans show a longer tail skewed
toward a negative Δ, hinting that providing controlled outdoor
environments for fans to assemble may have benefited some
counties.

Large versus Small Crowds. Given that most stadiums were
operating far under their capacity limits, one might argue that the
null result above is dominated by stadiums with small attendance
numbers, which may overshadow the signal from stadiums that
allowed more fans to attend games. In order to address this,
we investigated the impact of the number of fans in attendance
on community spread. Fig. 4 shows the difference between case
counts of the synthetic counties and measured case counts 14 d
after the stadium opened to fans, Δ(t = 14), as a function of
the number of fans in attendance. To determine whether there
is any correlation with attendance numbers, a linear regression
was performed for each day following the intervention in the
subsequent 3 wk. The measured slopes from these regressions are
also shown in Fig. 4. Again, contrary to Kurland et al. (3), our
analysis shows no correlation with attendance. Stadium counties
that allowed higher attendance show no increase in COVID-19
cases relative to their lower-attendance counterparts or to stadiums
that did not open to fans at all.

These two null results are perhaps unsurprising, as the relevant
comparison is not necessarily fans at stadiums versus fans isolated
at home. Rather, we need to consider what the fans would have
been doing (23) had they not been at the game. While these details
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Fig. 2. Comparison of measured case counts with synthetic county case counts for all NFL stadium counties except Maricopa County. The top 16 plots show
stadiums that allowed fans for some portion of the 2020 season; the bottom 13 plots show stadiums that remained closed. Red lines indicate measured data;
blue lines indicate synthetic data; light gray shaded regions indicate 99% prediction intervals; vertical gray line indicates the first day that the stadium was open
to fans (for open stadiums) or the date of the first home game (for closed stadiums).

are purely speculative—for example, fans may be home, or they
may be at a bar watching the game, or they may be watching
the game indoors with friends—synthetic control obviates the
need for speculation. In this case, the data suggest that having
fans outdoors at the stadium in a controlled environment—that

is, with face coverings, in family pods, socially distanced—is no
worse than what they would do otherwise. For the original strain
in the 2020 phase of the pandemic, it was well established that
interacting outdoors is better than indoors (24); hence, spreading
people out in a large outdoor stadium may be preferable to the

Fig. 3. (Top) Gray IQR box-and-whiskers plots showing the difference between measured case counts and synthetic case counts, Δ(t), up to 21 d after the first
home game for stadiums that did not open to fans. If the synthetic approach is working reliably, the gray box-and-whisker points should be indistinguishable
from zero, given that no fans were allowed in the stadium, and hence there was no intervention. (Bottom) Blue IQR box-and-whiskers plots showing the difference
between measured case counts and synthetic case counts, Δ(t), up to 21 d after the first game for counties with stadiums that opened during the pandemic.
Again, the points show no significant difference from zero, indicating that allowing fans in the stadium had no impact on the local prevalence of COVID-19. Note
that negative Δs signify fewer cases in stadium counties relative to the counterfactual.
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Fig. 4. (Top) Difference (by percentage) between stadium and synthetic
counties 14 d after the stadium first opened to fans versus average atten-
dance. Negative Δs indicate counties in which the measured case counts were
lower compared to the counterfactual. The blue line is a linear fit. (Bottom)
Slope of the linear regression versus number of days after game day. Data
indicate that there is no correlation between attendance and COVID-19 case
counts.

alternatives. Although we may not know precisely what these al-
ternatives are, synthetic control provides a mechanism to estimate
the impact of the most realistic alternatives based on measured
human behavior.

Validity of the Synthetic Control Approach. As is the case with
all statistical methods in generating counterfactuals, a considerable
amount of care must be exercised in applying the synthetic control
approach. In particular, there are a number of variants of the
originally proposed synthetic control estimator of refs. 6 and 7,
as well as robustness tests that can be applied to check the validity
of our synthetically constructed counties. In this work, we adopt
the estimator proposed in ref. 25 and follow the tests laid out
in refs. 16 and 21. First, given that we have an abundance of
donor counties, there is a danger of overfitting the preintervention
period. To guard against this, we apply a principal component
regression (PCR) analysis and project our donor counties onto a
low-dimensional subspace that has been constructed by retaining
only the largest singular values in our donor matrix (see Materials
and Methods). In the context of synthetic controls literature, this
variation of the original method is also called robust synthetic con-
trol. The number of singular values that are retained is determined
by the fit in the preintervention period; here we require that the
synthetic county case counts and the measured county case counts
differ by less than 1% in aggregate during the preintervention
period. If the synthetic case counts are well represented in our
low-dimensional space, we can have some confidence that they
are reflective of a real signal rather than overfitting noise; in most
counties, ∼10 or fewer singular values are sufficient to capture the
variance in the preintervention period which typically consists of a
few hundred data points, that is, one point per day in the months
prior to opening (Fig. 5, Bottom). Furthermore, if the R2 value in
the preintervention period is large (in our case R2 > 0.99 ), then
the target latent factor is likely well represented within the space
spanned by the donor units’ latent factors, suggesting that linear
combinations of the donors suffice to eliminate confounders. The

number of singular values that are retained in each stadium county
are shown in Fig. 5 ; with the exception of Green Bay, Dallas, and
Pittsburgh, we find that a low-dimensional (<20) representation
suffices to capture preintervention dynamics.

A second test for robustness of counterfactual estimates is to
vary the intervention date T0. If the synthetic construction is
robust, it should not depend sensitively on T0, provided that
the fitting period occurs prior to the intervention. To test this,
we compared our synthetic county case counts, which were com-
puted using the entirety of the preintervention period [0,T0],
with synthetic county case counts constructed using the interval
[0,T0 − τ ]. Results for τ = 1, 2, 3, 4, 5, and 6 wk are shown
in Fig. 5. Changing τ had little effect on most counties, with the
exception of (again) Green Bay, Jacksonville, and Seattle.

Third, given that we are reporting a null result, it behooves
us to investigate whether our synthetic control methodology has
sufficient sensitivity to capture an increase in COVID-19 cases
following a known spreading event. To test this, we considered
data from the Sturgis Motorcycle Rally which took place in mid-
August in 2020. The Sturgis Motorcycle Rally is widely believed
to have been a superspreading event, as revealed in a working
paper by Dave et al. (26) in which the authors used anonymized
cell phone data from SafeGraph, Inc. to identify origin counties
of rally goers. Using these data, we generated a synthetic Meade
County using counties with moderately low and low inflow
attendance (as defined in Dave et al.) as donor counties. Synthetic
case counts are compared to measured case counts in Fig. 6. The
synthetic control approach does indeed find a significant increase
in COVID-19 cases in Meade County following the rally and
suggests that Sturgis may be responsible for a 24%± 11% increase
in COVID-19 cases after 14 d and a 43%± 11% increase after
21 d.

Connection to Other Observed Variables. The fourth and final
consistency check we apply is to examine whether counties that
are “close” to one another in our low-dimensional representation
are also “close” with respect to relevant observed variables. For
example, given the high level of politicization around COVID-
19 policies (masking, distancing, etc.), one might expect counties
with similar COVID-19 profiles to also share similar political
views. To test this hypothesis, we compute the distance in our low-
dimensional subspace of each county, i, from the most Democratic
county, dD,i , and from the most Republican county, dR,i , in
the state (see Materials and Methods). Note that these are not
geographic distances; rather, they are distances defined in the
subspace constructed from COVID-19 case counts. Hence, two
counties are “close” if they share similar temporal COVID-19
case profiles. These two distances are then combined into a single
metric for the ith county,

Pi =
dR,i

dR,i + dD,i
. [2]

Thus, Pi ≈ 0 for counties with temporal profiles similar to the
most Republican county, and Pi ≈ 1 for counties similar to the
most Democratic county. A sample state (Ohio) in which counties
have been colored by Pi s is shown in Fig. 7, along with the
corresponding 2020 electoral map. Both maps have been scaled
such that the most Democratic county corresponds to one (blue)
and the most Republican county corresponds to zero (red).

Remarkably, distances in the COVID-19 generated subspace
do not simply follow geographic trends; rather, they highlight
Cuyahoga County (Cleveland), Hamilton County (Cincinnati),
Franklin County (Columbus), Lucas County (Toledo), and the
upper east side of the state as similar, mirroring the electoral map
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Fig. 5. (Top and Middle) Blue lines indicate synthetic case counts computed using the entirety of the preintervention period. Gray lines indicate synthetic case
counts computed using a subset of the preintervention data, that is, assuming the intervention happened 1 wk to 6 wk prior to game day. The majority of the
plots show little dependence on the intervention date suggesting that the synthetic counties in those cases are robust; others—for example, Green Bay, Seattle,
and Jacksonville—indicate that the synthetic counterfactual is not reliable for those counties. (Bottom) Number of singular values in the donor matrix that are
retained to construct each synthetic stadium county. By and large, a low-dimensional representation suffices (again, with a few notable exceptions such as
Green Bay).

of the state. To estimate the extent to which variance in voting
patterns is captured in the temporal COVID-19 signature, we
define a pertinent R-squared for the ith county,

R2
i = 1− εcovid,i

εrnd,i
, [3]

where the difference between the predicted and measured Pi ,
namely, εcovid,i ≡ |Pi − Pmeas,i |, has been normalized by the
difference one would expect from a randomly generated estimator
Prnd,i (see Materials and Methods for details). A histogram of R2

i s
for Ohio is shown in Fig. 7, which reveals a median R2 of 0.55.
Performing a similar exercise with population and geographic
distance from Cuyahoga and Mercer Counties—with geographic
distance defined analogously to the political distance Pi in Eq.
2—we find R2s of 0.36 and 0.29, respectively. Given that the
focus of this study is on the impact of opening stadiums, we will
refrain from digging more deeply into the implications of this
mapping exercise, and merely emphasize that our low-dimensional

COVID-19 subspace is indeed reflective of other pertinent ob-
served variables—geography, population, and political leaning—
as one might expect. It is intriguing to note that, in this particular
state, voting patterns show the strongest connection to COVID-
19 temporal signatures, suggesting a potentially promising avenue
for future study.

Finally, given the above relationship between temporal case
profiles and political leaning, and the fact that stadiums tend to
be located in urban centers, one could imagine that there may
be instances where a stadium county does not lie in the subspace
spanned by the donor counties (e.g., if Cuyahoga County is
politically blue and the rest of Ohio is red, we are left with the
potentially dubious task of reconstructing a blue county from a
linear combination of red ones). If this occurs, there is a danger
that the synthetic counties (which are evolving as red counties)
may become less reflective of their real counterparts (which are
evolving as blue counties) as the pandemic and concomitant
mitigation strategies evolve. In general, if the changes in mit-
igation measures are captured through latent confounders that
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Fig. 6. Comparison of measured COVID-19 case counts (red line) and COVID-
19 case counts from a counterfactual synthetic Meade County (blue line) for
the Sturgis Motorcycle Rally. The vertical gray line indicates the first day of the
rally.

factorize, then our method is robust against this scenario. To
determine whether this is indeed the case, we can check whether
the divergence between synthetic and real counties correlates with
the difference between the political leaning of the stadium county
and the political leaning of the state (i.e., the degree to which
the stadium county is an outlier). We find that the difference
in political leaning between the stadium county and the average
donor county is always positive, confirming that stadium counties
are bluer than donor counties, on average; however, we also find
that there is no correlation between Δ(t) and outlier status,
suggesting that the above-average “blueness” of stadium counties
does not bias the results and that there are a sufficient number
of stadium-like counties in the donor set to capture the impact
of evolving mitigation strategies (as one might expect if, e.g.,
the mitigation landscape is dominated by state-wide—rather than
local—policies).‡

The Trouble with Green Bay. At this point, it is evident that,
although most synthetic stadium counties pass the consistency
tests described above, there are a few that are problematic. In those
counties, the failure of the synthetic control approach suggests
that one of the four donor county criteria have been violated or
that there is a problem with the county data. To determine the
underlying cause of these failures, we take a brief deeper dive into
the most egregious example: the Green Bay Packers. Given that
the case counts are cumulative, there is clearly a problem with the
Green Bay synthetic county data, which do not increase mono-
tonically. In addition, Green Bay presents neither a satisfactory
low-dimensional representation (requiring 52 basis functions to
capture the preintervention period) nor a lack of sensitivity to the
boundaries of the preintervention interval. A visual inspection of
the donor county case counts reveals that an anomalous increase
in cases occurred in a large subset of counties approximately 2 wk
before the first NFL home game, and, upon further investigation,
we find that this anomaly was due to a reporting error at the
Wisconsin Department of Health Services (27). This error in
reporting violates the condition that donor counties should not
suffer a large idiosyncratic shock in the preintervention period

‡In addition, the synthetic counties accurately reflect the case counts in the months prior
to the intervention (R2 = 0.99 ) during which mitigation strategies were evolving.

and provides additional assurance that the method is capable of
flagging prominent issues in the case data.

Conclusions

In conclusion, we find no evidence that opening NFL stadiums
to fans during the 2020 regular season led to any uptick in the
number of COVID-19 cases in the stadium counties. Further-
more, our results highlight the fact that the policy environment
in which counties are embedded is nonnegligible; hence, cross-
state comparisons may be suspect if these environmental factors
are not taken into account (3). While this study indicates that the
measures taken by the NFL to open stadiums safely in 2020—
including required masking, social distancing, amplified health
and safety communications, and capacity limitations—were suc-
cessful, it is important to recognize that the 2020 season took
place before the B.1.1.7, Delta, and Omicron variants gained a
foothold in the United States. All three variants are known to be
significantly more transmissive than the original strain. As such, a
similar analysis following the 2021 baseball and American football
seasons and other global sports seasons are worth pursuing in order
to guide sound policy decisions.

Materials and Methods

Causal Framework. Here we utilize the causal framework of ref. 16. Specif-
ically, it follows from the Neyman–Rubin causal model (28, 29), where the
potential outcome for county i in period t is denoted by Y(d)

it , with d ∈ {0, 1}
corresponding to the exposure to a binary treatment of opening or closing a sta-
dium. Let d = 0 represent a closed stadium (i.e., control) and d = 1 represent
an opened stadium (i.e., treatment). We denote Di ∈ {0, 1} as the treatment
assignment for county i. In line with the standard assumptions in the causal
inference literature, we assume SUTVA (Stable Unit Treatment Value Assumption);
namely, that our outcomes satisfy ci(t) = Di · Y((1))

it + (1 − Di) · Y(0)
it . Be-

low, we highlight a few aspects of our causal framework to justify our algorithmic
approach in estimating Eq. 1, where ci,synth(t) denotes our estimate of Y(0)

it (in
expectation); namely, we discuss the types of confounding that are allowed, and
argue that a linear predictive model is appropriate for counterfactual estimation.

Key Assumptions. Our potential outcomes under control {Y(0)
it } are encoded

into a matrix Y (0) ∈ R
N×T , where N and T represent the total number of

counties and time periods of interest, respectively. Our aim is to recover {Y(0)
it :

∀i s.t. Di = 1}, which corresponds to the missing entries in Y (0). In order
to recover these missing values, we make the following assumptions. First, we
posit Y (0) =UV T + E , where U ∈ R

N×r and V ∈ R
T×r represent the

matrix of latent factors associated with the counties and time periods, respec-
tively, with r � min{N, T}, and E ∈ R

N×T represents zero-mean idiosyn-
cratic shocks. It follows thatE[Y (0)] =UV T ; we note that such a form always
exists, by the singular value decomposition (SVD). Thus, our key assumption is
that E[Y (0)] is a low-rank matrix, which is a standard assumption in the matrix
completion literature. Evidence of low rankness can also be verified empirically
(to an extent), and is shown in Figs. 5 and 8; Fig. 8 presents the magnitude of the
10 largest singular values for our data.

To characterize the types of confounding that are allowed, let D = {Di}
denote the set of treatment assignments across all N counties. We posit that
D⊥E |U ,V , as shown graphically in Fig. 8, Right; coupled with our structural
assumption, this implies that D⊥Y (0) | U ,V . In words, our assumption
allows for the decision to open a stadium to be influenced by (i.e., correlated
with) the characteristics that define the county (e.g., cultural or political leanings,
population density, and demographics) and time period; these characteristics can
also drive the underlying expected potential outcomes, as illustrated in Fig. 7.
However, the decision cannot be impacted by exogenous noise.§

§We note that such an assumption can be found in other works in the literature, including
refs. 16 and 30.
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Fig. 7. (Left) Map of Ohio colored by Pi , the relative distance defined in the subspace constructed from COVID-19 case counts, from the most Democratic
county in the state (Cuyahoga) and the most Republican county (Mercer). (Middle) The 2020 electoral map of Ohio. Colors have been scaled in both maps such
that Cuyahoga (blue) and Mercer (red) represent the extremes of the color scale. (Right) Histogram of counties depicting the predictive power of the COVID-19
subspace; 1 = perfect estimator; 0 = no better than random; median = 0.55.

Finally, we discuss the implications of these two assumptions along with
SUTVA. To begin, we note that, under a low-rank setting, linearity between
counties is an almost immediate consequence and holds with high probability
(w.h.p.). To see this, suppose our interest is in a treated county i (i.e.,
Di = 1). If span({u� : D� = 0}) = R

r , where u� denotes the �th row
of U corresponding to the latent factor of county �; then, it follows that
ui ∈ span({u� : D� = 0}), since ui ∈ R

r; that is, ui =
∑

�:D�=0 α�u� for
some vectorα. More generally, if the rows of U are randomly sampled Gaussian
vectors, then span({u� : � ∈ S}) = R

r for any set S holds w.h.p., provided
|S| ≥ r is chosen to be sufficiently large; see ref. 31 for details. This linearity
implication that follows from low rankness, along with our assumptions, leads to
the following identification result (17): conditioned on {D,U ,V },

E[Y(0)
it | ui, vt] =

∑
�:D�=0

α�E[Y
(0)
�t | D,U ,V ]

=
∑

�:D�=0

α�E[c�(t) | D,U ,V ], [4]

where the final equality uses SUTVA. Namely, Eq. 4 states that, for any time period
t, the expected potential outcome for county i, had it not opened its stadium,
can be expressed as a linear combination, defined by α, of expected observed
outcomes associated with those counties that did not open their stadiums. This
vindicates our algorithmic approach, that is, the estimator presented in ref.
25, which exploits the low-rank structure in our observations to learn a linear
predictive model.

Finally, we note an important aspect related to our implicit assumption of
SUTVA. More specifically, SUTVA implicitly assumes that there is no interference
between the different counties of interest. This is handled as described above via
a careful selection of donor counties in which we discard any counties in which

the data may be contaminated by a few fans who went to the games (as identified
in the NFL attendance data).

Methodology. As discussed above, we use the estimator of ref. 25 to produce
counterfactual estimates of what would have happened if the stadiums had
not opened; here, we work through the methodology in more detail. Let c(t)
represent the cumulative number of reported COVID-19 cases in the stadium
county on day t. To find the number of cumulative cases in the synthetic county,
we take a linear combination of case counts in the donor counties in the same
state, where the coefficients are chosen to minimize the difference between the
stadium county and its synthetic counterpart preintervention.

In using synthetic control with noisy data, it has been shown that robust results
may be achieved by using a low rank estimate of the donor county matrix (16, 32).
Namely, one can compute the SVD of Φ,

Φ=

⎡
⎢⎣
φ11 φ12 . . .

...
. . .

φT01 φT0N

⎤
⎥⎦= ÛŜV̂T , [5]

where column i represents the discretized time series of cumulative reported
cases in donor county i. To develop a low rank representation of Φ, we define
Ŝμ, which retains only the set of singular values above a threshold μ (with the
remainder set to zero). In all of the data shown herein, we select μ such that
the difference between synthetic and measured counties in the preintervention
period is <1.0%. Our donor matrix is then approximated as

E(Φ)≈ Φ̂= ÛŜμV̂T , [6]

whereΦ̂ is a rank r matrix whose columns represent the new set of basis functions
that we will use to construct the synthetic control.

Fig. 8. (Left) First 10 singular values of Φ; box and whiskers represent the range of values measured over all stadium states. Gray region indicates values that
are less than 1% of the first component; most component numbers above 6 fall in this gray region, suggesting that a low-rank assumption is reasonable. (Right)
Causal directed acyclic graph describing the type of confounding allowed in this work. Here, U , V are the latent factors that describe the characteristics of
counties and time periods, E are the idiosyncratic shocks, Y (0) are the potential outcomes under control, and D are the treatment assignments.
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Combining the above, we arrive at the expression for the synthetic county,

csynth(t) =
N∑

i=1

α̂iφ̂i(t), [7]

where the α̂is are selected by solving a least-squares problem that minimizes
the difference between the measured cumulative number of cases in the stadium
county and the synthetic county preintervention (we note that the spectral filter-
ing step, followed by linear regression, is known as PCR).

Finally, we equip our estimates of the mean counterfactual outcome in the
postintervention period with prediction intervals, as shown in the gray bands in
Fig. 2,

c(t) ∈ csynth(t)± ZCIσ̂

√
1 +

〈
Φ(t), V̂Ŝ−2

μ V̂TΦ(t)
〉

, [8]

where σ̂ is the SD of the difference between the stadium county and the synthetic
county preintervention, and ZCI is the Z interval that defines the CI range. This
suggests a test to determine whether or not estimates lie within the noise; that
is, if the synthetic estimates lie outside of these confidence bands, then it may be
the case that there is significant deviation due to the intervention.

Latent Variable Comparison Metrics. In order to compare relative distances
in our reduced dimension framework with distances in other latent variable
spaces, we first need to define an appropriate distance metric in our low-
dimensional COVID-19 subspace. Distances between counties in this subspace
can be represented by writing the measured case counts for each county as a
linear combination of the basis vectors that arise from the SVD described above;
if we retain r singular values, county i can be represented by a vector Ci =
(βi1, . . . βir) containing the coefficients βij associated with each basis function.
We then take the distance dij between counties i and j to be

dij =
∥∥∥Ĉi − Ĉj

∥∥∥ , [9]

where Ĉi is the unit vector aligned with the coefficient vector of the ith county Ci,
and ‖ · ‖ represents an appropriate norm (here, we use the standard L2 norm).

This normalized distance is then used to compute the estimator Pi in Eq. 2
and compared to relevant normalized metrics in other latent variable spaces.
For example, political leaning is measured as the fraction of the county that
voted Democratic normalized such that the “distance” between the most and least
Democratic counties is one.¶

Finally, as a reference scale, we compute the expected “error” for a random
estimator Prnd,i which draws uniformly at random from the interval [0, 1]. The
distance, on average, between the measured Pmeas,i and the random estimator
is then given by

εrnd,i ≡ E[|Pmeas,i − Prnd|] =
∫ 1

0
|Pmeas,i − Prnd|dPrnd, [10]

where E[·] represents the expected value. Computing the integral on the right-
hand side, we find our expression for εrnd,i,

εrnd,i = P2
meas,i − Pmeas,i +

1
2

, [11]

which is used in Eq. 3.

Data Availability. Previously published data were used for this work (19). All
other study data are included in the article.
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