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Abstract 

In-silico prediction of aqueous solubility plays an important role during the drug discovery and 
development processes. For many years, the limited performance of in-silico solubility models has been 
attributed to the lack of high-quality solubility data for pharmaceutical molecules. However, some studies 
suggest that the poor accuracy of solubility prediction is not related to the quality of the experimental data 
and that more precise methodologies (algorithms and/or set of descriptors) are required for predicting 
aqueous solubility for pharmaceutical molecules. In this study a large and diverse database was generated 
with aqueous solubility values collected from two public sources; two new recursive machine-learning 
approaches were developed for data cleaning and variable selection, and a consensus model based on 
regression and classification algorithms was created. The modeling protocol, which includes the curation 
of chemical and experimental data, was implemented in KNIME, with the aim of obtaining an automated 
workflow for the prediction of new databases. Finally, we compared several methods or models available 
in the literature with our consensus model, showing results comparable or even outperforming previous 
published models.  

©2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Aqueous solubility is one of the most important physicochemical properties determined during the drug 

discovery and development processes [1]. It is considered a relevant parameter during ADME (Absorption, 

Distribution, Metabolism and Excretion) studies [2], and it is a key factor that can affect oral absorption and 

bioavailability of drugs [3]. Considering that approximately 40 % of drugs on the market and about 75 % of 

compounds in development have a poor aqueous solubility, early identification of this property should 
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reduce failures in the pharmaceutical development process [4]. 

Several experimental strategies have been applied to determine the aqueous solubility of compounds, 

such as variations of the shake-flask method and, more recently, the CheqSol approach [5]. However, the 

determination of experimental solubility proves to be difficult, time-consuming and too expensive, or 

unrealistic to test thousands or millions of compounds used in high throughput screening (HTS) [6]. In this 

respect, the in-silico prediction of aqueous solubility by Quantitative Structure-Property Relationship 

(QSPR) has been widely used in the early stage of the drug discovery and development process [2]. Several 

QSPR models for predicting aqueous solubility have been developed in recent decades, but the 

performance of some of these models on various solubility datasets has demonstrated the poor reliability 

of the prediction methods [2,5,7,8]. One of the main reasons for these results is that published methods 

are derived from different data sources, for which the root-mean-square errors (RMSE) are around 0.6-0.7 

log S units [9]. However, some studies suggest that the poor accuracy of solubility prediction is not related 

to the quality of the experimental data and that more accurate methodologies (algorithms and/or set of 

descriptors) are required [9,10]. Recently, some machine learning (ML) algorithms such as random forests 

(RF), support vector machines (SVM), k-nearest neighbors (k-NN), and convolutional and recurrent 

networks have been applied for aqueous solubility prediction, and their performance matches or 

outperforms the previous results obtained [11–15]. 

The Konstanz Information Miner (KNIME) is a free and public software tool that has become one of the 

main analytical platforms for innovation, discovery of the hidden nature of data and prediction of new 

features [16]. KNIME, through the implementation of interconnected nodes, integrates several components 

of machine learning and data mining, which can be easily used in chemistry, biology, drug design and 

recently in the prediction of ADME properties [17,18]. The flexibility of workflows developed in KNIME to 

include different tools allows users to read, create, edit, train and test ML models, greatly facilitating the 

automation of predictions and application by any user.  

Taking into consideration the limited predictive performance of many of the published solubility models, 

the main goal of this study is twofold: the development of an innovative QSPR model using new recursive 

algorithms for data and variable selection in machine learning approaches, and the implementation of an 

automatic workflow for a better prediction of aqueous solubility during the early stages of drug discovery 

and development. 

In order to achieve the goal, a large database of aqueous solubility and a new recursive machine 

learning algorithm for data cleaning and variable selection were used. The application of a consensus 

regression model and a classification model, using a Random Forest approach, showed good predictive 

performance in comparison to different models published in the recent literature. Finally, a workflow was 

designed to automate the prediction of aqueous solubility of new databases, starting from chemical 

structure. 

Methods 

Computational tool 

The open source software KNIME version 4.0.2 [19], its free complementary extensions "KNIME Base 

Chemistry Types" and the "KNIME Chemistry Add-ons", were used in this study [20]. Several node 

extensions such as "RDKit KNIME Integration" and "Indigo KNIME Integration" were applied for the curation 

of the databases and the conversion of the chemical structures to different formats, respectively [21,22]. 

For the generation of molecular descriptors from structures, the “Descriptor” node from “alvaDesc” 

extension was employed [23]. AlvaDesc 1.0.16 is available with academic or commercial licenses, which can 
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be obtained by requesting a quote online (registration required) or by contacting them directly by email 

(chm@kode-solutions.net). 

Other nodes, belonging to KNIME "Analytics" and "Manipulation" extensions, were used opportunely for 

the transformation, processing and modeling of data, according to the requirements of the automated 

workflow. 

Database of aqueous solubility 

To develop in-silico solubility models, two large publicly accessible databases with experimental values 

of thermodynamic aqueous solubilities (log S, S in units of mol/L) were selected. The first database 

(AqSolDB) was generated by Sorkun et al. from nine publicly available datasets and included 9982 liquids 

and crystalline solid compounds, filtered by temperature for a range of 25 ± 5 °C [24]. The total solubility 

range of this database is more than eleven orders of magnitude (-9.7 to + 2.1). AqSolDB is openly accessible 

at the Harvard Dataverse Repository (https://doi.org/10.7910/DVN/OVHAW8). The second database was 

published by Cui et al. and consists of 9943 molecules with experimental solubility values measured at 

room temperature [12], and its solubility range was more than nineteen orders of magnitude (-18.2 to +1.7, 

log units). 

Data curation 

In order to create a single database containing only unique molecules matched to the most reliable 

aqueous solubility value, a general protocol for the curation of the database was developed. The curation 

protocol was divided into three parts: cleaning of chemical structures, standardization of the molecular 

representation and treatment of duplicates (see Figure 1).  

The cleaning of the molecular structures followed the procedure described by Fourches et al. [25]. To 

apply this approach, a sequence of nodes was created in KNIME. First, the valence of the atoms was 

checked to filter out structures with unusual values. Subsequently, different filters were applied to maintain 

organic molecules, keep molecules containing only the following elements (C, N, O, H, F, Cl, Br, I, P and S), 

remove salts and unconnected molecules and filter out molecules out of weight bounds (between 50 and 

1250 g/mol). Eventually the molecular representations were normalized and standardized.  

For the treatment of duplicate structures, the first step was the generation of their InChI (International 

Chemical Identifier) code [26]. The duplicated molecules in both databases were identified and solubility 

values were collected. The standard deviation values for the solubility measurements (STD) were calculated 

and compared with the previous STD values recorded in both databases. To consider the variability in 

solubility measurement, the final reported value was the highest STD. Finally, these structures were 

concatenated with the unique molecules from both databases and care was taken to exclude from this set 

of molecules those belonging to the external test sets.  

Descriptor calculation 

Molecular descriptors were calculated for all molecules using two KNIME extensions: the “Descriptor” 

node contained in the “alvaDesc” extension provided by Alvascience Srl. [23] and the “RDKit Descriptor 

Calculation” node contained in the RDKit extension [27]. In the first case, more than 1400 physicochemical 

descriptors (0D-2D) and molecular properties were calculated directly from molecular structure. The 

following families of descriptors were considered for modeling log S: constitutional indices, ring descriptors, 

topological indices, walk and path counts, connectivity indices, information indices, 2D matrix-based 

descriptors, 2D autocorrelations, Burden eigenvalues, P_VSA-like descriptors, ETA indices, functional group 

counts, charge descriptors and molecular properties. Another 45 molecular descriptors such as 
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physicochemical properties, MOE-type and kappa descriptors, etc. were determined with “RDKit Descriptor 

Calculation”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Protocol for data curation. 
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Variable and data selection 

Recursive variable selection 

To determine the most relevant variables (descriptors) for the prediction of aqueous solubility, we 

developed a selection of variables by permutation using the Random Forest algorithm (RF), combined with 

a recursive selection of most correlated variables (see Figure 2). Numerical values of every molecular 

descriptor were shuffled and the RF model was trained with non-shuffled and shuffled counterpart 

variables according to the following parameters: the number of trees in the Forest (ntree = 11), the 

minimum branch node size (nodesize = 10) and bootstrap data sampling. Once the individual decision trees 

were extracted from the RF, the number of occurrences for each variable in the ensemble of trees was 

calculated, keeping only variables over a marginal threshold of occurrences (threshold = 110). Variables 

were retained at this step if the number of occurrences of the non-shuffled variable was greater than the 

number of occurrences of the counterpart shuffled variable. Finally, the number of variables was reduced in 

a recursive manner (recursive loop) by initially computing the linear correlation of the selected variables 

and then recursively selecting only those whose number of occurrences in the RF is greater than those of its 

correlated variables. In summary, only correlated variables with highest occurrence in the RF were 

eventually kept.  

 

Figure 2. Schematic description of supervised recursive variable selection methodology 

Recursive data cleaning  

Considering the high variability of the experimental solubility measurements and the unreliable 

solubility data in several databases [28], a new recursive clean-up procedure was devised and carried out 

before the development of prediction models. In a first instance, all molecules in databases were organized 

as RELIABLE/UNRELIABLE according to their known Solubility Standard Deviation (STD) value. Molecules 

with known STD lower than 1 were considered to have good experimental solubility (RELIABLE set), while 
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the remaining molecules with unknown STD (single measure) or STD  1 were considered to have high 

experimental variability (UNRELIABLE set). In the case of the UNRELIABLE data, a recursive procedure was 

carried out to clean this set. The dataset cleaning consisted of discriminating all the molecules that were 

systematically outside of an allowed threshold of Predicted Solubility Variance (PSV, threshold  1) during a 

training/classification-based process of selection. The PSV value is a measure of the variability of each 

individual prediction with respect to the average. Initially, this set of UNRELIABLE molecules was randomly 

partitioned into two 50 % and 50 % sets. Starting with one of the two partitions, a Regression Random 

Forest (RRF) was trained (ntree = 21, tree depth = 10 and nodesize = 10) and the RRF model was used to 

calculate the Predicted Solubility Variance of molecules in the other partition (out-of-bag estimator 

provided by KNIME RRF learner node). Through a recursive procedure, initially started from the first 

random partition, the molecules were either classified as within the PSV threshold (CLEAN data) or 

alternatively as beyond the PSV threshold (UNCLEAN data). This recursive process finished once the 

classification of molecules into the two sets stabilized after several iterations, which means that no 

molecules changed any more of categorized set, from CLEAN to UNCLEAN or vice versa. Eventually, a CLEAN 

set of low PSV is obtained, discarding all the molecules assigned to the UNCLEAN set. A detailed diagram of 

the procedure is shown in Figure 3.  

Selection of training and test sets      

To evaluate the performance and stability of the in-silico solubility models, a split of the whole dataset 

was made based on the quality of the available solubility experimental data. From the global curated 

solubility dataset, initially partitioned and tagged as RELIABLE and CLEANED subsets (Figure 3), CLEANED 

data was used as the training set for the development of the model and RELIABLE data as a first test set. 

This sampling strategy ensures that the testing and evaluation of the model is based on the most reliable 

data without adding an optimistic bias on the training of the model when using for it the less reliable 

CLEANED data.  

To validate the predictive ability of the models, an external set I of 181 molecules was used as an 

external validation. This external set was collected by Avdeef [29] and is made up of four publicly available 

sets with intrinsic solubility values reported. To further evaluate the workflow automatization, an external 

dataset II was also selected. To create this database, a search was carried out with the following keywords 

(new molecules, experimental solubility, µM, and log S). The final external set II eventually consisted of 30 

new molecules reported in the last three years [30,31]. For these external evaluations and with the aim of 

increasing the methodology prediction performance on the external datasets, the CLEAN and RELIABLE 

solubility subsets were concatenated, and the model was retrained in this richer dataset to increase the 

structural diversity of the training set.  

The supporting information includes a detailed list of the molecules belonging to each set as well as 

their solubility values (Tables S1, S2, S3 and S4, supplementary data). 

Model building and evaluation 

One of the main problems in estimating solubility is the fact that solubility values can vary over a wide 

range (several orders of magnitude). To develop local regression models based on two sections of the 

solubility range of our data set, we implemented a consensus model based on a combination of 

classification and regression techniques. The molecules belonging to CLEANED data were split into two 

distinct tagged classes according to log S values. Molecules with log S  -2 (n = 4395) were tagged as soluble 

and highly soluble (Class 1), while molecules with log S < -2 (n = 7918) were tagged as slightly soluble and 

insoluble (Class 2). According to this rule, a Gradient Boosted Tree model was trained for classification. Two  
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Figure 3. Schematic description of the supervised recursive data cleaning methodology  
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distinct regression models were developed to predict aqueous solubility for molecules belonging to 

separate Class 1 and Class 2 of the CLEANED data. This way, the range of solubility and structural diversity 

was restricted for each one of these sets. Both models were obtained using the Tree Ensemble Learner 

(Regression) node and their performance was evaluated using the molecules predicted as Class 1 and Class 

2 by the Gradient Boosting method (see Figure 4 in the results section). It means that new test compounds 

are firstly classified in Class 1 or 2, by the Gradient Boosting method, and then according to this 

classification, they are predicted by one of the two regression models. In order to avoid the influence of a 

wrong classification due to border effects around the cut-off value, a third regression model was trained 

using all CLEANED data. Eventually, a consensus model was constructed, from the results of one of the local 

regression models and the regression model trained with all CLEANED data assuming the average log S 

estimated as the final value. 

To demonstrate that the model can incorporate the information represented by the descriptors and 

relate it to solubility in the training set, the RELIABLE dataset was used as a test set. In order to increase the 

chemical diversity of the training set and obtain a better prediction of the external sets, the procedure 

described above was performed using the CONCATENATED data (RELIABLE + CLEANED) as the training set. 

Details on the consensus model are summarized in Figure 4. 

Additionally, a classification model for aqueous solubility was carried out starting from the regression 

model by thresholding its output prediction (see Table 5). Considering that there isn’t a global consensus to 

select the cut-off value to be used in a binary classification of solubility, molecules with log S < -4 were 

regarded as insoluble in this study, while those with log S  -4 were regarded as soluble. Similar cut-off 

values have been reported by other authors [12,32].  

To assess the predictability of the regression and classification models in this study, a rigorous internal 

and external validation procedure was carried out following the guidelines of the Organization for 

Economic Co-operation and Development (OECD) [33]. The complete modeling and assessment process 

was included in a loop over five iterations to work out statistics with a view to demonstrate the consistency 

and robustness of the workflow. 

To analyze the performance of the solubility regression models, some commonly used statistics were 

reported, including the regression coefficient of correlation squared (r2), the root mean squared error 

(RMSE) and the mean absolute error (MAE). The quality of the classification model was evaluated by 

analyzing the values of specificity (SP), sensitivity (SE), precision (PR), overall accuracy (OA), the Cohen's 

Kappa parameters and the area under the Receiver Operating Characteristic curve (AUC-ROC).  

Results and discussion 

Analysis of the new database of aqueous solubility  

A new large and diverse database of aqueous solubility was generated. Once the database was carefully 

curated and tested, its solubility values ranged from -16 to + 2.1 logs units. However, the quality of this type 

of database with a wide range of solubility has been questioned [34]. According to Bergström and Larsson, 

the determination of concentrations of molecules with log S < -12 (picomolar) requires very sensitive 

analytical methods, while molecules with log S > + 1.7 (55, molar) means that these molecules are more 

soluble than the water in water, so the use of this type of data in QSPR models may affect their accuracy. In 

this sense, the final database of log S between -12 to +1.7 was composed of 12674 molecules. The 

statistical distribution on the log S scale is close to normal (skewness = -0.57 and excess kurtosis = 0.19) and 

contains a wide chemical diversity. 
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An analysis of the dataset on the distribution of properties in the chemical space defined by an extended 

rule of five (eRo5) shows its broad diversity and its potential use to develop models of solubility in silico 

with application during the processes of drug discovery and development. More than 99.5 % of all 

molecules are within the property range: molecular weight (MW  1250 g/mol); topological polar surface 

area (TPSA  250); rotatable bonds (RBN  25); hydrogen bond donors (HBD  10) and hydrogen bond 

acceptors (HBA  15), and compounds such as antibiotics, antifungals, vitamins and cardiac glycosides that 

are initially outside the classical “rule of five” range are included in this dataset. The physicochemical 

properties of the database form a reasonable oral druggable space [35]. The distribution of the aqueous 

solubility data in the chemical space defined by some of these molecular properties is described in Table 1 

and Figure 5.  

As can be seen, properties such as MW, TPSA, RBN and ALOGP show clear trends with experimental 

solubility values. The best correlation was achieved with the ALOGP descriptor (r2=0.59), where a lower 

dispersion of this variable appears in the range of best solubility values (-5 < log S < 0). Outside this range 

there is an evident nonlinear correlation that appears for molecules with high solubility, very low ALOGP 

and high TPSA values (e.g. cyclodextrins, amikacins, sugars, etc.) and molecules with very poor solubility 

with extremely high ALOGP values, high number of RBN and large MW (mainly molecules with large aliphatic 

chains). These results are justified because it is a composite variable related to steric and H-bonding 

interactions [36], which are quite important in the solubility of liquids and solid crystalline molecules.  

The database was also analysed in terms of the quality of the solubility data. In this sense, 1839 

molecules had reliable experimental data (Solubility STD  1) and it was called the RELIABLE dataset. Of the 

remaining molecules, with high variability data (Solubility STD > 1), a recursive cleaning procedure was able 

to identify 250 molecules with unreliable solubility data (in average after running statistics of five iterations 

on the whole process) and 10592 molecules formed the CLEANED dataset. Both datasets were 

CONCATENATED (12431 molecules) and were used to develop the regression and classification models of 

aqueous solubility for external datasets.  

Table 1. Distribution of aqueous solubility data in the chemical space defined by six molecular properties 

                                              Solubility Class 

Physicochemical 
descriptor 

log S  0 (Highly 
soluble) 

log S < 0 and  

log S  -2 (Soluble) 
log S < -2 and log S  -4 

(Slightly soluble) 
log S < -4 (insoluble) 

MW Mean (Std) 159.0 (95.3) 191.2 (83.5) 249.5 (89.00) 348.7 (134.4) 

TPSA Mean (Std) 62.4 (51.5) 57.7 (40.1) 58.1 (38.1) 51.1 (43.9) 

ALOGP Mean (Std)          -0.3 (1.5) 1.0 (1.2) 2.2 (1.2) 4.7 (2.5) 

RBN Mean (Std) 2.8 (3.1) 2.9 (2.7) 4.0 (3.3) 6.0 (6.6) 

HBD Mean (Std) 1.8 (2.1) 1.3 (1.4) 1.1 (1.2) 0.8 (1.2) 

HBA Mean (Std) 3.5 (2.8) 3.3 (2.3) 3.5 (2.2) 3.5 (2.7) 

N. compounds 924 3519 4710 3521 
% of data 7 28 37 28 
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Figure 4. Schematic description of the modeling protocol 

Recursive variable and data selection 

Variable selection by correlation is normally achieved as follows: For each candidate variable, the count 

of correlated variables is determined given a threshold value for the correlation coefficient. The variable 

with the highest number of correlated variables is kept and all its correlated variables are filtered out. This 

procedure is repeated until no more variables can be identified. This classical procedure of variable 

selection by correlation is made blindly without considering the relevance of every variable with respect to 

the variable being predicted, in this case solubility. This unsupervised strategy may lead to the elimination 

of variables which would have been selected as the most relevant during the construction of a decision tree 

model or more generally, of an ensemble of trees. In this work, we develop an alternative and new 

procedure for the supervised selection of variables using a recursive method based on a RF where we favor 

the variables which are the most explanatory to the variable being predicted, in this case solubility, as 

shown in Figure 2. Among more than 1400 molecular descriptors, the procedure identified in each of the 

five statistical iterations an average of 65 most significant variables and calculated the number of 

occurrences per variable, which allows categorizing their final relevance. After completing the statistics of 

five iterations, 138 most important descriptors were identified and the number of occurrences per variable 

was averaged. Table S5 lists all these variables as supporting information. This approach is quite relevant 

because it allows the most important variables to be categorized for final interpretation.  

Similarly, a new recursive procedure was developed to clean the database of compounds with high and 

sometimes unreliable experimental aqueous solubility values [28]. The application of this recursive 

partitioning process resulted in a higher quality database of 10592 compounds, which was used to develop 

the solubility models and 243 molecules were identified as failed. After completing the statistics of five 

iterations, 615 molecules were highlighted as failed. Among these molecules, 57 were tagged as failed in all 
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iterations. The results obtained with the use of this method, support its relevance, since we can rule out 

compounds potentially with extreme and variable solubility that affect the final prediction of the model.  

Predictive models for aqueous solubility  

In order to find a way to improve the predictive accuracy of aqueous solubility models in silico, a new 

protocol was developed based on the combination of regression and classification models. To increase the 

performance of the individual models, a final consensus model was applied. A clear description of the 

modeling protocol is shown in Figure 4.  

The predictive performance of the consensus model is summarized in Table 2. As can be seen in this 

table, the training set formed by the CLEANED dataset was able to adequately predict the solubility values 

of the test set (RELIABLE dataset). The r2= 0.87 in the test set is a good indicator of the model's ability to 

successfully predict new external compounds. For the four external sets (TS1-TS4), the predictions were 

quite different. The prediction of the external series with the model obtained with the CLEANED dataset 

was adequate for the TS1 and TS4 series (r2= 0.78-0.83, RMSE = 0.81-1.0) but not for TS2 and TS3 (r2= 0.40-

0.47, RMSE = 0.98-1.02). However, once the model was trained with the CONCATENATED training set 

(RELIABLE + CLEANED), the statistics increased for all the series and especially for TS2 and TS3 (r2= 0.47-

0.56, RMSE = 0.92-0.93). 

Eight drugs (4.4 % of the external set I) with standardized residues greater than 2 or less than -2 were 

identified as response outliers. They were folic acid (TS2 and TS3), antipyrine (TS1), amiodarone (TS4), 

cisapride (TS3), enalapril (TS3), rifabutin (TS4), ritonavir (TS3) and mifepristone (TS4). From these 

compounds, only five were identified as outliers in all iterations (see Figure 6).  

 

Figure 5. Correlation among RBN, TPSA, MW, and ALOGP properties and experimental aqueous solubility 
(log S). The colour scale refers to solubility ranges. 
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Table 2. Performance of the final consensus model for the training, internal test and external test sets 

Training (CLEANED) 

Dataset            r
2
           RMSE            MAE 

  Mean Std Mean Std Mean Std 

Training Set 0.97 0.00 0.39 0.00 0.25 0.00 

Internal Test Set (RELIABLE) 0.87 0.00 0.75 0.01 0.55 0.01 

External Set I (All) 0.64 0.02 0.97 0.03 0.77 0.01 

TS1 0.83 0.02 0.81 0.06 0.62 0.05 

TS2 0.47 0.03 1.02 0.03 0.78 0.02 

TS3 0.40 0.03 0.98 0.02 0.78 0.02 

TS4 0.78 0.04 1.00 0.08 0.81 0.05 

CONCATENATED training (CLEANED + RELIABLE) 

             r
2
          RMSE           MAE 

  Mean  Std Mean Std Mean Std 

External Set I (All) 0.69 0.02 0.92 0.03 0.71 0.02 

TS1 0.84 0.02 0.79  0.04 0.60 0.01 

TS2 0.56  0.04 0.93  0.04 0.70 0.03 

TS3 0.47  0.03 0.92  0.03 0.73 0.02 

TS4 0.80 0.02 0.96  0.04 0.74 0.03 

r
2
: the squared of correlation coefficient of regression, Std: standard deviation obtained from a five iterations loop, 

RMSE: root mean squared error, MAE: mean absolute error. TS1-TS4: test set 1 to 4.  

 

Figure 6. Prediction of aqueous solubility (log S) for the external set I, using the final consensus model 
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Compounds such as antipyrine and mifepristone have been also erroneously predicted by other authors 

[15,29]. It is described that these drugs have conflicting solubility data reported in the literature, and in the 

case of antipyrine, multiple and different experimental solubility values (-0.66 to 0.55) have been reported 

[29,37,38]. The wrong prediction of compounds such as amiodarone and mifepristone has been attributed 

to extreme solubility values which made their detection more difficult with sensible analytical methods and 

sometimes, to obtain the complete solubilization, requires the use of co-solvents [38]. In the case of 

compounds with very high solubility (antipyrine) and very low solubility (amiodarone and mifepristone), 

their solubility prediction could be influenced by a poor representation of similar compounds in the 

chemical space of the database [39,40]. Folic acid has been poorly predicted by other authors [29,40], 

which has conflicting solubility data reported in the literature attributed to drug degradation. The low 

representation of high solubility compounds within the database (7 %) could influence the large prediction 

error for the Enalapril.  

However, the solubility values reported for external set I were intrinsic solubility values, while the 

consensus model was developed with molecules with aqueous solubility. This suggests, that in the first case 

the value corresponds to the solubility of a compound in its free acid or base form at a pH where it is 

completely non-ionized, and in the second case the solubility depends on the pH used to perform the 

measurements and therefore can be different for ionizable compounds. In general, the aqueous solubility is 

greater than or equal to the intrinsic solubility [2]. Considering the above, the intrinsic solubility values for 

folic acid, amiodarone, enalapril, antipyrine and cisapride were replaced by aqueous solubility data 

collected in different publications (see Table 3). For folic acid, amiodarone and cisapride our model predicts 

values higher than the reported intrinsic solubility value, and closer to the experimental aqueous solubility 

(pH around 6.8) reported in the literature. In the case of enalapril, the reported intrinsic solubility value is 

for enalapril maleate and not for the free base (enalapril), in this sense our prediction is closer to the free 

base (input structure). Considering the variability described for antipyrine, we found that the value 

predicted by our model was close to other reported experimental values. Finally, the prediction of the 

external set I improved significantly, considering the new aqueous solubility values for these five 

compounds, with better results for series TS1, TS2 and TS4 (r2= 0.72-0.87, RMSE = 0.65-0.79), and the 

lowest prediction was for set TS3 (r2= 0.51, RMSE = 0.85). 

Table 3. Aqueous solubility values for the five outlier compounds detected with the 

consensus model  

Compound Log S
a

exp Log S
b

pred Log S
c
exp  Reference 

Folic acid -5.96  -2.96  > -2.87  [41] 

Antipyrine 0.45 -1.95  -0.58  [42] 

Amiodarone  -10.4  -7.51 < -7.17  [42] 

Cisapride  -6.78  -4.23 -4.7  [42]  

Enalapril -1.36   -3.48  -3.33   [4] 
a
experimental intrinsic solubility values [29]; 

b
aqueous solubility predicted with the consensus 

model; 
c
experimental aqueous solubility values collected from literature. 

The prediction of aqueous solubility for all datasets of the external set I was also evaluated using 

Pipeline Pilot software [43] (see Table 4). The aqueous solubility Pipeline Pilot algorithm is built-in and 

provided as a “black box” node for prediction only, with no possibility of training or parameterization. The 

algorithm is based on Tetko et al. method [44]. The results obtained demonstrate the difficulty of 

predicting these data sets. The predictions of our consensus model (see Table 2) are satisfactory in 

comparison with these results, which reinforces the potential of the methodology developed and the 

predictive capacity of the final model obtained. 
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Table 4. Performance of Pipeline Pilot (PP) in the prediction 
of aqueous solubility for the External Set I (N=181) 

Chevillad et al. [8] showed the performance of 

solubility predictions for different commercial 

software on five data sets. Table 5 shows the 

comparison between the results described in this 

study and our results for the Test Set 2 (in this paper), 

originally used in the first Solubility Challenge. The 

results obtained in our proposal (r2= 0.56, RMSE = 

0.93) suggest a good performance compared to the 

models with the best individual predictions (Avdeef 

and QikProp-CI). However, when the intrinsic 

solubility value of the folic acid (one of the five outliers detected for all external set I) was replaced by the 

aqueous solubility value, the results significantly improved (r2= 0.72, RMSE = 0.73).  

Figure 7 shows an analysis of the occurrences of 138 variables selected by Supervised Recursive Variable 

Selection after completing the five iterations of our modeling workflow. The most frequent descriptors 

were ranked by their importance (only the first 30 descriptors are shown), which means that only a few of 

the descriptors contribute significantly to the model. Among the most frequent descriptors are variables 

related to hydrophobicity (partition coefficients such as ALOGP and SlogP), steric (number of aromatic 

rings, number of saturated rings, etc.), hydrogen bonding (Labute´s Approximate Surface Area, topological 

polar surface area, etc.), molecular flexibility (number of rotatable bonds, rotatable bond fraction, etc.), 

electrostatic (mean atomic Sanderson electronegativity, mean first ionization potentials) and topological 

interactions [45]. Most of these descriptors have been highlighted by other authors for their correlation 

with solubility [29] [46]. In other cases, they show a high correlation.  

Table 5. Performance of different models published in the 
prediction of our Test Set 2 (belonging to Solubility 
Challenge) 

Table 6 summarizes the statistical results of the 

classification model that was carried out starting 

from the regression model by thresholding its 

output prediction. As can be seen from this table, 

the model had excellent balanced accuracy and 

Cohen’s Kappa values for training and internal test 

sets. Moreover, the sensitivity values or percentage 

of high solubility molecules correctly predicted, for 

training and internal test sets, were quite similar to 

the specificity values or percentage of low solubility 

molecules. 

 The model had very good performance in the 

prediction of the external set I, with accuracy values 

between 74-96 % and Cohen’s Kappa between 0.46-

0.86. The ROC curve analysis corroborated the good 

performance of the model with areas under curve of 

99 %, 96 % and 91 % for training, internal test and 

External Set I r
2 

RMSE MAE 

TS1 0.73 1.01 0.79 

TS2 0.08 1.34 1.03 

TS3 -0.71 1.65 1.12 

TS4 0.45 1.59 1.12 

All data 0.12 1.53 1.07 

r
2
: the squared of correlation coefficient of regression, 

RMSE: root mean squared error, MAE: mean absolute error. 

TS1-TS4: test set 1 to 4 

 Solubility Challenge (N = 26) 

Models r
2 

RMSE 

PP-solubility 0.29 1.66 

PP-ADMET solubility 0.28 1.49 

ACD 0.53 1.14 

MOE 0.44 1.30 

QikProp 0.34 1.24 

QikProp-CI 0.57 1.12 

ADMET PREDICTOR 0.32 1.25 

Volsurf + 0.44 1.09 

FAF 0.18 1.19 

VCC lab 0.39 1.18 

ISIDA 0.35 1.09 

RFR [29]
a
 0.57

b
 0.92

b
 

This study
a
 0.56  0.93 

 0.72
c 

0.73
c
  

a
 In these studies, 28 compounds were included in the second 

dataset. 
b 

Values calculated from the original data reported in 
the article (Table A2) [29]. 

c 
Results obtained when the intrinsic 

solubility value of folic acid (outlier) was replaced by the 
aqueous solubility value. PP: Pipeline Pilot 
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external test sets, respectively. All the ROC curves are depicted in Figure S1 of supporting information.  

Automatic workflow for the prediction of aqueous solubility  

The final workflow integrated two main sections (see Figure 8). The first one was related to the 

development of the QSPR protocol and included the preprocessing of the data (data curation, 

parametrization of the molecular structure, etc.), the merging of the data sources (combination of different 

datasets) and the development of regression and consensus models (recursive selection of variables and 

data cleaning, data partition, building, training and validation of the consensus model). The second section 

was designed to automate the prediction of a new external set based on the consensus model obtained in 

the preliminary development section. In order to validate the functionality of this workflow, a new dataset 

made of 30 new molecules from the last three years was assembled. As a method to identify unreliable 

predictions and in accordance with the recursive data cleaning developed algorithm, we proposed to take 

Solubility Prediction Variance  3 as a criterion to highlight the molecules with suspect predictions. The 

results reached for this External set II are shown in Table 7. 

 

Figure 7. Descriptors most frequently used in the prediction of aqueous solubility (log S). 
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Table 6. Performance of the classification model for the training, internal test and external test sets 

Training (CLEANED) 

  Balanced Accuracy Cohen´s Kappa Sensitivity Specificity 

  Mean Std Mean Std Mean Std Mean Std 

Training Set 0.94 0.00 0.90 0.01 0.98 0.01 0.92 0.01 

Internal Test Set 

(RELIABLE) 

0.88 0.01 0.78 0.01 0.96 0.01 0.80 0.01 

External Set I (All) 0.80 0.01 0.60 0.04 0.89 0.01 0.71 0.02 

TS1 0.85 0.01 0.61 0.01 0.83 0.01 0.78 0.01 

TS2 0.79 0.01 0.71 0.01 1.00 0.01 0.71 0.01 

TS3 0.74 0.01 0.46 0.05 0.85 0.01 0.61 0.01 

TS4 0.96 0.01 0.86 0.01 0.91 0.01 0.91 0.01 

CONCATENATED training (CLEANED + RELIABLE) 

  Balanced Accuracy Cohen´s Kappa Sensitivity Specificity 

  Mean Std Mean Std Mean Std Std Std 

External Set I (All) 0.81 0.01 0.61 0.04 0.92 0.01 0.70 0.01 

TS1 0.85 0.01 0.70 0.01    0.92 0.01 0.78 0.01 

TS2 0.86 0.01 0.71 0.01 1.0 0.01 0.71 0.01 

TS3 0.76 0.01 0.50 0.05 0.88 0.02 0.64 0.01 

TS4 0.91 0.01 0.74 0.01 1.00 0.01 0.82 0.01 

Std: standard deviation obtained from a five-iteration loop, RMSE: root mean squared error. TS1-TS4: test set 1 to 4. 

 

 

 
Figure 8. Workflow for modeling aqueous solubility. From top to bottom. First rectangle: Development and 
validation of QSPR protocol; second rectangle: the same sequence of steps to automate the prediction of a 

new external dataset based on the consensus model obtained in the development section. 
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Table 7. Performance of the final consensus model for the external set II (N=30) 

                                                                  CONCATENATED training (RELIABLE+CLEANED) 

 r
2 

RMSE MAE 

External Set II  Mean Std Mean Std Mean Std 

All data 0.43  0.01 0.73 0.02 0.56 0.01 

Data without outliers (n=27)
a
 0.66 0.01 0.59 0.01 0.46 0.01 

r
2
: the squared of correlation coefficient of regression, Std: standard deviation obtained from a five iteration loop, 

RMSE: root mean squared error, MAE: mean absolute error. a Molecules with Solubility Prediction Variance < 3. 

 

Table 8. Performance of the classification model for the external set II (N=30) 

Training (CLEANED) 

  Balanced Accuracy 
Cohen´s 
Kappa 

Sensitivity Specificity 

  Mean Std Mean Std Mean Std Mean Std 

External Set II 0.83 0.01 0.67 0.01 0.73 0.01 0.93 0.01 

CONCATENATED training (CLEANED + RELIABLE) 

  Balanced Accuracy Cohen´s Kappa Sensitivity Specificity 

  Mean Std Mean Std Mean Std Mean Std 

External Set II 0.80 0.01 0.60 0.02 0.73 0.01 0.87 0.01 

Std: standard deviation obtained from a five iteration loop, RMSE: root mean squared error.  

 

 

 

Comparison with previous in silico solubility models 

Several QSPR models have been previously published to predict aqueous solubility. All models published 

in the last ten years and their performances are clearly described in Table 9. 

 Among regression models, only one was derived using large datasets (over 8000 compounds). Cui et al. 

[12] developed a deep neural network (DNN). However, their prediction of the external set was low in 

terms of r squared but good for RMSE (r2= 0.39, RMSE= 0.68). As far as we know, this study generated one 

of the largest aqueous solubility data with more than 12000 compounds. The overall prediction for all 

compounds belonging to the external set I (ALL) is good (r2= 0.69, RMSE= 0.92), but once the intrinsic 

solubility values of the five outliers were replaced by the aqueous solubility values, the results improved 

(r2= 0.73, RMSE = 0.80).  

For our classification model, the overall results showed a better performance in predicting the soluble 

and insoluble classes compared to other published models. One of the most widely used external test sets 

was 32 molecules of the first solubility challenge. In this dataset our model had a balanced accuracy of 86 

%, with a specificity value of 71 % and sensitivity value of 100 %, highlighting a better performance of our 

proposal. 
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Conclusions 

This study reported the first automatic workflow, developed on the KNIME Analytics Platform, to predict 

aqueous solubility of compounds. All steps of the QSPR were automated, focusing on data integration and 

curation procedures to obtain an extensive and structurally diverse database of aqueous solubility. Based 

on the large set of solubility data, the relationships between four simple molecular properties and solubility 

have been studied. By combining two recursive machine learning approaches for data cleaning and variable 

selection, and two regression and classification algorithms in a consensus model, good regression and 

classification statistics were obtained to predict the aqueous solubility of molecules. However, these results 

could be improved by increasing the chemical space of our dataset with more drugs and more reliable 

samples. The workflow developed was designed to automate the prediction of aqueous solubility of new 

databases, starting from chemical structure. These results highlight the relevance of this model, during the 

early stage of drug discovery and development.  

 

Abbreviations  

RMSE: the root mean squared error. RMSE = [ 1/n Σi (yi
obs – yi

calc)2 ]1/2, where yobs/ ycalc = 

observed/calculated value of log S according to model, n = number of measurements 

of log S. 

r2: the squared of correlation coefficient of regression. r2 = 1 - Σi (yi
obs - yi

calc)2 / Σi (yi
obs - 

<y>)2, where y=log S, and <y> is the mean value of log S. 

MAE: mean absolute error. MAE = 1/n Σi yi
cal – yi

obs
 

SE: sensitivity. SE = TP / (TP+FN) 

SP: specificity. SP = TN / (TN+FP) 

OA: overall accuracy. OA = (TP+TN) / (TP+FP+TN+FN) 

PR: precision. PR = TP / (TP+FP) 

Cohen's Kappa: (OA-EA) / (1-EA), where EA = ((TP+FP) (TP+FN)+(TN+FP)(TN+FN)) / (TP+FN+FP+TN)2 

TP: true positives 

TN: true negatives 

FP: false positives 

FN: false negatives 

EA: the expected accuracy based on the marginal totals of the confusion matrix 

ntree: number of trees in the random forest approach 

nodesize: the minimum branch node size in the random forest approach 
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