
INTRODUCTION 

As we age, our ability to withstand damage and stress declines, and 
the incidence of disability, disease, and mortality increases.1) Time 
underlies all these biological processes and events. As it is universal 
and readily available, calendar age is a popular estimate of the rate 
of biological aging in daily life. Indeed, as living matter constantly 
and dynamically changes with time, numerous age-related changes 
occur throughout all organizational levels, from molecular to or-
ganismal to populational levels. With increasing age, however, 
age-related changes occur at varying rates.2) For example, older in-
dividuals of a certain chronological age differ in their physical and 
cognitive functioning. Thus, biological aging is heterogeneous and 
often disproportionate with the amount of time passed. 

In addition to heterogeneity, plasticity is another property of bi-
ological aging that chronological age cannot accommodate. Tales 
abound of a Fountain of Youth or a Chinese emperor who sought 
an elixir of life that would enable him to live forever. Experimental 
evidence suggests that these mythical or legendary tales may not 
be entirely baseless. The pace of aging may be delayable or even re-
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versible. The evidence is mostly based on genetic or interventional 
studies using model organisms such as yeast, fruit flies, nematodes, 
mice, and even monkeys.3-5) When mutated, many genes can mod-
ify the lifespans of non-mammalian model organisms. Some of 
these genes include SIR2 in brewer’s yeast,6) daf-2 in nematodes,7) 
and methuselah in fruit flies.8) Gene therapy using genes involved in 
aging or age-related disease extended both lifespan and health span 
in mice.9) Pharmaceutical and nutritional interventions, such as the 
administration of the immunosuppressive drug rapamycin and cal-
orie/dietary restriction, also significantly extended the lifespan and 
improved the fitness or health of model organisms.3) 

Biological age is equivalent to physiological or functional age, 
whereas chronological age is physical or mathematical. As aging 
progresses, mortality increases exponentially not because time 
passes at an exponential speed but because aging-related detrimen-
tal events occur exponentially. The biology of aging concerns the 
biological processes of aging, which occur separately from the in-
variant passage of time. Thus, a reliable measure of biological age 
will better suit our pursuit of precision gerontology or personalized 
geriatrics. While the hallmarks of aging have been described,10) the 
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mechanisms underlying biological aging remain largely unknown. 
One approach to the biology of aging is to model biological age 
and investigate its associated factors. 

MODELS OF BIOLOGICAL AGE 

Different types of cells age differently.11,12) Heterogeneity in tissue 
aging contributes to the heterogeneity of aging in different organs 
and body systems. Thus, no single biological marker of aging can 
faithfully represent organismal aging. Biomarkers of aging have 
long been sought from age-related changes; however, the relevance 
of all age-related changes to the biology of aging remains unknown. 
As some age-related changes may not be relevant to the biology of 
aging while others constitute the true mechanisms of aging, multi-
ple biomarkers of aging are used to estimate or models the true bi-
ological age. Epigenetic age-based models of biological age were 
first proposed a decade ago, and all such models are based on DNA 
methylation data.13) Another type of biological age models that has 
been gaining momentum is based on frailty.14) These frailty-based 
models use health deficits or health-related changes found in aging 
individuals. We will first discuss models based on epigenetic age 
before reviewing frailty-based models of biological age. 

Epigenetic Age Models 
Genomic DNA methylation sites that we are currently focusing on 
are conveniently called CpG sites as the methylation of cytosine 
occurs predominantly in CpG dinucleotides (“p” represents the 
phosphodiester bond linking the nucleotides). A recent study 
compiled 11 epigenetic age models,13) one of which was based on 
71 CpG sites in the leukocyte genome.15) These CpGs were select-
ed using a regularized regression method, which showed that their 
DNA methylation levels were highly correlated with chronological 
age. The predicted epigenetic age was obtained using actual meth-
ylation data in the regression model. Individuals with epigenetic 
ages greater and less than their calendar ages are categorized as fast 
aging and slow aging, respectively. Similarly, DNA methylation age 
and related measures were calculated based on 353 CpGs whose 
methylation levels were highly correlated with chronological age in 
multiple tissues.16) A change in epigenetic age depends on a change 
in the methylation levels of selected CpGs. As shown in Fig. 1, a 
decrease in the overall DNA methylation level of 353 CpGs result-
ed in decreased epigenetic age. Since the genomic DNA methyla-
tion level tends to decrease with increasing chronological age,17-19) 
the epigenetic age is likely to decrease with increasing chronologi-
cal age among the oldest of older individuals.20) 

Recent epigenetic age models combine health-related data with 
DNA methylation data using complex multi-step mathematical or 

statistical approaches. “DNAm PhenoAge” is based on 513 CpGs 
associated with the Gompertz model-based phenotypic age.21) 
This phenotypic age incorporates laboratory blood test findings 
and chronological age. Other models use CpGs as proxy markers 
for age-related changes or biological events. For example, age-cor-
related CpGs have been combined with biological data to build a 
mitotic-like clock model to predict cancer risk.22) “GrimAge” uses 
CpGs that are selected by regressing plasma proteins and smoking 
on 485,000 CpG sites and chronological age.23) 

Epigenetic-based models of age are associated with mortali-
ty.24-26) Slow epigenetic aging is associated with healthy aging-relat-
ed factors such as healthy diet, physical activity, lifestyle, and low 
morbidity.23,27,28) This is potentially interesting in that healthy aging 
is determined largely by non-genetic factors, including various en-
vironmental factors and lifestyle, and DNA methylation is an epi-
genetic interface between genes and non-genetic determinants. 
Nevertheless, the biological function of the DNA methylation lev-
el in CpGs used in the models remains unknown.  

The human genome contains an estimated 28 million CpGs.29) 
A cross-sectional compilation found that approximately 11% of 
485,577 CpGs examined were significantly correlated with 
chronological age and approximately 30% of them also significant-
ly changed longitudinally.30) If we assume random sampling of 
CpGs examined, the DNA methylation of approximately 3 million 
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Fig. 1. A bar plot of mean DNA methylation ages and standard errors. 
This plot was generated using the data from eight autistic subjects 
available in the MethylationDataExample55 and SampleAnnotatio-
nExample55 datasets provided.16) DNA methylation age was calculat-
ed in R using the tutorial provided. The y-axis shows mean DNAm-
Age±standard error corresponding to three groups on the x-axis: the 
autistic subjects (“initial”), after adding 0.1 to the original beta values 
of 353 CpGs (“+.1_all”), or subtracting 0.1 from the original beta val-
ues of 353 CpGs (“–.1_all”).
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CpGs in the genome is correlated with chronological age, and 0.9 
million of them will change longitudinally. With that many age-as-
sociated CpGs, one can select any subset of CpGs to predict 
chronological age or any age-associated changes. One can even se-
lect a subset of CpGs in the genome to predict any randomly gen-
erated numeric variable (Table 1). Note that in Table 1, the vari-
able importance scores generated using a random forest method 
for the randomly generated numeric variable are comparable to 
those for the frailty index. Similar results were obtained using the 
regularized regression method. The abundance of CpGs associat-
ed with chronological age may also explain why subsets of selected 
CpGs used in epigenetic age models overlap sparsely (Fig. 2). 
Thus, the biological roles of these CpGs, if any, remain unknown. 

Biological Functions of CpG Sites Associated with Age 
DNA methylation affects important biological phenomena such as 
gene expression, DNA imprinting, X-chromosome inactivation, 
and genome stability.31) Of these, differential gene expression is 
most relevant to the biology of aging. Changes in the other phe-
nomena tend to have drastic, often pathological, effects, although 
their contributions to the biology of aging cannot be completely 
ruled out. 

The transcriptional regulation of gene expression is primarily 
mediated by DNA sequence-based genetic factors. DNA methyla-
tion also affects gene transcription via epigenetic mechanisms. Fol-
lowing the erasure of DNA methylation patterns of the previous 
generation, genomic DNA of fertilized eggs is methylated de novo 
in a tissue-specific manner during implantation and differentia-

tion—the erasure seems incomplete, which explains in part why 
DNA methylation is heritable. DNA methylation may serve as a 
safety lock to ensure the long-term repression of certain genes.34) 
For genes whose32,33) expression is responsive to environmental 

Table 1. Top 10 DNA methylation sites associated with the prediction of age, frailty index, or a sequence of randomly generated numbers

Agea) FI34b) Random numberc)

CpG sited) Importancee) CpG sited) Importancee) CpG sited) Importancee)

cg18404925 30.4 cg10458216 12.9 cg02271560 12.0
cg21070864 27.0 cg26188685 4.6 cg10332616 7.9
cg26811352 14.9 cg01290856 4.4 cg26565544 4.9
cg16624788 14.5 cg23765086 4.2 cg00981070 4.7
cg01290856 12.7 cg11177404 4.1 cg12645852 4.3
cg13480818 10.9 cg02716646 3.9 cg04365609 3.7
cg03767951 9.7 cg10043954 3.9 cg05461182 3.7
cg01874084 9.5 cg21561157 3.8 cg05935052 3.6
cg07935657 7.3 cg10223982 3.2 cg03475190 3.5
cg13567404 7.2 cg05304366 3.2 cg10697491 3.4

a)The calendar ages (60–103 years) of 211 participants in the Louisiana Healthy Aging Study72) were regressed on DNA methylation values (beta) of 10,000 ran-
domly selected CpG sites using a random forest regression method in R.
b)The same random forest as in a), with a frailty index, FI34, instead of calendar age.
c)The same random forest as in a), with a variable of randomly generated numbers instead of calendar age.
d)Probes used to assess DNA methylation levels of the CpG sites using the Infinium HumanMethylation450K BeadChip Kit (Illumina Inc., San Diego, CA, 
USA).
e)Scaled permutation-based variable importance scores calculated using the random forest.

Fig. 2. A Venn diagram of three sets of genes. SH_353 represents 
genes annotated for 353 CpGs used in the DNA methylation age 
model.16) GH_54 represents genes annotated for 71 CpGs used to 
determine the apparent methylomic aging rate.15) MS.VG_1000 
represents top 1,000 genes whose transcript levels are important in 
predictive modeling of chronological age.37)
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cues, DNA methylation is also a way of non-genetically attuning 
gene expression to changing milieus. In general, hypermethylation 
is associated with no or lower gene transcription and hypomethyl-
ation with higher transcription, although deviant cases exist.35,36) 

In view of DNA methylation as a modulator of gene transcrip-
tion, it is interesting to determine whether age-associated DNA 
methylation of CpGs used in some of the epigenetic age models 
also show age-associated differential gene transcription. If DNA 
methylation of CpGs is strongly associated with chronological age, 
transcription of the genes annotated for CpGs may be strongly as-
sociated with chronological age. A recent comprehensive compila-
tion of multi-tissue transcriptomic data37) excluded genes with low 
expression to analyze a total of 13,388 genes to determine differen-
tially expressed genes (DEGs) that were important in predictive 
modeling of chronological age. Among the 54 genes annotated for 
the 72 CpGs described above, only six ranked in the top 1,000 
DEGs associated with chronological age. Similarly, among the 353 
genes annotated for the 353 CpGs, only 11 ranked in the top 1,000 
DEGs (Fig. 2). These results indicated that the transcription of 
most genes annotated in the model CpGs was not highly associat-
ed with chronological age or was not important in the predictive 
modeling of chronological age. In other words, these findings are 
at odds with the expected biological role of DNA methylation. 
Thus, no convincing evidence exists to support the mainstream 
role of DNA methylation in CpG sites used in some of the epigen-
etic age models. 

FRAILTY 

Common among older adults, frailty is often used interchangeably 
with disability, comorbidity, or even old age. One practicable defi-
nition of frailty is age greater than 65 years and dependence on 
others to perform activities of daily living.38) Disability is defined as 
the inability to perform activities of daily living, while frailty along 
with other morbidities contributes to disability.39) Frailty may de-
velop from diminished physiological reserve before disability, co-
morbidity, or other adverse outcomes.40) Frailty is a multidimen-
sional phenotype that manifests through various signs, symptoms, 
or other health-related events.41) To operationalize frailty as a clini-
cal syndrome, the Fried frailty uses five phenotypic criteria: (1) 
weight loss ( > 10 lb in the previous year); (2) self-reported ex-
haustion; (3) muscle weakness (the lowest quintile of hand grip 
strength); (4) slow gait speed (the lowest quintile in walking time 
per 15 feet); and (5) low physical activity (the lowest quintile in 
kilocalories expended per week). Individuals meeting three or 
more of these criteria are considered frail. Related to the Fried frail-
ty, Edmonton frailty uses nine criteria: cognition, general health 

status, functional independence, social support, medication use, 
nutrition, mood, continence, and functional performance.42) The 
maximum score of Edmonton frailty is 17. 

Geriatric status classification in clinical settings requires a 
streamlined operationalization of frailty. Based on activities of daily 
living, a clinical frailty scale has been proposed to classify older 
people.43) A recent version of the Clinical Frailty Scale (CFS) has 
nine categories, from “very fit” to “terminally ill.”44) It relies on the 
level of dependence in daily living activities and clinical judgment. 
The CFS is simple, inexpensive, and easy to perform but has been 
criticized as potentially subjective. However, a recent study of the 
CFS reported a general agreement of participants in diverse medi-
cal professions and health occupations in the classification of sce-
nario cases.45) The CFS was a significant predictor of survival of 
patients with coronavirus disease (COVID-19).46) and the out-
come of coronary artery bypass grafting.47) 

FRAILTY/DEFICIT INDEX 

The criteria for frailty scales described above yield semiquantita-
tive measures. By including more health items and using a continu-
ous scoring method, one can build a fully quantitative model of 
frailty. The frailty index is defined as the proportion of health defi-
cits among a set of surveyed health items.48,49) The deficit index 
uses the same calculation method as the frailty index.50) The health 
items include various symptoms, signs, disabilities, and diseases.48) 
These data are collected from medical history questionnaires, clin-
ical assessments, laboratory measurements, and other data collec-
tion instruments. As the proportion of health deficits that an aging 
individual carries at the time of survey, raw frailty index scores 
range from 0 (no deficit in all health items surveyed) to 1 (at least 
one problem in every health item). Unlike frailty scales, calculation 
of the frailty index does not require a fixed set of specific health 
items. When the number of health items is sufficiently large (typi-
cally ≥ 20), different frailty indices based on different sets of health 
items yield comparable properties and performances. However, in-
cluding health items with predictive power can significantly im-
prove the performance of a frailty index.51) 

Frailty Index as a Model of Biological Age 
The end of aging is death, and the oldest of older adults (those 
aged > 90 years) are most prone to this and other adverse out-
comes. The frailty index shows an age-dependent exponential in-
crease with mortality (Fig. 3). Frailty index scores vary among 
aged peers and may decline individually while their group average 
increases over time, accounting for the heterogeneity and plasticity 
of aging.52) In the general population, chronological age is a strong 
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predictor of mortality and other time-dependent phenomena. The 
Klemera-Doubal models of biological age, termed therein Equa-
tion 25 (BE) and Equation 34 (BEC), outperformed chronologi-
cal age and biological age measures based on multiple linear regres-
sion or principal component analysis in predicting mortality.53,54) 
This finding makes sense in that both health data and chronologi-
cal age are used in the derivation of BE and BEC. In particular, 
BEC explicitly incorporates chronological age as an additional bio-
marker to improve its performance over BE. After adjusting for age 
and sex, however, the frailty index outperformed not only DNA 
methylation age but also both BE and BEC in predicting mortality 
in the oldest of older adults (Fig. 4). Thus, the frailty index is the 
best predictor of age-related mortality.  

Biological Factors Associated with Frailty or Frailty Indexes  
The frailty index quantifies the extent of unhealthy aging. In other 
words, it is an unhealthy aging index (and subtraction of it from 1 
gives a healthy aging index). Therefore, examining biological fac-
tors associated with the frailty index can provide insights into the 
biological mechanisms of unhealthy (or healthy) aging. 

The resting metabolic rate (RMR) estimates the amount of en-
ergy used for the maintenance of body systems under resting con-
ditions. RMR, which comprises 60%–70% of the total daily energy 
expenditure, decreases with increasing age in the general popula-
tion.55) In the oldest of older adults, however, RMR increases as the 
frailty index increases.56) One interpretation of this is that a higher 
RMR is required for this population to maintain homeodynamics 
as their health deteriorates. Some factors also show sex specifici-

ties; for instance, the association of frailty index with body compo-
sition (fat and fat-free mass) is specific to female nonagenarians, 
whereas circulating creatine kinase (CK) is specific to male nona-
genarians. Detailed analyses of these sex specificities led to the 
identification of the associations of UCP2 and UCP3 with frailty 
index in women57) and XRCC6 and LASS1 in men.58) UCP2 and 
UCP3, which encode uncoupling proteins in the mitochondria, 
function as metabolite transporters important in energy metabo-
lism. In contrast, XRRC6 and LASS1, which encode the protein 
Ku70 and ceramide synthase, respectively, are involved in pro-
grammed cell death. Muscle damage caused by strenuous physical 
activity or exercise is a major factor leading to elevated blood CK 
levels.59) Thus, one interpretation of the male-specific findings is 
that an elevated CK level reflects an increased number of damaged 
muscle cells undergoing programmed death.58) 

The genetic basis of longevity is not as substantial as previously 
estimated, indicating that non-genetic and environmental factors 
are much more influential in aging.60) Frailty is associated with var-
ious transcriptomic, proteomic, and metabolomic factors.61-68) 
Overall, the number and species of identified omics factors vary 
across studies and no omics factors have been convincingly repli-
cated in multiple independent studies. Nevertheless, several stud-
ies merit further investigation. CK is a major protein associated 
with the Fried frailty scale.63) Although it is unknown whether the 
association is specific to males, the proteomics finding is consistent 
with the previous association using the frailty index,58) as described 
above. In their proteomics study, Sathyan et al.62,69) analyzed plas-
ma proteomic profiles using the same technology but different de-
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Fig. 3. Exponential increase in the frailty index and mortality. (A) Box plot of FI28 scores of 592 individuals in the Louisiana Healthy Aging 
Study.51) FI28 is a frailty index based on 28 health items. Each box represents an inter-quartile range with the line in the middle showing the medi-
an position. (B) Proportions of the deceased in the same age groups.

Ann Geriatr Med Res 2021;25(3):141-149

145Frailty and Biological Age



pendent variables. Based on the frailty index as a dependent vari-
able, the fatty acid-binding proteins showed the most significant 
association, while proteins that showed enrichment in the bioin-
formatic analysis were involved in lipid metabolism, cell-to-cell sig-
naling, and interactions.62) For chronological age, the most signifi-
cantly associated proteins were pleiotrophin, WNT1-induc-
ible-signaling pathway protein 2, chordin-like protein 1, transgelin, 
and R-spondin-1, while the bioinformatically enriched proteins 
were related to inflammatory response, organismal injury and ab-
normalities, and cell and organismal survival.69) Thus, these two 
studies further demonstrated that the biological factors and path-
ways associated with the frailty index differed from those associat-
ed with chronological age. In other words, the biological interpre-
tations or hypotheses to test depend on which dependent variable 
is used in the association analysis. Therefore, it is critical to use a 
reliable and accurate metric of biological age. 

While single omics analysis is useful, aging is a complex phe-
nomenon that occurs across interconnected, yet heterogeneous, 
biological systems. The simultaneous analysis of multiple omics 

data obtained from the same specimens can greatly enhance the 
accuracy of data analysis and interpretation.70,71) Therefore, inte-
grative multi-omics using a reliable measure of biological age may 
be a more useful approach for elucidating the biology of aging. 

CONCLUSION 

One fruitful approach to understanding the biology of aging is to 
establish a reliable measure of biological age and study its associat-
ed biological factors. Epigenetic age models, which are based on 
DNA methylation data, are promising in that lower epigenetic ages 
are associated with healthy aging and DNA methylation is consid-
ered an interface between the genome and environment. However, 
the biological significance and function of epigenetic model ages 
and model CpGs are yet to be elucidated. Frailty reflects the dete-
riorating physiological processes of aging. The extent of frailty is 
fully quantifiable by calculating the proportion of various health 
deficits. The frailty index is the best predictor of mortality, espe-
cially among older patients. Thus, the frailty index is a simple 
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mathematical and easily rationalized method of quantifying bio-
logical age. Various biological factors are associated with frailty in-
dex, providing valuable insights into various aspects of aging. Si-
multaneous analysis of multi-omics datasets using the frailty index 
may be a fruitful approach to understanding the biology of aging. 
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