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Abstract: Subterranean rodents could maintain their normal activities in hypoxic environments
underground. Eospalax fontanierii, as one kind of subterranean rodent found in China can survive very
low oxygen concentration in labs. It has been demonstrated that long non-coding RNAs (lncRNAs)
have important roles in gene expression regulations at different levels and some lncRNAs were
found as hypoxia-regulated lncRNAs in cancers. We predicted thousands of lncRNAs in the liver and
heart tissues by analyzing RNA-Seq data in Eospalax fontanierii. Those lncRNAs often have shorter
lengths, lower expression levels, and lower GC contents than mRNAs. Majors of lncRNAs have
expression peaks in hypoxia conditions. We found 1128 DE-lncRNAs (differential expressed lncRNAs)
responding to hypoxia. To search the miRNA regulation network for lncRNAs, we predicted 471
and 92 DE-lncRNAs acting as potential miRNA target and target mimics, respectively. We also
predicted the functions of DE-lncRNAs based on the co-expression networks of lncRNA-mRNA. The
DE-lncRNAs participated in the functions of biological regulation, signaling, development, oxoacid
metabolic process, lipid metabolic/biosynthetic process, and catalytic activity. As the first study of
lncRNAs in Eospalax fontanierii, our results show that lncRNAs are popular in transcriptome widely
and can participate in multiple biological processes in hypoxia responses.

Keywords: hypoxia adaptation; Eospalax fontanierii; transcriptome; LncRNAs

1. Introduction

Subterranean rodents suffer from adverse environmental factors underground, such as
hypoxia and hypercapnia. To cope with this, they have evolved and adapted in a long-term
period. For blind mole rats, they can survive under 3% O2 for more than 11 h without
obvious damage, while rats survive only 2.5 h under the same condition [1]. Although mice
or rats serve as model animals for medical research, they are limited in hypoxia studies
as they are sensitive under severe hypoxia. Blind mole rats and naked mole rats attract
scientists’ attention for their cancer-resistant, long-lived, and hypoxia-adaptive traits. AS
with blind mole rats, Eospalax fontanierii (E. fontanierii) are strictly subterranean rodents
that survive in habitats poor in oxygen and rich in carbon dioxide and ammonia.

The subterranean E. fontanierii belongs to the Myospalactinae subfamilies of the family
Spalacidae and is mainly distributed in the Loess Plateau of China [2–4]. E. fontanierii is
close with Nannospalax ehrenbergi and Rhizomys sinensis in the evolutionary distance and
they all belong to the family Spalacidae [5]. In the lab, E. fontanierii can survive more
than 10 h under 4% O2 without injury, Sprague Dawley rats (SD rats) survive only 6 h
under the same conditions [6]. By analyzing the blood components, increased red blood
cells and hemoglobin concentration, and decreased coagulation rate under hypoxia in
E. fontanierii we can better understand their adaptation to hypoxia [7,8]. Under hypoxia,
tissues generate reactive oxygen species to damage the integrity of cell components, and
E. fontanierii can overcome the oxidative stress by increasing the expression levels or
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the protein activities of antioxidant genes, such as metallothionein, cystathionine beta-
synthase, superoxide dismutase, catalase, and glutathione reductase [9,10]. Energy supply
is important for normal activities underground, and enhanced fructose-driven glycolysis
is found to accelerate the supply of energy in E. fontanierii under hypoxia [11]. However,
more aspects of molecular mechanisms for the adaptation to hypoxia in E. fontanierii
remain unknown.

Long noncoding RNAs (LncRNAs) are a class of RNAs with a lack of coding potential
and length of more than 200 bp. LncRNAs play important roles in regulating gene ex-
pression in transcriptional and posttranscriptional methods [12,13]. Many studies suggest
that LncRNAs involve almost all life processes [14–16]. Recent studies show that LncR-
NAs can be induced by hypoxia-inducible factor 1 and were involved in the regulatory
mechanisms of gene expression under hypoxia during the progression of different types
of cancers [17–20]. Besides, research in naked mole-rat showed that LncRNAs may have
important effects on anticancer mechanisms [21]. As lncRNAs play potential functions
in hypoxic stress, it is necessary to identify and profile lncRNAs responding to hypoxia
response in subterranean rodents (for example, E. fontanierii).

In this study, we identified for the first time the transcriptome-wide lncRNA in
E. fontanierii from liver and heart transcriptomes under different oxygen levels. The lncR-
NAs associated with hypoxia stress were identified and their functions were explored. Our
results provide new insight into the hypoxia adaptation in E. fontanierii, which broaden our
knowledge about the adaptation mechanisms of subterranean rodents.

2. Materials & Methods
2.1. Sampling and Data Collection

As the species (E. fontanierii) is considered an important agricultural pest and is
not protected under any local, regional, national, or international decree, we purchase
those individuals from local farmers. Eighteen individuals of E. fontanierii (male and
female, 220–280 g) were captured from agricultural land in Yan’an (N 35◦09′, E 109◦22′),
Shaanxi Province, China. The species conservation status is ‘least concern’ (LC), and
the population trend is unknown. All animals were captured and treated humanely
according to guidelines of the Care and Uses of Laboratory Animals of China, and all
of the procedures were approved by the Animal Care and Use Committee of Shaanxi
Normal University (SNNU-IACUC-EAC-008-2010). Field experiments were approved by
the Shaanxi Normal University, College of Life Science (project number: 18.11.20). Each
animal was housed in a separate cage [475 L × 350 W × 200 H (mm)] maintained at
21 ± 1 ◦C under dark environment. All animals were allowed free access to food (carrots).
The adapted E. fontanierii were randomly divided into three groups (n = 6 per group):
6.5% O2 6 h (acute hypoxia), 10.5% O2 44 h (chronic hypoxia), and 21% O2 (normoxia). In
the normoxia group (21% O2), animals breathed normal air for one week. In the chronic
hypoxia group, animals were placed in a hypoxia chamber containing 10.5% O2 for 44 h.
In the acute hypoxia group, animals were placed in 6.5% O2 hypoxia chamber for 6 h.
The chamber was ventilated with nitrogen to maintain a constant oxygen concentration,
which was monitored using a JRC-1020 thermo-magnetic analyzer. The animals were
anesthetized with an intraperitoneal injection of pentobarbital (45 mg/kg) and sacrificed to
collect fresh tissues and frozen into liquid nitrogen immediately. Total RNA was extracted
using an RNA Simple Total RNA kit (TaKaRa) according to the instructions. As the
transcriptome data of E. fontanierii heart and liver tissues treated by different oxygen levels
were published by our previous studies, those data were downloaded from NCBI database
under BioProject accession number PRJNA497961 [8,10]. Those data are paired-end reads
with a length of about 150 bp. The mature sequence of miRNA from four rodential species
(Cricetulus griseus, Cavia porcellus, Mus musculus, Rattus norvegicus) were downloaded from
miRbase (version 22.0) [22].
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2.2. Assembly and Annotation

The RNA-Seq data were cleaned by removing the primer sequences, adapters, and
low-quality bases with fastp (v0.20.1) [23]. Then all data were assembled into one transcript
set by Trinity (v2.4) [24]. To annotated the functions of transcript set, blastx were performed
for all transcripts against Nr database (E-value < 1e-3). Software Blast2GO Command Line
(v1.0.2) (-https://www.biobam.com/blast2go-command-line-tools/, latest accessed data:
2/11/2021) were used to find the GO terms for annotated transcripts with blastx output
xml file as input (threshold E-value < 1e-6, command: Blast2GO_HOME/blast2go_cli.run
-properties cli.prop -loadfasta input.fasta -loadblast blastResult.xml -mapping -annotation
-saveb2g -savedat -annex -useobo go-basic.obo) [25]. We considered the transcripts with ho-
mologies in Nr database and GO term annotations as mRNAs for next analysis. Website tool
KOBAS3.0 was used to find functional annotations of mRNAs in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [26].

2.3. Pipeline for lncRNA Identification

To identify the lncRNAs in transcript set, we designed a pipeline by multiple bioin-
formatics methods. Firstly, the sequence length of transcripts should be more than 200 nt.
After this, the longest ORF (open reading frame) in transcripts should be not more than
300 nt from start codon to stop codon. The longest ORF were identified by TransDecoder
(command1: TransDecoder. LongOrfs -t input.fasta; command2: TransDecoder.predict—t
input.fasta) (v3.0.1) [24]. Subsequently, BLASTx (v2.6.0+) searching for transcripts were
performed against the Swiss-Prot (E-value < 1e-10) and Nr (E-value < 1e-10). The matched
transcripts were filtered. And then, we searched the Pfam motifs in peptide sequences of
transcript using HMMER (version: 3.1b2) (command: phmmer -E 1e-5 -cpu 8 -pfamtblout
output input.pep Pfam-A.hmm) [27,28]. Those transcripts with peptide sequence con-
taining Pfam motifs were removed. CPC (coding potential calculator) and CPAT (thresh-
old:0.44) were used to filter the potential coding transcripts [29,30]. Rfam database were
used to remove known noncoding RNAs, such as small nucleolar RNAs (snoRNAs), small
nuclear RNAs (snRNAs), transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) (blastn,
E-value < 1e-5) [31].

2.4. Expression Analysis and DE-lncRNA Identification

We calculated the transcript expression levels by the script from Trinity toolkit (com-
mand: TRINITY_HOME/util/align_and_estimate_aubundance. pl —transcript Trinity.fasta
–seqType fq –left reads_1.fq –right reads_2.fq –est_method RSEM –aln_method bowtie –
trinity_mode –prep_reference –out_dir rsem_outdir). DESeq2 (v1.26.0) of R package was
used to identify DE-lncRNAs [32]. Fold change for expression >2 or <0.5 and p-value < 0.05
(Wald test) were considered as DE-lncRNAss. The perl script (run_DE_analysis.pl) in Trin-
ity2.4 toolkits was used for the identification of DE-lncRNAs by integrating DESeq2 (com-
mand: TRINITY_HOME/Analysis/Differential_Expression/run_DE_analysis.pl –matrix
counts.matrix –method DESeq2 –samples_file samples_described.txt) [24].

2.5. Real-Time PCR Validation of DE-lncRNAs

Three DE-lncRNAs predicted in response to hypoxia in liver or heart were selected
to validate the reliability of the DE-lncRNAs. Gene expression was measured using Step
One Real-Time System (ABI) with SYBR Premix ExTaq. Relative gene expression levels
were normalized against that of an internal reference gene (β actin) and calculated using
the ∆∆Ct method. Primers were designed by Primer-BLAST on the NCBI website. The
expression of each gene was analyzed using three biological replications for each condition.
Data were presented as the mean ± standard deviation (SD). SPSS 17.0 statistical software
was used for statistical analysis of the data. The statistical significance of the differences
between the groups was evaluated using student’s t-test. p-values of <0.05 were considered
statistically significant (student’s t-test).

https://www.biobam.com/blast2go-command-line-tools/
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2.6. Prediction of miRNA Targets and Target Mimics

The 3749 miRNA mature sequences were collected from four rodent species in miR-
base. We searched the conserved miRNAs with the same sequence in at least two species
for the next analysis. Finally, a total of 1801 miRNA sequences were kept. The script
GSTAr.pl could be used for the reverse complementary sequence of miRNA in other RNAs,
and the minimum free energy (MEF) for miRNA-lncRNA/mRNA duplexes by RNAplex
program [33–35]. We predicted the miRNA target and target mimics based on the published
methods [36,37]. The following roles were used to obtain lncRNAs as miRNAs targets: no
more than one mismatch or indel was allowed among the 9th and 12th positions from the
5′ end of miRNA sequences, the total number of mismatches or bulges in other regions
was not allowed to exceed 4 nt, and no continuous mismatches were allowed. The roles
for the miRNA target mimics were as follows: the number of mismatches or indels should
be more than 1 and less than 6 from the 9th and 12th positions from the 5′ end of miRNA
sequences, the perfect base pairing was required within 2nd and 8th positions of 5′ end
of miRNA sequences, and the total mismatches and indels in other regions should be no
more than 4. An in-house Perl script was used to implement the rules.

2.7. Construction of lncRNA-miRNA-mRNA Networks

The lncRNA-miRNA-mRNA networks were constructed based on the complementary
pairs between miRNAs and lncRNAs and between miRNAs and mRNAs. The nodes in
the networks consisted of miRNAs, lncRNAs acting as miRNA targets, lncRNAs acting as
miRNA target mimics, mRNAs acting as miRNA targets, and mRNAs acting as miRNA
target mimics. The lncRNA-miRNA-mRNA networks were visualized with Cytoscape
3.7.2 [38]. To assess the topological property, several measures were used. The node degree
of a node i is the number of edges linked to i. The node betweenness is the number of
shortest paths between pairs of nodes that run through node i. The average shortest path
length is the average length of a shortest path between n and any other node. The closeness
centrality is defined as the reciprocal of the average shortest path length.

2.8. Functional Prediction of DE-lncRNAs Responding to Hypoxia Based on the lncRNA-mRNA
Co-Expression Networks

We constructed the co-expression network between mRNAs and lncRNAs using
the published methods [39,40]. Briefly, the pipeline of constructing lncRNA-mRNA co-
expression network was as follows: (1) The lncRNAs and mRNAs with their variances
ranked in the top 75% of expression profiles were kept; (2) The p-values of Pearson’s
correlation coefficient (Pcc) for each pair of genes were calculated by Fisher’s asymptotic
test in the WGCNA library of R, and were adjusted by Bonferroni correction method; (3) The
co-expression relationships with adjusted p-values (Fisher’s asymptotic test) of less than
0.05 and ranking in the top 5% and bottom 5% of Pcc were used for next analysis. The
Bonferroni multiples test was executed using the multtest package in R. Cytoscape 3.7.2
was used for the visualization of the co-expression network [38].

Based on the co-expression networks between lncRNAs and mRNAs, we selected the
mRNAs co-expressed with DE-lncRNAs to enrich their functions (GO terms and KEGG
pathways) using the tools in website omicshare (https://www.omicshare.com/tools, latest
accessed date: 1 November 2021).

3. Results
3.1. Global Identification of lncRNAs in E. fontanierii

The transcriptome data set were generated by RNA-Seq from liver and heart samples
with three biological replicates for each condition. The total count of raw pair-end reads is
518.9 million. After removing the adapter-related and low-quality reads, 464 million pair-
end clean reads were kept for the next analysis. The GC (guanine and cytosine) contents
are about 49.73–52.48% and the reads satisfied with Q30 (99.9% base accuracy) are more
than 85% across all samples (Table 1). All of the clean reads were assembled by Trinity,

https://www.omicshare.com/tools
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and 709,252 transcript contigs were generated [24]. The N50 and the average length of
the transcript contigs were 1194 and 701.5 nt. By mapping clean reads into transcripts,
the mapping ratios were 68.2–95.3% across samples. To identify mRNAs with functions,
blastx searches against the Nr database were performed for all transcripts, and the BLAST
output was used to annotate the functions of transcripts by Blast2GO. The transcripts with
significant homologs in Nr database and GO terms were considered as mRNAs for our
next analysis. To identify high confidence lncRNAs, all transcripts were subjected to a
step-wise pipeline with a series of criteria (Figure 1). Briefly, the transcript with sequence
length > 200 nt and the ORF length < 300 nt were kept for the next step. Several databases,
such as Nr, Swiss-prot, Pfam, and Rfam, were used to exclude transcripts with homology
with known proteins or ncRNAs (tRNA, rRNA, snRNA, and snoRNA) [27,31,41,42]. The
software CPC (coding potential calculator) and CPAT for coding potential evaluation
were used [29,30]. To minimize the background transcriptional noises, transcripts with
low abundance (FPKM < 1) and expressed in only one sample were screened. Finally,
4877 lncRNA candidates satisfied with all criteria were identified.

Table 1. Mapping Statistics of Clean Reads with Assembled Transcripts.

Samples a Clean
Read

Clean Read
Ratio (%) G + C (%) ≥Q30 (%) Mapped Reads Mapped

Ratio (%) b

Liver
Normoxia
(21% O2)

27,854,142 93.94 51.32 85.01 19,951,468 71.63
26,718,742 93.29 52.06 85.16 19,498,631 72.98
29,040,231 92.45 51.75 85.1 21,118,333 72.72

Liver
Chronic Hypoxia

(10.5% O2)

27,103,408 86.76 52.48 85.17 18,487,988 68.21
27,384,840 81.35 51.99 85.12 19,445,390 71.01
24,116,984 99.75 50.47 92.92 18,714,000 77.60

Liver
Acute Hypoxia

(6.5% O2)

23,280,246 90.95 52.19 85.02 17,227,546 74.00
25,090,462 99.46 50.65 93.3 19,308,428 76.96
28,633,359 99.46 49.73 93.3 21,722,527 75.86

Heart
Normoxia
(21% O2)

24,686,829 92.59 51.88 85.01 18,658,425 75.58
25,557,787 95.05 51.98 85.03 19,446,190 76.09
24,965,067 91.58 50.57 85.15 18,245,211 73.08

Heart
Chronic Hypoxia

(10.5% O2)

20,584,903 80.19 50.39 85.05 15,443,520 75.02
20,638,228 82.54 50.48 85.88 15,654,399 75.85
39,391,311 88.58 50.49 85.2 28,284,097 71.80

Heart
Acute Hypoxia

(6.5% O2)

22,190,427 81.75 50.89 85.17 16,216,024 73.08
20,402,708 80.68 51.23 85.45 19,445,390 95.31
26,388,845 82.04 50.79 85.25 19,385,947 73.46

Notes. a 21% O2, 10.5% O2, and 6.5% O2 include three biological replicates of E. fontanierii for the three oxygen concentrations; b the
mapped ratio represents the ratio of mapped reads to clean reads.

3.2. Characteristics of E. fontanierii lncRNAs

The length of E. fontanierii lncRNAs ranged from 201 to 6053 nucleotides (nt), the
majority of which were short (81.5%; 3973 out of 4877) in length (<1200 nt) (Figure 2A).
The median and average length of lncRNAs were 706 and 849.8 nt, which is lower than
that (2120 and 2701.6 nt) in mRNAs of E. fontanierii. It shows that lncRNAs have a shorter
length than mRNAs, which is consistent with other species as expected [21]. The GC
content of whole lncRNAs sequences was 43.44%, lower than the value (49.78%) observed
in mRNAs (p < 2.2 × 10−16, Wilcoxon rank-sum test) (Figure 2B). The result is different
from the lncRNA feature in naked mole-rat, in which the PCG (protein-coding genes)
have lower GC content than that in lncRNAs [21]. This may be caused by the tissue- or
species-specificity of lncRNAs. The expression levels of lncRNAs were also lower than that
in mRNAs across tissues and treatments (Figure 2C), which is often observed in lncRNA
researches. By comparing the numbers of lncRNAs with peak expression levels in the heart
and liver tissues, we found that the number of lncRNAs with peak expression levels in the
liver were larger than that in heart, while the numbers of mRNAs with peak expression
levels were considerable in the two tissues (Figure 2D). We also found that both lncRNAs
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and mRNAs preferred to possess more peak expression levels in hypoxia (6.5% or 10.5%
O2) than in normoxia (21% O2) in the two tissues.

Figure 1. Pipeline for lncRNA identification. The left panel of the flow diagram showed the preprocessing and assemble
of RNA-Seq data. The right panel displayed step-wise filters for transcripts from the left panel as input. In the first step
of the right panel, the transcripts with a length of more than 200 nt were kept as input in the next step (Yes decision).
For step two, the transcripts with the longest ORF (open reading frame) length less than 300 nt (100 aa) were used as
input of the next step (“Yes” decision). In steps three, four, and give, the transcripts from the previous step that have
matched items in the three protein-related databases under defined E-values were discarded (“No” decision), and the
transcripts with no significant matches passed the three filters and were used as next step input. The transcripts labeled as
noncoding by CPC were kept as input of the next step (“Yes” decision). The transcripts with a coding probability less than
0.44 calculated by CPAT were used for the next step input (“Yes” decision). The transcripts with matched items in Rfam
(threshold E-value < 1e-5) were discarded (“No” decision), and the left transcripts were considered as lncRNA candidates.
Swiss-prot: a high-quality annotated and non-redundant protein sequence database [42]. Nr: Non-redundant protein
sequences database compiled by NCBI [41]. Pfam: the protein family database [27]. CPC: Coding Potential Calculator [29].
CPAT: Coding-Potential Assessment Tool [30]. Rfam: the RNA family database [31]. The tool Fastp (version: 0.20.1) was
used for fastq preprocessing [23], Trinity was used for transcript assembly [24]. BLAST was used to search against databases,
such as Swiss-prot, Nr, and Rfam [43].

3.3. Predication of Differentially Expressed lncRNAs

To identify hypoxia-responsive lncRNAs of E. fontanierii, three paired comparisons
among the three oxygen concentrations in two tissues were carried out: 10.5% O2 vs. 21%
O2; 6.5% O2 vs. 21% O2; and 6.5% O2 vs. 10.5% O2. A total of 1128 lncRNAs were consid-
ered as differentially expressed lncRNAs (DE-lncRNAs) by DESeq2, which satisfied with a
fold change > 2 and p < 0.05 [32]. For the comparisons between 6.5% O2 vs. 21% O2, 133
and 153 DE-lncRNAs were found in the heart and liver, separately (Figure 3A,B, Table 2), of
which the number of downregulated lncRNAs (74, 110) were more than upregulated lncR-
NAs (59, 43). Most DE-lncRNAs were found when we compared the group of 6.5% O2 with
the group of 10.5%O2, which showed more differences between the two hypoxic groups.
184 DE-lncRNAs were found shared among the same comparisons in two tissues or differ-
ent upregulated/downregulated groups in the same tissues (Figure 3C). To validate the
DE-lncRNAs, three DE-lncRNAs (TRNITY_DN164423_c1_g3, TRINITY_DN172918_c1_g1,
and TRINITY_DN132528_c0_g1) were selected to be validated by quantitative real-time
PCR (qRT-PCR) (Figure S1). The qRT-PCR results were generally consistent with RNA-seq
data, in which TRNITY_DN164423_c1_g3 was significantly upregulated under chronic
hypoxia compared with normoxia, TRINITY_DN172918_c1_g1 was upregulated in hy-
poxia compared with normoxia, and TRINITY_DN132528_c0_g1 was upregulated in acute
hypoxia compared with chronic hypoxia and normoxia (p < 0.05, student’s t-test).
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Figure 2. Characteristics of lncRNAs. (A) Length distribution of 4877 lncRNAs and 19,009 mRNAs. The X-axis represents
the length and the Y-axis represents the number of lncRNAs and mRNAs with specific lengths. (B) The GC content
distribution of lncRNAs and mRNAs. (C) The distribution of the expression levels for lncRNAs and mRNAs across different
groups. (D) The organ distribution of lncRNAs and mRNAs with peak expression levels. LncRNAs: Long noncoding RNAs;
mRNAs: messenger RNAs; GC content: the ratio of guanine plus cytosine, GC content percentage was calculated as Count
(G + C)/Count (A + T + G + C) * 100%. FPKM: Fragments Per Kilobase of transcript per Million mapped reads; He06: heart
tissue under 6.5% O2 concentration; He10: heart tissue under 10.5% O2 concentration; He21: heart tissue under 21% O2

concentration; Lv06: liver tissue under 6.5% O2 concentration; Lv10: liver tissue under 10.5% O2 concentration; Lv21: liver
tissue under 21% O2 concentration.

Table 2. DE-lncRNA Number.

DE-lncRNAs Sets (%) All DelncRNAs Upregulated Downregulated

Heart 6.5 versus 21 133 59 74
Heart 6.5 versus 10.5 278 167 111
Heart 10.5 versus 21 100 19 81
Liver 6.5 versus 21 153 43 110

Liver 6.5 versus 10.5 465 165 300
Liver 10.5 versus 21 328 34 294

3.4. Prediction of lncRNAs as Potential Targets or Target Mimics of miRNAs

Studies showed that lncRNAs can modulate gene expression by playing roles as
miRNA targets or target mimics [17,18]. To investigate the lncRNA roles in the miRNA
regulation network, we predict the potential target or target mimics in the lncRNA set
applying a computational pipeline [36,37]. For potential lncRNAs as miRNA targets,
4922 interactions were found between 666 miRNAs and 2151 lncRNAs. For example,
lncRNA TRINITY_DN135415_c1_g1 and TRINITY_DN157331_c2_g1 acted as targets of
miR-184, and both of them had perfect pairing in middle regions (from 9th to 12th) of
miRNA (Figure 4A). There were 639 lncRNA-miRNA interactions, in which 439 lncRNAs
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were predicted as target mimics of 319 miRNAs. For example, miRNA-1224, miR-152-3p,
and miR-18a-3p had bulges in positions between 9th and 12th of miRNA with the align-
ments of target mimics of lncRNA TRINITY_DN154931_c0_g2, TRINITY_DN144864_c0_g2,
and TRINITY_DN159279_c0_g1, respectively (Figure 4B). For the DE-lncRNAs as miRNA
target mimics, 137 interactions were predicted between 119 miRNAs and 92 lncRNAs.
Five miRNAs, such as miR-203, miR-326, miR-18, miR-344, and miR-185 possessed three
DE-lncRNA target mimics. For the DE-lincRNAs as miRNA target, 1102 interactions be-
tween 405 miRNAs and 471 lncRNAs were found, in which miR-574, miR-760, and miR-328
have more than 20 DE-lncRNA targets for each of them.

Figure 3. The volcano and heatmap plots of DE-lncRNAs. (A) Volcano plot for DE-lncRNAs under
6.5% vs. 21% O2 in heart. The X-axis shows the log2 fold changes of DE-lncRNAs, and Y-axis
shows the −log10 (p-value) (Wald test). Red dots in the volcano plot represent the up-regulated
DE-lncRNAs, and green dots represent the down-regulated DE-lncRNAs in 6.5% O2 treatment group
compared with 21% O2 as control group in heart tissue. (B) Volcano plot for DE-lncRNAs under 6.5%
O2 vs. 21% O2 in liver. (C) The heatmap of DE-lncRNAs, the expression levels were scaled by row.
DE-lncRNAs: differential expressed lncRNAs; UP: up-regulated; DW: down-regulated. He6: heart
tissue under 6.5% O2 concentration; He10: heart tissue under 10.5% O2 concentration; He21: heart
tissue under 21% O2 concentration; Lv6: liver tissue under 6.5% O2 concentration; Lv10: liver tissue
under 10.5% O2 concentration; Lv21: liver tissue under 21% O2 concentration.

3.5. Construction of lncRNA-miRNA-mRNA Networks

Research has shown that miRNAs participate in complex networks including their
targets and target mimics, and lncRNAs could act as targets or target mimics of miR-
NAs [18,44,45]. To infer the functions of lncRNAs acting as targets or target mimics of
miRNAs, we constructed the networks of lncRNA-miRNA-mRNA, in which miRNAs
connected both mRNAs and lncRNAs simultaneously. The networks had 18,289 nodes
connected by 104,422 edges, in which the nodes included 2282 lncRNAs (acting as miRNA
targets or target mimics), 688 miRNAs, and 15,319 mRNAs (acting as miRNA targets
or target mimics) (Figure 5A). There were 638 interactions between 318 miRNAs and
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438 lncRNAs acting as miRNA target mimics and 4911 interactions between 665 miRNAs
and 2141 lncRNAs acting as miRNA targets. In addition, it was found that 6027 mRNAs
acted as 617 miRNA target mimics, and 14,888 mRNAs acted as 688 miRNA targets in
the networks. To display the node details in-network, several sub-networks from the
whole networks were extracted as examples. In Figure 5B–D, miR-155-3p, miR-582-3p,
and miR-432-3p nodes were connected with four types of RNAs, including lncRNAs as
miRNA targets/target mimics, mRNA as miRNA targets/target mimics. 673 miRNA,
16 lncRNAs acting as miRNA targets, 2828 mRNAs acting as miRNA targets, and 5 mRNAs
acting as miRNA target mimics were identified as hub genes (each hub gene has at least
ten other RNAs as partners). The topological features, ‘degree’, ‘node betweenness’, and
‘closeness centrality’, and ‘average shortest path length’ were used to profile the topological
nodes. The scope of Average shortest path length for mRNA, lncRNA, and miRNAs ranged
from 2.79 to 5.75, and most miRNAs had a lower value of average shortest path length
than other RNA types (Figure S2A), suggesting that miRNAs were connected with other
nodes with closer path length. By analyzing the other three topological features, we found
that miRNAs and other RNA types exhibit different density peaks and that the density
peaks of mRNAs lag behind other RNA types (Figure S2B–D), suggesting that miRNAs
possess higher node betweenness, closeness centrality, and degree than other RNA types
(Kolmogorov-Smirnov test, p < 2.2 × 10−16). Closeness centrality is a measure of how fast
information spreads from a given node to other reachable nodes in the network, suggesting
miRNAs regulated other RNAs with shorter path length.

Figure 4. The predicted alignments between miRNAs and lncRNAs. (A) LncRNAs predicted as
putative miRNA targets. The rules of miRNA targets were showed as follows: at most, one mismatch
or indel was allowed between the 9th and 12th positions of the 5′ end of miRNA sequence, the
total number of bulges or mismatches in the other regions was not allowed to exceed 4 nt, and no
continuous mismatches were allowed. In this figure, miR-184 has perfect matches with the three
lncRNA targets between 9th and 12th from miRNA 5′ end, and has 0~2 discontinuous mismatches
in other regions. G-U pairs were not considered as a mismatch for RNA molecular. (B) LncRNAs
are predicted as putative miRNA target mimics. The rules of miRNA target mimics were showed as
follows: the number of mismatches or indels should be larger than 1 and less than 6 between 9th and
12th positions of the 5′ end of miRNA sequence, perfect nucleotide pairing was required between the
2nd and 8th positions of the 5′ end of miRNA sequences, and the number of mismatches and indels
should be no more than 4 nt in other regions. For the miRNA miR-1224, miR-152-3p and miR-18a-3p,
all of them have 2~3 mismatches or indels between 9th and 12th from miRNA 5′ end, perfect pairing
between the 2nd and 8th positions of the 5′ end of miRNA, and 2~3 nt mismatches and indels in
other regions.
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Figure 5. The transcriptome-wide miRNA-regulated networks. pink nodes, miRNAs; yellow nodes, lncRNAs that may be
miRNA targets; green nodes, lncRNAs that may be miRNA target mimics; cyan nodes, mRNAs that may be miRNA targets;
blue nodes, mRNAs that may be miRNA target mimics; grey edges, correlations. The labels of nodes were prefixed with
specific abbreviations, such as MT for mRNA target, LT for lncRNA target, MD for mRNA mimics, and LD for lncRNA
mimics. (B–D) were extracted from (A).

To search the patterns of DE-lncRNA-miRNA-mRNA networks, we compared the
number of DE-lncRNAs as miRNA targets/target mimics, mRNAs as miRNA targets/target
mimics, in which the mRNAs were connected to DE-lncRNAs indirectly intermediated by
miRNAs. The number of those four RNA types was distributed unevenly for every miRNA.
The number of DE-lncRNAs as miRNA targets was more than the number of DE-lncRNAs
as miRNA target mimics for a major of miRNAs (Figure 6). For a small part of miRNAs,
the DE-lncRNAs as miRNA target mimics had a larger number than the DE-lncRNAs as
miRNA targets, such as miR-193, miR-664-5p, and miR-204-3p.

In addition, some miRNAs could bind multiple DE-lncRNAs (Figure 7). For example,
lncRNA TRINITY_DN485532_c0_g1 and TRINITY_DN158701_c0_g1 acted as the target
of miR-671-5p, while TRINITY_DN116787_c0_g1 acted as the target mimic of the miRNA.
For some DE-lncRNAs, they could be bound by multiple miRNAs. For example, lncRNA
TRINITY_DN157331_c2_g1 could be bound by miR-185-3p and miR-18a-3p, and lncRNA
TRINITY_DN170862_c0_g4 could be bound by miR-672, miR-672-5p, and miR-345-3p.
Some DE-lncRNAs could act as target and target mimics of different miRNAs at the same
time. For example, TRINITY_DN162199_c1_g2 could act as the target of miR-326, miR-
330-5p, and miR-296-3p, and this lncRNA could also act as the target mimics of miR-328a
and miR-147.
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Figure 6. The number of alignments formed by miRNA-DE-lncRNA and miRNA-mRNA duplexes. The X-axis legend
shows the miRNAs. The Y-axis legend represents the number of lncRNAs (right) or mRNAs (left) that function as miRNA
target or target mimics. The different colors of bars indicate different types of RNAs.

Figure 7. Representative regulatory networks of miRNA-lncRNA duplexes. Pink nodes, miRNAs;
yellow nodes, lncRNAs that may be miRNA targets; green nodes, lncRNAs that may be miRNA target
mimics. The labels of nodes were prefixed with specific abbreviations, such as MT for mRNA target,
LT for lncRNA target, MD for mRNA mimics, and LD for lncRNA mimics. Grey edges: correlations.

3.6. Potential Functions of lncRNAs Based on Co-Expression Networks

To explore the functions of lncRNAs responding to hypoxia in liver and heart tissues of
E. fontanierii, we firstly constructed the co-expression networks of lncRNA-mRNA, and lncR-
NAs’ functions were assigned by enriching the functions of the mRNAs that were associated
with lncRNAs. There were 8893 nodes in co-expression networks, including 917 lncRNA
nodes and 7976 mRNA nodes. There were 5650 edges (5554 positive correlations and
96 negative correlations) within 749 lncRNA nodes, 80,577 edges (70,064 positive correlations
and 10,513 negative correlations) connecting lncRNAs (number: 895) and mRNAs (number:
5960), and 651,565 edges (497,753 positive correlations and 153,812 negative correlations)
linking mRNAs (number: 7922).

By enriching the GO terms for mRNAs that were co-expressed with DE-lncRNAs
found in the heart, the main GO terms were biological regulation, metabolic process, reg-
ulation of biological process, response to stimulus, catalytic activity, molecular function
regulator. We found the most enriched GO terms were associated with biological reg-
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ulation (578 genes) energy reserve metabolic process (18 genes), negative regulation of
multicellular organismal process, system development (280 genes), cell communication
(322 genes), calcium-dependent protein binding (14 genes) (Figure 8A,B). The main en-
riched KEGG pathways were protein digestion and absorption (14 genes), microRNAs in
cancer (24 genes), insulin signaling pathway (24 genes) (Figure S3). In total, 23 genes co-
expressed with DE-lncRNAs were annotated by the GO term “response to hypoxia”, which
may play key roles in hypoxia adaption in subterranean animals and may be regulated
by DE-lncRNAs.

Figure 8. The top 20 of GO enrichment of DE-lncRNAs co-expressed with mRNAs in heart. (A) The top 20 of GO enrichment
for Biological Process. (B) The top of GO enrichment for molecular function. The numbers to the right of bars mean the
number of DE-lncRNAs in specific enriched GO terms and the numbers in brackets mean the q-value.

By enriching GO terms of mRNAs that were co-expressed with DE-lncRNAs in the
liver, we found the most enriched GO terms were oxoacid metabolic process (115 genes),
lipid metabolic/biosynthetic process (119/71 genes), catalytic activity (406 genes), co-
factor binding (46 genes), endoplasmic reticulum (139 genes), mitochondrion (136 genes)
(Figure S4A–C). The most enriched pathways were fatty acid metabolism (19 genes), steroid
biosynthesis (10 genes), drug metabolism/other enzymes (24 genes), citrate cycle (TCA
cycle) (11 genes) (Figure S4D). The GO term “acute-phase response” was enriched, and it
was assigned to 15 genes co-expressed with DE-lncRNAs, suggesting that DE-lncRNAs
may play roles in acute hypoxia response.

4. Discussion

In this article, we predicated the lncRNAs in E. fontanierii in two tissues heart and liver.
Thousands of lncRNAs were found in RNA-Seq data by stringent pipelines. Multiple filters
were used to remove the coding potential transcripts. Partial transcripts were removed by
sequence features, such as long open reading frames and Pfam motifs, which could screen
coding-potential sequences with no homologous in protein databases. Alignment tool
Blastx was used to search known protein homologous of our transcripts against two protein
databases, Nr and Swiss-Prot. In addition, two machine learning tools (CPC and CPAT)
were used to filter potential coding transcripts based on sequence intrinsic features [29,30].
Although our pipelines were designed from different aspects to identify reliable lncRNAs,
some lncRNAs containing short ORFs maybe not be screened by our filters, which may code
small peptides. Evidence shows that there exists a small peptide world in lncRNAs [46–49].
It is worthful to explore the phenomenon of lncRNAs coding short peptides.

By analyzing the characters of lncRNAs, we found that E. fontanierii lncRNAs often
have a shorter length, lower GC contents, and expression levels than that of mRNAs,
which were consistent with other species studies of lncRNAs [50]. The different pattern of
GC contents for lncRNAs and mRNAs between E. fontanierii and naked mole-rat may be
caused by the species specificity, and lncRNAs often have poor conservation in sequences



Curr. Issues Mol. Biol. 2021, 43 1901

among different species, which may be one reason for inconsistency sequence features. By
comparing the peak expression levels of lncRNAs across groups, we found that lncRNAs
with peak expression levels under hypoxic conditions have a larger number than that of
normoxic conditions, and a larger number of lncRNAs with peaks expressed were found
in the liver than in the heart. It showed that lncRNAs prefer to possess higher expression
levels under hypoxia in the liver, which may be caused by the tissue-specific expression of
lncRNAs. The liver could detoxify various metabolites, synthesize protein, and produces
biochemicals necessary for digestion [51]. The response to hypoxia of liver may change the
normal metabolic process, and more lncRNAs may be needed to regulate gene expression.

As lncRNAs could regulate the gene expressions in different ways, studies showed
that lncRNAs could be miRNA targets or target mimics [18,52,53]. For example, lncRNA-
TINCR acts as a competitive endogenous RNA by sponging miR-761 in the migration of
mesenchymal stem cells [52]. Here, we explore those lncRNAs in E. fontanierii acting as the
targets or target mimics of miRNAs by computational methods. For example, HIF1A was
predicted as the target of miRNA miR-154-5p, miR-129b-5p, miR-1912-3p, and miR-1188-5p,
while 12 DE-lncRNAs also had duplexes with those miRNAs (Figure S5), suggesting that
the same miRNAs may regulate HIF1A and DE-lncRNAs under hypoxia. We found that
some lncRNAs with the mismatches or bulges in the 9th to 12th positions of miRNA-
lncRNA pairing sites could not be cleaved by the miRNA-associated silencing complex.
By bioinformatic methods, 439 lncRNAs were predicted as target mimics of 319 miRNAs
in E. fontanierii. Our results showed that the lncRNAs acting as miRNA target mimics
(sponges or decoys) were popular in E. fontanierii, which could act as the regulators of
miRNAs. Based on ceRNA (competing endogenous RNA) hypothesis, lncRNAs that act as
target mimics of miRNAs sequester miRNAs and favor the repressed mRNA targets. In
our lncRNA-miRNA-mRNAs networks, 438 lncRNAs act as target mimics of 318 miRNA
and the 318 miRNAs have 12,982 mRNA targets. Those lncRNAs could regulate mRNA
functions with ceRNA manners. We also found that some DE-lncRNAs could work as
target mimics of miRNA. It suggests that DE-lncRNAs responding to hypoxia may regulate
mRNA functions by ceRNA mechanism. In the lncRNA-miRNA-mRNA networks, one
miRNA may be targeted by different mRNAs and lncRNAs, and one mRNA or lncRNA
may target multiple miRNAs, which extended the complexity of gene regulation networks.

To search the function of lncRNAs responding to hypoxia, we constructed co-expression
networks of lncRNA-mRNA and enriched the functions of mRNAs with co-expressed
DE-lncRNAs. The enriched GO terms and KEGG pathways were assigned to those corre-
sponding lncRNAs. We found that the most enriched GO term biological regulation was
found for the DE-lncRNA in the heart, suggesting that many lncRNAs may participate
in the biological regulation under hypoxic stress. Biological regulation is what allows an
organism to handle the effects of a perturbation, modulating its own constitutive dynamics
in response to particular changes in internal and external conditions [54]. The GO term
biological regulation was also enriched in naked mole-rat in response to hypoxia [55].
The DE-lncRNAs involved in biological regulation may maintain homeostasis to avoid
disturbances in metabolic process under hypoxic conditions. Other GO terms, such as
energy reserve metabolic process, anatomical structure development, system development,
and three/fourth ventricle development were associated with heart functions, suggesting
that lncRNAs in the heart may play important roles in heart development under hypoxia.
In another study in mole rat Spalax, energy-saving response is found as a key adaptation
to low oxygen levels [56]. In our study, many energy-related GO terms and KEGG paths
were enriched, such as energy reserve metabolic process, insulin resistance, citrate cycle
(TCA cycle), glucagon signaling pathway, and pyruvate metabolism. It suggested that
DE-lncRNAs have functions in regulating energy processes, which maybe contribute to
the adaption to hypoxia. When the mRNA co-expressed with DE-lncRNAs were enriched,
many metabolic processes were found associating with liver functions, such as small
molecule metabolic process, lipid metabolic process, fatty acid biosynthetic process, and
sterol biosynthetic process. Lipid metabolism is modified during hypoxia or in tumor cell,
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and study in Spalax shows that genes responding to hypoxia are significantly associated
with lipid metabolism [57,58]. It suggested that DE-lncRNAs in the liver may act relevant
roles in liver main functions under hypoxia when those DE-lncRNAs were co-expressed
with mRNAs for metabolic and biosynthetic processes.

Our exploration in lncRNA-miRNA-mRNA networks showed the potential regulation
patterns of lncRNAs. We found that some DE-lncRNAs acted as the target or target mimics
of miRNAs that were associated with hypoxic stress in published studies, such as, miR-185-
3p, miR-671, miR-18, miR-664, and miR-15 [59–63]. For example, the inhibition of miR-15
protects against cardiac ischemic injury [63]. DE-lncRNA TRINITY_DN162625_c0_g1
may repress the function of miR-15 by acting as miR-15 target mimic. The endogenous
reduction of miR-185 accelerates cardiac function recovery in mice [64]. DE-lncRNA
TRINITY_DN156239_c0_g1, TRINITY_DN143859_c0_g1, and TRINITY_DN142354_c0_g1
were predicted as the target mimics of miR-185, which may repress the function of miR-185
to help the cardiac function stability under hypoxia. Those miRNAs play roles in hypoxia-
associated diseases or cancer, suggesting that DE-lncRNAs could regulate those miRNAs
based on competing for endogenous RNA (ceRNA)-mediated regulatory mechanisms,
and further affect the functions of mRNA target. Our results provide a comprehensive
view of miRNA-regulated networks and indicate that lncRNAs can participate in the
regulatory interactions as miRNA target or target mimics. Our study helps to understand
the complexity of hypoxia adaption, forms the basis of further studies of hypoxia adaptation
in E. fontanierii, and has potential biomedical applications. Our methods in lncRNA
identification and miRNA target prediction could be used by other species to extend the
knowledge about lncRNAs and their functions in miRNA regulation network.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cimb43030132/s1, Figure S1: RT-qPCR validations for DE-lncRNAs. (A) lncRNA TRIN-
ITY_DN13528_c0_g1. (B) lncRNA TRINITY_DN164423_c1_g3. (C) lncRNA TRINITY_DN172918_c1_g1.
Asterisks above bars indicate a significant difference in the gene expression among samples
(* p-value < 0.05, student’s t-test); Figure S2: The distribution of topological properties. (A) The density
distribution of average shortest path length for different RNA types. (B) The density distribution of node
betweenness for different RNA types. (C) The density distribution of closeness centrality for different
RNA types. (D) The density distribution of degree for different RNA types. The lncRNA-miRNA-
mRNA network were analyzed by NetwrokAnalyzer from the Tools of Cytoscape 3.7.2 to obtain the
topological properties; Figure S3: The enriched pathways of DE-lncRNAs co-expressed with mRNAs in
heart. The numbers to the right of bars mean the number of DE-lncRNAs in specific enriched pathway
and the numbers in brackets means the q-value; Figure S4: The top 20 of GO/KEGG enrichment of
DE-lncRNAs co-expressed with mRNAs in liver. (A) The top 20 of GO enrichment for Biological Process.
(B) The top 20 of GO enrichment for molecular function. (C) The top 20 of GO enrichment for cellular
component. (D) The top 20 of KEGG path enrichment. The numbers to the right of bars mean the
number of DE-lncRNAs in specific enriched GO/pathway and the numbers in brackets means the
q-value; Figure S5: Regulatory networks of HIF1A-miRNA-lncRNA duplexes. Pink nodes: miRNAs.
Yellow nodes: lncRNAs that may be miRNA targets. Cyan nodes: mRNAs (HIF1A) that may be miRNA
targets. Grey edges: correlations.
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Abbreviations

Q30 99.9% base accuracy
DE-lncRNAs Differentially Expressed long noncoding RNAs
Lv6 liver tissue under 6.5% O2 concentration
Lv10 liver tissue under 10.5% O2 concentration
Lv21 liver tissue under 21% O2 concentration
He6 heart tissue under 6.5% O2 concentration
He10 heart tissue under 10.5% O2 concentration
He21 heart tissue under 21% O2 concentration
KEGG Kyoto Encyclopedia of Genes and Genomes
Pfam Pfam protein domain database
Nr RefSeq Non-redundant protein sequences
GO Gene Ontology.
FPKM Fragments Per Kilobase of transcript per Million mapped reads
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