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ABSTRACT
Cancer stem-like cell (CSC) model has been established to investigate the 

underlying mechanisms of tumor initiation and progression. The imbalance between 
acetylation and deacetylation of histone or non-histone proteins, one of the important 
epigenetic modification processes, is closely associated with a wide variety of diseases 
including cancer. Acetylation and deacetylation are involved in various stemness-
related signal pathways and drive the regulation of self-renewal and differentiation 
in normal developmental processes. Therefore, it is critical to explore their role in 
the maintenance of cancer stem-like cell traits. Here, we will review the extensive 
dysregulations of acetylation found in cancers and summarize their functional roles in 
sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors 
as an effective therapeutic strategy against CSCs is also discussed.

INTRODUCTION

Since being proposed in 1983 [1], the theory 
of cancer stem-like cells (CSCs) has been gradually 
constructed and publicized. According to the CSC 
hypothesis, tumors are organized hierarchically; the 
cancer cell population at the top of the hierarchy displays 
stem cell properties and sustains tumorigenesis. A 
growing body of evidence supports the pivotal role of 
CSCs in pathological self-renewal, drug-resistance and 
cellular heterogeneity of cancer. Bonnet and Dick first 
isolated CD34+CD38- cells that are capable of initiating 
human acute myeloid leukemia (AML). Human AML is 
organized hierarchically and originates from primitive 
hematopoietic cells [2]. Subsequent studies have revealed 
the presence of tumor initiating cells in solid tumors such 
as breast [3], brain [4], colon [5, 6], prostate [7] and liver 
[8] cancers. Although several unanswered questions like 
unknown CSCs universality, variable frequency and non-
universal markers [9] continue to persist, the CSC model 
is a tempting approach to investigate tumor initiation and 
progression.

The CSCs may either arise from dysregulated 
normal stem cells or from mature cells which have 
de-differentiated into a stem-like state. Increasing 

evidence points to the epigenetic aberration in normal 
developmental processes as a key driver of CSC-like 
properties [10–12]. Acetylation is one of the most 
important protein modifications, which occurs via a 
dynamic process regulated by the balance between histone 
acetyltransferases (HATs) and deacetylases (HDACs). 
Acetylation and deacetylation influence the plasticity of 
chromatin structure by changing the electrical property 
of acetylated sites of histone and improve the stability 
of many non-histone proteins by covering ubiquitination 
sites [13]. Through these regulatory mechanisms, 
acetylation and deacetylation participate in the modulation 
of expression of various genes, which in turn modulates 
cellular activities like proliferation, differentiation and 
migration. Clarifying the result of acetylation disorders and 
investigating how these changes modify normal cellular 
activities and maintain the CSCs-related “stemness” may 
provide insights into epigenetic modification of CSCs and 
tumorigenesis. 

In this review, we summarize the recent advances 
in the understanding of the roles of acetylation and 
deacetylation in CSCs, laying stress on the effect of the 
family of HATs and HDACs on CSCs and the potential 
clinical application of HDAC inhibitors to eliminate 
CSCs.

                                                                   Review
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Classification of HATs and HDACs

Histone acetyltransferases (HATs) refer to a group 
of enzymes which are responsible for both histone and 
non-histone acetylation. Acetylation on histone tail is 
important for histone assembly into nucleosomes by 
histone chaperones, and determines whether it can create 
an open and permissive chromatin environment for 
transcription. Briefly, HAT activity/acetylation relaxes 
the chromatin structure, facilitates transcriptional activity 
and hence, increases gene expression. Extensive research 
has been performed on the acetylation of lysine residues 
on histone 3 (H3) and 4 (H4). Acetylation of Lysine 56 
(K56) in the helical core of H3 opens yeast chromatin and 
enables gene transcription, DNA replication and repair, 
and prevents epigenetic silencing [14]. Acetylation of H4 
at K16 regulates chromatin compaction and folding [15]. 
Besides histones, p53 was the first non-histone protein 
found to be acetylated by HATs [16]. A growing number 
of non-histone proteins have been identified as acetylation 
targets. Reversible acetylation of these proteins has 
been shown to play a key role in DNA binding affinity, 
transcriptional activation, protein stability and protein-
protein interactions [17]. Although acetylated proteins 
were shown to increase DNA binding affinity and 
transcriptional activation, acetylated YY1 and ER alpha 
proteins are notable exceptions in this respect [13].

HATs are categorized into 2 types based on their 
cellular location (Table 1). Type A HATs contain a number 
of heterogenic enzymes in the nucleus. These exhibit 
global functional similarity with respect to catalysis of 
transcriptional processes. Type B HATs are cytoplasmic 
proteins responsible for acetylation of newly synthesized 
histone proteins. Based on their structural homology and 
the mechanism of acetyl transfer, Type A HATs members 
are classified into five distinct families with different 
targets and functions: GNAT family, p300/CBP family, 
MYST family, basal TF family, and NRCF family [18]. 
Family of p300/CBP has more than 75 protein substrates 
[19]; p300/CBP-mediated acetylation is important for p53 
function that is believed to be related to carcinogenesis 
[20]. Members of MYST family are responsible for DNA 
repair and gene silencing [21]. In addition, Type B HATs 
are further divided into HAT1, HAT2, HatB3.1, Rtt109, 
and HAT4 [22].

Histone deacetyltransferases (HDACs) are a family 
of enzymes which function antagonistically to HATs. 
Acetylation levels of histone and non-histone proteins 
are determined by the activities of HATs and HDACs. In 
contrast to the role of HATs, HDACs are thought to act as 
transcriptional corepressors [23, 24]. HDACs are believed 
to be bound to repressed genes and are replaced by HATs 
once these genes need to be activated [25]. Deacetylation 
on lysine residues of histone, induced by HDACs, is 
associated with a condensed structure of chromatin and 
limited accessibility of the transcription machinery, and 

hence leads to gene silencing [26, 27]. Besides modifying 
acetylation on histone protein, HDACs also regulate gene 
expression by deacetylation of non-histone proteins. For 
example, HDACs were shown to directly act on a series 
of transcription factors such as p53, HMG proteins, 
STAT3, c-MYC, E2F, and NF-kB [13, 28]. Deacetylation 
by HDACs contributes to degradation of many proteins, 
which is a prerequisite to subsequent ubiquitination.

According to their homology with yeast HDACs, 
mammalian HDACs are classified into four classes (class 
I to IV). Class I HDACs are localized in nucleus and are 
homologous to Rpd3 in yeast; these include HDACs 1, 2, 
3, and 8. Class II HDACs are homologous with yeast Hda1 
and are further subdivided into IIa (HDAC 4, 7, and 9) and 
IIb (HDAC 6 and 10). Class II HDACs are able to shuttle 
between nucleus and cytoplasm. Thus, class II HDACs 
may deacetylate non-histone proteins in cytoplasm. Class 
III HDACs, also referred to as sirtuins (SIRT1-7), are 
homologous to the yeast Sir2 family proteins. Class III 
HDACs require coenzyme NAD+ for activation [29]. In 
contrast to the other HDAC classes, Class IV HDACs 
have only one member (HDAC 11) that is homologous to 
both class I and class II HDACs. 

Dysregulation of HATs in cancers

Increasing evidence points to dysregulation of HATs 
as a driving force of cancer. HAT activities are interfered as 
a consequence of various genetic or epigenetic alterations 
in several malignancies. HATs have been suggested to play 
a dual role in carcinogenesis; these could either function 
as tumor suppressors (by inhibition of cell proliferation) 
or act as oncogenes (by activation of malignant proteins 
via abnormal acetylation [30]. Long et al. suggested 
that cancer is associated with globally hypoacetylated 
chromatin. Increased histone acetylation induced by short 
chain triglyceride glyceryl triacetate (GTA) was shown to 
arrest growth of oligodendroglioma derived cells in the G0 
phase without affecting normal cells [31]. Interestingly, 
recent studies confirmed that alcohol exposure can alter 
histone acetylation pattern and that this might contribute 
to liver cancer [32].

Roles of HATs in tumorigenesis might depend 
upon the site of acetylation of proteins as well as on 
the type of cancer. Deficient in acetylation of H3 was 
detected in patients with prostate cancer [33]. Histone 
hyperacetylation of H3K56 has also been observed in 
hepatocellular carcinoma [34]. Kang et al. suggested 
that HTAs could be a potential therapeutic target for 
cancers. They demonstrated that curcumin-induced hypo-
acetylation leads to apoptotic cell death in brain cancer 
[35]. Roche et al. reported higher H3K27 acetylation 
level in the tumor compartment as compared to that in the 
corresponding stroma, in their study on lung cancer [36]. 
Inhibition of LDH-A enzyme activity and the consequent 
decrease in LDH-A protein level was shown to reduce K5 
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acetylation of lactate dehydrogenase A (LDH-A) in a study 
on human pancreatic cancers [37]. Upregulated expression 
of global transcriptional co-activator p300 in prostate 
cancer tissues has also been reported [38]. Inactivation of 
the p300 gene has been implicated in the development of 
colorectal, gastric, breast and brain cancers [39, 40]. 

Roles of HATs in normal stem cells and CSCs

HATs and their cofactors are known to be involved 
in the modulation of self-renewal and differentiation 
ability of stem cells [41]. Mof (a member of MYST 
family) was reported to play an essential role in the 
maintenance of ESC self-renewal and pluripotency. 
ESCs with Mof deletion were shown to have aberrant 
expression of stemness-related core transcription factors 
including Nanog, Oct4, and Sox2 [42]. Akt was shown to 
modulate the stemness of induced pluripotent stem cells 
(iPSCs) by facilitating the p300-mediated acetylation 
of Oct4, Sox2 and Klf [43]. MYST family has been 
shown to play a central role in stem cell function and 
development [21]. In an experimental study by Liu et al., 
sodium butyrate (NaB) promoted the differentiation of 
bone marrow-derived mesenchymal stem cells (MSCs) 
into smooth muscle cells (SMCs) in rat through histone 
acetylation. Further, NaB induced upregulation of H3K9 
and H4 acetylation and enhanced expression of target 
genes [44]. Acetylation of H3K56 is linked to the core 
transcriptional network in human embryonic stem cells 
[45]. Interestingly, acetylation of lysine residue of Sox2 
was shown to be associated with its nuclear export in 
embryonic stem cells. Blockade of acetylation led to Sox2 
retention in the nucleus and sustained the expression of 
its target genes under hyperacetylation or differentiation 
conditions [46]. This finding suggests a regulatory 
mechanism for acetylation-related cell stemness.

Till now, the relationship between HATs and CSCs 
has mainly been studied in the context of hematological 
malignancies [47, 48]. CBP/p300 is a key co-activator for 
the transforming capacity of transcription factor c-Myb. 
Several studies have shown that interaction of p300/CBP 

with c-Myb is required for self-renewal and malignant 
transformation of leukemia stem cells malignant 
transformation [49–51]. AML1-ETO fusion protein, a 
transcription factor which is crucial for leukemogenesis, 
is acetylated by p300 in leukemia cells. Inhibition of p300 
downregulated acetylation of AML1-ETO and impaired 
the self-renewal ability of leukemia stem cells [52, 53]. 
Human monocytic leukemia zinc-finger protein MOZ and 
its paralog MORF belong to the family of MYST. The 
MOZ fusion protein MOZ-TIF2 was shown to interact 
with transcription factor PU.1 to activate the expression 
of CSF1R. In a mouse model, Aikawa et al. showed that 
PU.1-mediated upregulation of CSF1R is crucial for the 
establishment and maintenance of leukemia stem cell 
induced by MOZ-TIF2; this indicates the potential use 
of CSF1R inhibitors as an effective leukemia stem cell 
targeting therapeutic approach [54]. Moreover, MOZ-
TIF2 can also cooperate with FLT3–ITD mutation to 
transform hematopoietic cells which results in an increase 
in the number of leukemic stem cells. STAT5 signaling 
is necessary to maintain the self-renewal property of 
leukemia stem cells in MOZ–TIF2 driven leukemia [55]. 

Dysregulation of HDACs in cancers

The relation between abnormal activities of HDACs 
and carcinogenesis has drawn a lot of attention. Aberrant 
recruitment of HDACs to specific promoters has been 
shown to be associated with carcinogenesis [56, 57]. 
Similar to HATs, HDACs also function as a double-
edged sword and is thought to be dosage-determinant in 
tumorigenesis [58–60]. Histone hypoacetylation or loss 
of acetylation at H4K16 and trimethylation at H4K20 
are commonly observed in cancer patients. In teratoma, 
loss of HDAC1 was shown to increase both apoptosis 
and cell proliferation [61]. A significant upregulation 
of histone deacetylases activity has been determined in 
prostate cancer cells [33]. In human skin cancer cells, 
SIRT2 is downregulated and deficiency of SIRT2 was 
shown to promote tumor growth in mice [62]. Yasui et al. 
reported reduced expression of H4 acetylation in gastric 

Table 1: Classification of histone acetyltransferases and deacetylases
Members Location

HATs
 Type A GNAT, p300/CBP, MYST, basal TF, and NRCF Nucleus
 Type B HAT1, HAT2, HatB3.1, Rtt109, and HAT4 Cytoplasm
HDACs
 Class I HDAC1, HDAC2, HDAC3, HDAC8 Nucleus
 Class II II a: HDAC4, HDAC5, HDAC7, HDAC9 Nucleus/cytoplasm

II b: HDAC6, HDAC10 Mainly cytoplasm
 Cass III SIRT1-7 Nucleus/cytoplasm
 Class IV HDAC11 Nucleus/cytoplasm
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cancer patients, which suggested that reduced histone 
acetylation is associated with the depth of tumor invasion 
and nodal metastasis of gastrointestinal cancers [63]. 
Moreover, overexpression of HDAC2 has also been found 
in colorectal cancer [64].

Role of HDACs in normal stem cells and CSCs

HDACs also participate in the regulation of 
stemness property of normal stem cells. HDAC1 and 
HDAC3 were shown to be activated by hypoxia and 
mediate the differentiation of mouse embryonic stem 
cells and hematopoietic stem cells [65]. Octamer-binding 
transcription factor 4 (Oct4) is an important transcriptional 
factor of embryonic stem cells which is commonly used as 
a marker of normal stem cells and cancer stem-like cells. 
HDAC1 was shown to repress the expression of Oct4 
in cervical cancer cells [66]. HDAC1 and HDAC2 are 
essential for maintaining the homeostasis of hematopoietic 
cells. Inhibition of both HDAC1 and HDAC2 lead to the 
loss of hematopoietic stem cells [67]. In addition, a recent 
study demonstrated that HDAC1 and HDAC2 play a 
critical role in regulating self-renewal ability of stem cells 
by maintaining the expression levels of key pluripotent 
transcription factors. Reduced expression of pluripotent 
transcription factors such as Oct4, Nanog, Esrrb, and 
Rex1 was detected after suppression of HDAC1 and 
HDAC2 activities [68]. However, the functional role of 
SIRT1 in stem cells is not clear. Ma et al. reported that 
SIRT1 suppressed self-renewal of adult hippocampal 
neural stem cells. They found an increase in SIRT1 
expression during adult hippocampal neural stem cells 
differentiation as well as a promotion of proliferation 
and self-renewal rates in adult hippocampal neural stem 
cells of SIRT1 knockout (KO) mice [69]. However, in 
bone marrow-derived mesenchymal stem cells, SIRT1 
was reported to maintain self-renewal and multipotency 
by directly regulating SOX2. RNA interference of SIRT1 
downregulated SOX2 expression, which impaired the 
self-renewal and differentiation capacities of human 
bone marrow (BM)-derived MSCs [70]. SIRT1 could 
deacetylate retinoic acid binding protein II (CRABPII). 
Deficiency of SIRT1 was shown to cause accumulation 
of CRABPII in nucleus, which enhanced homeostatic 
retinoic acid (RA) signaling and accelerated embryonic 
stem cell (mESC) differentiation in response to RA [71]. 
Besides, deacetylation of β-catenin by SIRT1 was shown 
to inhibit its nuclear accumulation and induce transcription 
of genes for MSC differentiation [72]. Oct4 was reported 
to inactivate p53 through SIRT1-mediated deacetylation, 
which maintained the pluripotency of human embryonic 
stem cells [73]. Under conditions of cytokine-induced 
proliferative stress, ablation of SIRT1 was shown to 
promote proliferative expansion of hematopoietic 
progenitor cells; the underlying molecular mechanism is 
possibly linked to increased Hoxa9 expression [74]. 

Many studies have revealed the role of HDACs 
in CSCs. HDAC3 was found to be highly expressed in 
liver CSCs and its expression was significantly correlated 
with both Nanog and CD133. Knock-down of HDAC3 
using specific inhibitors suppressed both sphere and 
clone formation efficiency accompanied with decreased 
expression of stem cell markers like Nanog, Oct4 and 
SOX2 [75]. During oncogenic transformation of neural 
stem cells, SIRT1 is required for the survival of glioma 
stem cells via a p53-dependent manner [76]. In colorectal 
CSC-like cells, high expression level of SIRT1 was 
detected with co-localization of CD133 and SIRT1. SIRT1 
deficiency was accompanied with decreased percentage 
of CD133+ cells, attenuated ability for colony and sphere 
formation and inhibited tumorigenicity. Furthermore, 
expression of other stemness-associated genes including 
Cripto, Nanog, Oct4, Tert and Lin28 were reduced by 
SIRT1 knockdown [77]. Previous studies showed that 
SIRT1 repressed the activity of p53 by deacetylating 
the C-terminal Lys120, Lys164 and Lys382 residues 
[78–80]. In chronic myelogenous leukemia (CML), 
pharmacological or genetic inhibition of SIRT1 was 
shown to increase apoptosis in leukemia stem cells [81], 
which indicates that activation of p53 via SIRT1 inhibition 
is a feasible approach to target CML stem cells. K382 of 
p53 could be deacetylated by SIRT1. SIRT1 inhibition 
could increase the transcriptional activity of p53 which 
results in the increased expression of several p53 target 
genes including Bax, Necdin and Gfi-1 in CML CD34+ 
cells. Choudhary et al. showed that other than p53, several 
key p53-related proteins such as DAXX, PML, PTEN, and 
HAUSP are also acetylated [82]. It is suggested that these 
members in the p53 circuitry may also contribute to the 
effects of SIRT1 inhibition. However, SIRT1 knockdown 
did not increase the expression of p21 in CML progenitors, 
which suggests that some other pathways may counteract 
the effects of p53 acetylation on p21 induction [83]. 
Similarly, Zeisig et al. demonstrated the same role for 
SIRT1 inhibition in eradicating FLT3-ITD AML stem 
cells, possibly through a positive feedback loop with 
c-MYC [84]. Moreover, a very recent study confirmed the 
increase of HDAC in cisplatin-enriching CSCs of non-
small cell lung cancer. The authors further reported that 
combination of HDAC inhibitor and cisplatin reinforced 
the antitumor effect, both in vitro and in vivo [85].

HDAC Inhibitors as anti-cancer agents

Histone deacetylase inhibitors (HDACIs) are 
currently being examined in clinical trials against cancer 
and other diseases like rheumatoid arthritis [86]. These 
small molecules are able to mediate the induction of both 
apoptosis and autophagy, which may be a mechanism of 
anticancer activity in a variety of cancer cell lines [87]. 
Although the specific anticancer molecular mechanism 
still remains to be investigated, emerging evidence 
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suggests that inhibition of HDACs may have growth-
inhibitory and differentiation driven effects on tumors 
[88]. HDACIs are currently well recognized as anticancer 
agents. FDA has approved two HDACIs (vorinostat 
and romidepsin) for clinical use, while many others are 
currently being clinically assessed [89]. HDACIs can be 
classified into several groups based on their chemical 
structure: cyclic peptides (apicidin, romidepsin); hybrid 
molecules; hydroxamic acids (trichostatin A, vorinostat); 
carboxylic acids (valproate, butyrate); aminobenzamides 
(entinostat, mocetinostat); and epoxyketones (trapoxins). 
According to the specificity of these HDACIs, they could 
also be divided into three groups: nonselective HDACI; 
selective HDACI; and multi-pharmacological HDACI 
[90]. To date, many of HDACIs have undergone clinical 
development, either alone or in combination with other 
anticancer agents [91]. It is worth noting that efficiency 
of pharmacological inhibition with HDACs was shown 
to be comparable to that of genetic knockdown/knockout, 
especially in terms of its effects on multi protein complex 
formation and function [92]. 

Anti-CSCs potential of HDACI in cancer 
treatment 

Many studies have revealed the role of HDACIs 
in the regulation of self-renewal and differentiation. 
Trichostatin A (TSA) treated bone marrow-derived 
multipotent adult progenitor cells (MAPC) showed at 

least a three-fold increase in the expression of endothelial 
cell (EC) marker genes VE-cadherin, Flk1 and vWF. It 
is suggested that HDACI enhanced the differentiation of 
MAPC to EC [93]. Class I HDACI vorinostat (SAHA) 
and class II HDACI sodium butyrate were both shown to 
suppress the formation of neurospheres in adult mouse 
neural stem cells by arresting cell cycle in the G1 phase 
[94]. Furthermore, Legartova et al. observed enterocytic 
differentiation of colon cancer cells induced by sodium 
butyrate with increased mono-, di-, and tri-acetylation 
of histone H2B and a significant upregulation in di- and 
tri-acetylation of histone H4 [95]. These findings suggest 
the potential role of HDACIs in the induction of stem cell 
differentiation. However, another HDACI valproic acid 
(VPA) was previously reported to enhance self-renewal 
and cytokine-induced expansion of hematopoietic stem 
cells [96–98]. VPA could maintain the self-renewal ability 
of mouse embryonic stem cells (mESCs) under hypoxic 
conditions by suppression of HIF-1alpha [65]. Conversely, 
in a recent study, VPA induced significant upregulation 
of neuroprogenitor marker Musashi, CD133 and Nestin, 
which suggests that VPA may play a key role in neuronal 
differentiation of human bone-marrow mesenchymal 
stromal cells (BM-MSCs) [99]. 

Compelling evidence suggests that CSCs are 
responsible for chemotherapy and radiotherapy resistance 
of cancer. It is, therefore, a great concern to confirm if 
HDACIs could specifically target CSCs to increase the 
therapeutic efficacy of conventional treatment (Figure 1). 

Figure 1: Schematic illustration of the anti-cancer potential of HDACIs to eliminate CSCs. CSCs are resistant to 
conventional therapies such as chemotherapy and radiation which makes the cancer incurable. Therapeutic strategy using HDACIs induces 
differentiation of CSCs towards cancer cells by activation of gene transcription, and thus renders the tumors sensitive to therapies.
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Most studies have shown promising results of HDACIs 
in suppressing CSCs expansion and tumor aggressiveness 
[100]. Treatment of pancreatic CSCs with SAHA 
resulted in reduced self-renewal capacity and induction 
of apoptosis through inhibition of Notch pathway 
[101]. Vorinostat was shown to increase the sensitivity 
of SK-N-Be(2)C-resistant human neuroblastoma cells 
to chemotherapy and led to the loss of tumor sphere 
forming ability, reduced invasion and the side population 
percentage. Nine stemness-linked genes including ERCC5, 
ABCB1, ABCC4 S100A10, LMO2, SOX2, IGFBP3, TCF3 
and VIM were found to be downregulated in the presence 
of vorinostat [102]. Sodium butyrate (NaB) was shown 
to promote neuronal differentiation of medulloblastoma 
(MB) cells through upregulation of neuronal 
differentiation marker Gria2 at the transcriptional level 
[103]. Similar to MB, treatment of endomertrial cancer 
cells with NaB induced production of intracellular reactive 
oxygen species (ROS) and DNA damage which had an 
inhibitory effect on the proliferation of endometrial CSCs 
[104]. Frame et al. showed that the HDACI Trichostatin 
A sensitized prostate CSCs to radiation [105]. Pathania et 
al. confirmed that a combination of the DNMT inhibitor, 
5-azacytidine, and the HDAC inhibitor, butyrate A, 
markedly suppressed the tumorigenicity of CSCs and 
attenuated the growth of breast tumor [106]. In addition, 
a very recent study demonstrated synergistic cytotoxic 
effects of combined HDACI HNHA and sorafenib therapy 
against CSCs of anaplastic thyroid cancer [107]. These 
findings suggest that HDACIs may considerably increase 
the efficiency of conventional therapies by driving the 
differentiation of CSCs. However, some papers revealed 
inconsistent findings that HDACI may also stimulate 
the dedifferentiation of cancer cells through activation 
of developmental signaling pathways [108–110]. This 
discrepancy may reflect the complexity of epigenetic 
regulation in cancers. The precise mechanism of HDACI 
in CSC regulation deserves to be further investigated.

PERSPECTIVE

Based on the available evidence, it is difficult to 
conclude that acetylation and deacetylation merely serve 
to enhance or inhibit CSCs. However, a vast majority 
of studies do support the anti-cancer role of acetylation 
and the sustainer role of deacetylation in cancer stemness 
regulation. Numerous studies have confirmed HDACIs 
as powerful therapeutic agents against cancer which act 
by promoting differentiation of CSCs. Considering the 
differences in acetylation levels and sites of acetylation 
or deacetylation, the efficacy of HDACI may vary in 
different cancer types or even vary from one patient to 
another. 

The specific molecular mechanism by which 
acetylation and deacetylation modulate the self-renewal, 
proliferation, multipotency, metastasiss and drug-resistance 

of CSCs still remain largely unknown. Combination of 
different site-specific acetylation and deacetylation may 
explain the diverse or even paradoxical regulation of HATs 
and HDACs in CSCs. Thus, the role of individual and 
combined site(s) specific acetylation or deacetylation is 
worthy of investigation. 

Another largely unexplored field is the relationship 
between histone and non-histone acetylation. As discussed 
above, histone acetylation by HATs is associated with 
transcriptional activation while histone deacetylation 
by HDACs is involved in transcriptional inhibition. 
Nevertheless, the functions of non-histone acetylation 
and deacetylation tend to vary and are mostly uncertain. 
The role of acetylation/deacetylation on histone and 
non-histone proteins constitutes the final role of this 
post-translational protein modification. Thus, further 
dissecting the specific combinations of sites of acetylation/
deacetylation on histone and non-histone proteins may 
delineate the mechanisms of the paradoxical situation 
described above.

With regard to HDAC inhibitors, studies suggest 
that HDACIs act on both CSCs and the rest of bulk cancer 
cells. HDACIs could drive differentiation of CSCs, inhibit 
their self-renewal ability, enhance their sensitivity to 
chemo/radiotherapy or even induce their death. However, 
before applying HDACI to patients, there are still a lot 
of hurdles that need to be overcome. The main problem 
is that the effects of HDACIs are not equivalent to those 
of HDAC-knockoff. Since HDAC can form HDAC-
complexes with other molecules, it is hard to identify the 
target sites inhibited by HDACIs. Most of the currently 
used HDACIs are broad-spectrum inhibitors which 
inhibit many types of HDACs. Therefore the therapeutic 
results of these HDACIs could not be predicted precisely. 
The reports that HDACIs may induce dedifferentiation 
of cancer cells and expansion of CSCs under some 
circumstances remind us to use HDACIs cautiously 
in cancer therapy and for treatment of other diseases. 
Novel HDACIs which target specific HDACs need to be 
developed and investigated.
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