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Abstract

‘Unexplained residuals’ models have been used within lifecourse epidemiology to model an exposure measured

longitudinally at several time points in relation to a distal outcome. It has been claimed that these models have

several advantages, including: the ability to estimate multiple total causal effects in a single model, and additional

insight into the effect on the outcome of greater-than-expected increases in the exposure compared to traditional

regression methods. We evaluate these properties and prove mathematically how adjustment for confounding variables

must be made within this modelling framework. Importantly, we explicitly place unexplained residual models in a causal

framework using directed acyclic graphs. This allows for theoretical justification of appropriate confounder adjustment

and provides a framework for extending our results to more complex scenarios than those examined in this paper. We

also discuss several interpretational issues relating to unexplained residual models within a causal framework. We argue

that unexplained residual models offer no additional insights compared to traditional regression methods, and, in fact, are

more challenging to implement; moreover, they artificially reduce estimated standard errors. Consequently, we conclude

that unexplained residual models, if used, must be implemented with great care.
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1 Background

Within the field of lifecourse epidemiology, there is substantial interest in modelling the relationship between an
exposure x measured longitudinally at several time points (i.e. x1, x2, . . . , xk) and a subsequent outcome y
measured once later in life (hereafter referred to as a distal outcome); such a relationship can be helpfully
summarised in Figure 1(a) in the form of a directed acyclic graph (DAG).1 DAGs are pictorial representations
of hypothesised causal relationships between variables in which: variables (nodes) are connected via unidirectional
arrows (directed edges), which represent direct causal relationships; and no directed loops (i.e. circular paths)
between variables are permitted. Nodes may be either: endogenous, having at least one causally preceding variable
represented in the graph; or exogenous, having none.2 All unexplained causes of the endogenous nodes
x2, . . . , xk, y in Figure 1(a) are represented by the variables ex2, . . . , exk, ey, respectively. While there are many
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useful applications for DAGs in epidemiologic research, perhaps the most beneficial is their ability to identify
suitable sets of covariates for removing bias due to confounding between an exposure and outcome,3,4 which
occurs whenever both variables share one or more common causes. For this reason, DAGs are increasingly being
used in epidemiology, as they provide a framework for estimating the total causal effect of an exposure on an
outcome.4

Using a causal framework to (correctly) model the scenario in Figure 1(a) may also have additional utility in
identifying and quantifying important periods of change in the exposure that are causally related to the outcome.
However, one challenge to such applications is that successive measurements of an exposure over time may be
highly correlated with one another and therefore likely to suffer collinearity when analysed in relation to a distal
outcome. Consequently, there has been extensive debate regarding the best way to model these types of
longitudinally measured variables; a recent review5 of analytical and modelling techniques has identified a
range of different approaches, including z-score plots, regression with change scores, multilevel and latent
growth curve models, and growth mixture models. Nonetheless, one of the most straightforward methods in
use is a series of standard multivariable regression models.

1.1 Standard regression method

When using this approach, each longitudinal measurement of the exposure variable is treated as a separate entity
that is subject to confounding by all previous measurements of that variable – the total number of models needed
therefore being equal to the total number of time points at which the exposure has been measured.

As an example, the simplest scenario would involve just two measurements of the exposure x (i.e. x1 and x2,
measured at time points 1 and 2, respectively), and a distal outcome, y, where all variables are continuous in
nature. Here, two standard regression models (denoted ŷ

ðiÞ
S , for i ¼ 1, 2) would need to be constructed to estimate

the total causal effect of each distinct measurement of x on y, i.e.

ŷ
ð1Þ
S ¼ �̂

ð1Þ
0 þ �̂

ð1Þ
x1x1 ð1Þ

(a)

(b)

(c)

Figure 1. (a) Nonparametric causal diagram (DAG) representing the hypothesised data-generating process for k longitudinal

measurements of exposure x (i.e. x1,x2 ,. . ., xk) and one distal outcome y . The terms ex2,. . .,exk and ey represent all unexplained causes

of x2,. . .,xk and y , respectively, and are included to explicitly reflect uncertainty in all endogenous nodes (whether modelled or not). (b)

Path diagrams depicting the k standard regression models that would be constructed to estimate the total causal effect of each of

x1,x2,. . .,xk on y (i.e. equation (5)). For each model, only the final coefficient may be interpreted as a total causal effect; all other

coefficients are greyed to illustrate that no such interpretation should be made for them. (c) Path diagrams depicting the UR model,

consisting of k � 1 preparation regressions (i.e. equation (6)) and a final composite regression model (i.e. equation (7), with i ¼ k ).
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ŷ
ð2Þ
S ¼ �̂

ð2Þ
0 þ �̂

ð2Þ
x1x1 þ �̂

ð2Þ
x2x2: ð2Þ

Importantly, to estimate the total causal effect of x1 on y in equation (1), adjustment for x2 is inappropriate, as
it lies on the causal path between x1 and y (i.e. x2 is a mediator); in fact, adjustment for x2 might invoke bias in the
causal interpretation due to a phenomenon known as the ‘reversal paradox’.5–7 In contrast, to estimate the total
causal effect of x2 on y in equation (2), adjustment for x1 is appropriate, since it confounds the desired relationship
(i.e. x1 causally precedes both x2 and y, potentially creating a spurious relationship between them). For this reason,
in either model, it is only possible to interpret the coefficient of the last/most recent measurement of x (the
exposure) as a total causal effect,1 which encompasses all direct and indirect causal pathways between an
exposure and outcome. No such interpretation is possible (nor should it be attempted) for the coefficient of the
earlier measurement of x in equation (2), as it operates purely as a confounder.

1.2 Unexplained residuals method

To circumvent the need for multiple models, Keijzer-Veen8 has suggested an alternative approach that would
combine the information contained within each of the two separate models (equations (1) and (2)) into a single
composite regression model using ‘unexplained residuals’. As originally proposed,9 such a model allows the
researcher to quantify the total effects of both the initial measurement of x (i.e. x1Þ and subsequent change in x
on the outcome y. The proposed approach contains two steps but is straightforward in principle.

First, the most recent measurement of x (i.e. x2) is regressed on the earlier measurement of x (i.e. x1):

x2 ¼ �̂
2ð Þ
0 þ �̂

2ð Þ
x1 x1 þ ex2: ð3Þ

This produces a measure of each observation’s ‘expected’ value of x2 as predicted by its value of x1. The
difference between the expected value of x2 (i.e. �̂ 2ð Þ

0 þ �̂
2ð Þ
x1 x1) and the observed value of x2 amounts to the

residual term ex2. Put another way, ex2 represents the part of x2 ‘unexplained’ by x1.
Second, y is regressed on both the initial exposure x1 and subsequent residual term ex2 :

ŷ
ð2Þ
UR ¼ �̂

ð2Þ
0 þ �̂

ð2Þ
x1x1 þ �̂

ð2Þ
ex2ex2: ð4Þ

According to Keijzer-Veen et al.,9 the key advantages of conducting regression using the composite
‘unexplained residuals’ (UR) model (4) are that:

(1) The UR model produces the same estimated outcome values as the standard regression model in equation (2)
(i.e. ŷ

ð2Þ
S ¼ ŷ

ð2Þ
UR);

(2) The estimated total effect sizes (coefficient values) produced by individual standard regression models
(equations (1) and (2)) are equal to those estimated within the UR model (i.e. �̂ð1Þx1 ¼ �̂

ð2Þ
x1 and �̂ð2Þx2 ¼ �̂

ð2Þ
ex2);

thus, multiple coefficients in a single model may be interpreted;
(3) The UR model provides additional insight (via the coefficient �̂ð2Þex2 in equation (4)) into the effect of x

increasing more than expected upon y; and
(4) The initial exposure x1 and subsequent residual term ex2 are mathematically independent (i.e. orthogonal).

Succinctly, the two models ŷ
ð2Þ
S and ŷ

ð2Þ
UR are algebraically equivalent, but ŷ

ð2Þ
UR makes interpretation of the

separate influence of the initial measurement of the exposure x (i.e. x1) and subsequent changes in x more
straightforward than do (multiple) standard regression models ŷ

ð1Þ
S and ŷ

ð2Þ
S .

Within the epidemiological literature, UR models have been used under a number of different names. In
addition to ‘regression with unexplained residuals’ (as first proposed by Keijzer-Veen et al.9–11), other studies
have referred to: ‘unexplained residual regression’12; ‘method of unexplained residuals’13; ‘conditional linear
regression’12; ‘conditional (regression) models’5,14; ‘regression with conditional growth measures’14; ‘conditional
growth models’15–18; ‘conditional weight models’19; and ‘conditional (regression) analysis’.20–24 The terms
‘conditional growth’ and ‘conditional size’ – and additional variations thereof – are also commonly used to
refer to the difference between observed and expected size measurements.5,15,18,25–39 To avoid further confusion,
the residual term representing the difference between the observed and expected values of an exposure produced in
the manner proposed by Keijzer-Veen et al. (as in equation (3)) will be henceforth referred to as the ‘unexplained
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residuals (UR) term’, and the models themselves (as in equation (4)) will be referred to as ‘unexplained residuals
(UR) models’.

Despite the numerous names given to these models, the process remains essentially the same as that first
proposed. Indeed, several authors have extended the original model to examine scenarios involving several
measurements of an exposure x (i.e. x1, x2, . . . , xk); UR models in these extended applications thus include
several UR terms.5,12,13,16–41 In general, each UR term exi is derived from the regression of each measured
value xi on all previous measurements x1, x2, . . . , xi�1, for 2 � i � k,12,16,18–22,24,25,27,29,31–34,36,39,40 though some
researchers have deviated from this procedure13,26,35,37,41; the outcome y is then regressed on x1 and all subsequent
UR terms ex2, ex3, . . . , exk.

Many researchers have further extended the original UR models by adjusting for additional confounding
variables (i.e. over and above the confounding of prior measurements of the exposure), though there is, as yet,
little consensus as to whether or how such adjustments should be performed. For example, Horta et al.16 made no
adjustments for potential confounders when deriving their UR terms, but did make adjustments within their
composite UR model. In contrast, Gandhi et al.18 adjusted for just one potential confounder (gender) when
creating their UR terms, but also made further adjustments to the composite UR model (for gender and other
variables). Adair et al.25 created their UR terms using site- and sex-stratified linear regressions that were also
adjusted for age, and made further adjustments for age, sex, and study site in their subsequent composite UR
models. Indeed, there are many other examples of different approaches to confounder adjustment, but none of
these have been adequately and explicitly justified by the researchers concerned, even though it appears that they
did so in order to make causal inferences.

2 Research aims

The potential impact of using alternative approaches to adjust for confounding when constructing and using UR
terms has yet to be fully evaluated. Indeed, Keijzer-Veen et al.9 did not address confounding variables in their
original paper, and there has been little to no discussion or analysis of this issue by subsequent authors using this
approach. It therefore remains unclear whether UR models that include confounders offer the same purported
benefits as those lacking (or ignoring) confounders, and there is no clear indication of how potential confounders
should be treated by analyses using these models. This is an issue of particular relevance to researchers seeking to
infer causality from individual coefficient estimates, since inappropriate adjustment for covariates (which includes
both the failure to adjust for genuine confounders and the adjustment for mediators mistaken for confounders)
can lead to biased causal inferences. For this reason, UR models are likely to have limited practical utility unless
they are able to accommodate confounding variables appropriately. The fact that UR models have not been
developed or analysed within a causal framework also creates uncertainty about their utility for making causal
inferences.

Therefore, the aims of the present study were to: (1) confirm that the approach proposed by Keijzer-Veen et al.
may be extended to a scenario involving k longitudinal measurements of an exposure x in the absence of any
additional confounding; (2) determine whether it is possible (and if so, how might it be possible) to adjust for
additional confounders within the UR modelling framework; (3) evaluate the benefits of UR models claimed by
Keijzer-Veen et al.; and (4) offer recommendations for future use of UR models The present study examines two
very different types of potential confounders: time-invariant (which require/provide measurements taken at a
single time point and remain constant across the lifecourse, e.g. sex); and time-varying (for which
measurements are collected at multiple time points across the lifecourse – usually concurrent to measurements
of the exposure – because the value of the variable may change, e.g. socioeconomic position).

These aims are summarised in the DAGs presented in Figures 1(a), 2(a), and 3(a), which depict three general
scenarios drawn from lifecourse epidemiology, each of which will be examined in the analyses that follow. Each
DAG relates k longitudinally measured exposure variables x1, x2, . . . , xk (i.e. x measured at time points 1, 2, . . . , k)
to a distal outcome y (measured at some point either concurrent to or following k) under three very different
circumstances: (1a) in the absence of any additional confounders; (2a) in the presence of an additional time-
invariant confounder m; and (3a) in the presence of an additional time-varying confounder m1,m2, . . . ,mk. All
DAGs are drawn forwardly saturated (i.e. where each node may causally affect all future nodes), and all
unexplained causes of endogenous nodes are represented by the variable e and depicted as independent (i.e. we
assume no unobserved confounding). The explicit inclusion of these three DAGs in Figures 1(a), 2(a), and 3(a) is
intended not only to visually illustrate each of the scenarios that will be examined, but also, importantly, to situate
the analyses that follow within a causal framework.
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Sections 3 through 9, which follow, provide: the three key properties of UR models that will be evaluated for
the scenarios in Figures 1(a), 2(a), and 3(a) (§3); DAG-based and mathematical examinations of the UR models
for the scenarios given in Figure 1(a) (§4), 2(a) (§5), and 3(a) (§6); a discussion of several interpretational issues that
arise for UR models when placed within a causal framework, including an evaluation of the claim that UR models
provide greater insight than standard regression methods (§7); an argument outlining how UR models produce
artificially reduced standard errors (SEs) and how this might be corrected (§8); and recommendations for future
use and interpretation of UR models, particularly as these relate to the inclusion of confounders (§9).

3 Key properties of UR models

In the following sections, we evaluate the mathematical properties of the original UR models after extending them
to include k measurements of a continuous exposure x: in the absence of any additional confounding (§4); in the
presence of a single additional time-invariant confounder m (§5); and in the presence of a single additional time-
varying confounder with sequential values m1,m2, . . . ,mk (§6). These properties are:

. Property (i): The outcome values predicted by the final standard regression model (for the final measurement of
the exposure variable, xk) are equal to those predicted by the composite UR model.

. Property (ii): The estimated coefficient for x1 in the initial standard regression model (for the first measurement
of the exposure variable, x1) is equal to the estimated coefficient for x1 in the composite UR model.

. Property (iii): The estimated coefficient for each xi in its individual standard regression model (i.e. for
designated exposure xi) is equal to the estimated coefficient for the corresponding UR term exi in the
composite UR model.

From a causal inference perspective, only Properties (ii) and (iii) are meaningful, since the focus is on individual
coefficient estimates as opposed to predicted outcomes. Nevertheless, we evaluate all three properties in Sections 4
through 6, and leave discussion of interpretational issues until later in the paper (§8).
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Figure 2. (a) Nonparametric causal diagram (DAG) representing the hypothesised data-generating process for k longitudinal

measurements of exposure x (i.e. x1,x2,. . .,xk), one distal outcome y , and one time-invariant confounder m . The terms em, ex1,. . .,exk

and ey represent all unexplained causes of m, x1,. . .,xk, and y, respectively, and are included to explicitly reflect uncertainty in all

endogenous nodes (whether modelled or not).(b) Path diagrams depicting the k standard regression models that would be

constructed to estimate the total causal effect of each of x1,x2,. . .,xk on y (i.e. equation (9)). For each model, only the final coefficient

may be interpreted as a total causal effect; all other coefficients are greyed to illustrate that no such interpretation should be made for

them. (c) Path diagrams depicting the UR model, consisting of k � 1 preparation regressions (i.e. equation (10)) and a final composite

regression model (i.e. equation (11), with i ¼ k ).
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4 UR models: No confounders (Figure 1(a))

Before considering any additional confounding variables, we first consider the straightforward scenario depicted in
Figure 1(a).We provide: definitions of the standard regression models, UR terms, andURmodels (§4.1); an analysis
of UR models within a causal framework (§4.2); and arguments for why Properties (i)–(iii) are upheld (§4.3).

4.1 Definitions

We define the ordinary least-squares (OLS) regression model ŷ
ðiÞ
S for estimating the total causal effect of each

measurement of the exposure variable xi (for 1 � i � k) on y as:

ŷ
ðiÞ
S ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ðiÞ
xi xi ð5Þ

A visual depiction of equation (5) is given in Figure 1(b). Because the relationship between each xi and y is
confounded by all previous measurements of x (i.e. x1, . . . , xi�1), these covariates must be adjusted for. However,
as discussed in Section 1, only the coefficient of the last/most recent measurement of x (i.e. �̂ðiÞxi ) may be interpreted
as a total causal effect.

To create UR terms according to the process established by Keijzer-Veen et al.,9 each measurement of the
exposure xi is regressed on all previous measurements of x (for 2 � i � k):

xi ¼ �̂
ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ðiÞ
xði�1Þxi�1 þ exi ð6Þ
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Figure 3. (a) Nonparametric causal diagram (DAG) representing the hypothesised data-generating process for k longitudinal

measurements of exposure x (i.e. x1,x2,. . .,xk ), one distal outcome y, and k longitudinal measurements of one time-varying confounder

m1,m2,. . .,mk . The terms em2, . . ., emk, ex1,. . .,exk and ey represent all unexplained causes of m2,. . ., mk, x1 ,. . ., xk, and y, respectively, and

are included to explicitly reflect uncertainty in all endogenous nodes (whether modelled or not). (b) Path diagrams depicting the k

standard regression models that would be constructed to estimate the total causal effect of each of x1, x2 ,. . ., xk on y (i.e. equation

(12)). For each model, only the final coefficient may be interpreted as a total causal effect; all other coefficients are greyed to illustrate

that no such interpretation should be made for them. (c) Path diagrams depicting the UR model, consisting of 2(k � 1) preparation

regressions (i.e. equations (13) and (14)) and a final composite regression model (i.e. equation (15), with i ¼ k ).
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The UR term exi thus represents the difference between the actual value of xi and the value of xi as predicted by
all previous measurements of x.

Lastly, we define the UR model ŷ
ðiÞ
UR (for 1 � i � k), which represents the outcome y as function of the initial

value of the exposure x1 and subsequent ‘unexplained’ increases ex2, . . . , exi :

ŷ
ðiÞ
UR ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
ex2ex2 þ � � � þ �̂

ðiÞ
exiexi ð7Þ

The composite UR model ŷ
ðkÞ
UR thus represents the outcome y as function of the initial value of the exposure x1

and all subsequent ‘unexplained’ increases ex2, . . . , exk. The UR modelling process is summarised in Figure 1(c),
depicting k� 1 regressions of xi on x1, . . . , xi�1 (equation (6)) and one composite UR regression model (equation
(7), with i ¼ k).

4.2 A causal framework

Within the causal framework provided by Figure 1(a), the unique properties of UR models can be visualised. If we
were naively to model x1, x2, . . . , xk simultaneously, only the coefficient of the final measurement xk could be
interpreted as a total causal effect on y; the coefficients of x1, . . . , xk�1 would represent only the direct effects of
each measurement on y, because all future measurements would fully mediate the respective relationship and all
backdoor paths1 would be blocked by preceding measurements. However, by modelling x1, ex2, . . . , exk (as in a UR
model), we encounter no mediation problems due to the fact that, by construction, the UR terms remain wholly
independent of the other terms in the model. In fact, by placing the UR model in a causal framework, we are able
to see that the UR terms ex2, . . . , exk are essentially instrumental variables (IVs)42 for x2, . . . , xk, respectively, which
have been produced by the modelling process (Note: The process has similarities with the two-stage least squares
regression method,43 a form of instrumental variable analysis commonly encountered in economics research).

All techniques based on linear regression, including UR models, assume that the causal relationships between
variables are linear functions. If that is the case, we may parameterise a DAG (as in Figure 1(a)) by assigning a
single coefficient to every arrow and assuming all variables to have a variance of one. The method of path
coefficients44 then allows us to determine the ‘true’ total causal effects in the data generating process. Take x2
as an example, where k ¼ 3. The total effect of x2 on y encompasses the direct effect from x2! y and all indirect
effects (of which there is only one in this scenario): x2! x3 ! y. We introduce the notation pba to represent the
coefficient of the arrow a! b. Table 1 gives the total effects of x2 on y and of ex2 on y, with both total effects
decomposed into their respective direct and indirect effects. From Table 1, we see that the total effect of x2 on y is
equal to the total effect of ex2 on y; this is because there are no direct paths between ex2 and y, and all indirect paths
pass through x2 (with px2ex2 being equal to one, as in Figure 1(c)).

4.3 Covariate orthogonality and Properties (i)–(iii)

In addition to the graph-based approach in the preceding section, we are able to prove mathematically that
Properties (i)–(iii) are upheld for the scenario given in Figure 1(a). In summary, these properties are:

. Property (i): ŷ
ðkÞ
S ¼ ŷ

ðkÞ
UR

. Property (ii): �̂ 1ð Þ
x1 ¼ �̂

kð Þ
x1

. Property (iii): �̂ðiÞxi ¼ �̂
ðkÞ
exi

Equations (5) to (7) are summarised in Table 2; the standard regression models ŷðiÞs (for 1 � i � k) and
composite UR model ŷ

ðkÞ
UR (in which the UR terms have been produced via the regression of each measurement

of x on all previous measurements, as in equation (5)) contained therein are guaranteed to satisfy Properties
(i)–(iii). These properties of UR models rely crucially on all UR terms ex2, . . . , exk being orthogonal to all other
covariates in the composite UR model ŷ

ðkÞ
UR.

We illustrate this property, and explain how it is exploited to ensure Properties (i)–(iii) are upheld. Formal
proofs are provided in online supplementary Appendix 1.
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In Table 2, note that each regression model (for both the standard and UR methods) contains one more
covariate than the model preceding it. In the column of standard regression models, each row contains an
additional xi term; in the column of UR models, each row contains an additional exi term.

Typically, the inclusion of an additional covariate in a regression model changes the coefficient(s) estimated for
other covariates because their covariance would be nonzero. For example, the addition of x2 in ŷð2Þs will
undoubtedly change the estimated coefficient for x1 in ŷ

ð2Þ
S compared to ŷ

ð1Þ
S , because x1 and x2 are two

measurements of the same variable and thus will have a nonzero covariance (i.e. correlation 6¼ 0). This nonzero
covariance is what is exploited by adjustment for confounders – if two covariates did not covary, then adjustment
would not be necessary in the first place.

However, a UR model upholds Properties (ii) and (iii) specifically because its covariates do not covary. The addition
of ex2 in ŷ

ð2Þ
UR does not change the estimated coefficient for x1 in ŷ

ð2Þ
UR compared to ŷð1Þr because x1 and ex2 are orthogonal

(i.e. correlation¼ 0). This orthogonality is ensured as an artefact of OLS regression; because ex2 represents the residual
term from the regression of x2 on x1 by definition (equation (6)), it is guaranteed to be orthogonal to x1.

In fact, it can easily be shown that all UR terms ex2, . . . , exk are orthogonal to one another by construction. For
any UR term exi, it holds that exi is orthogonal to x1, . . . , xi�1. Because preceding UR terms ex2, . . . , exði�1Þ are
themselves linear combinations of x1, . . . , xi�1 (equation (6)), it follows that exi is orthogonal to ex2, . . . , exði�1Þ, for
2 � i � k. Using this information, we can easily conclude that the addition of subsequent UR terms in the set of
UR models in Table 2 will leave the coefficients of all other covariates unchanged. Thus, it only remains to be
shown that the estimated coefficients for x1 and the UR terms ex2, . . . , exk are themselves equivalent to the
coefficients for x1, x2, . . . , xk as estimated in their individual standard regression models, respectively.

Property (i):

First, it must be noted that each UR model is nothing more than a reparameterisation of the corresponding standard
regression model (i.e. ŷ

ðiÞ
S ¼ ŷ

ðiÞ
UR for each row in Table 2). Each standard regression model ŷ

ðiÞ
S represents y as a function

of x1, . . . , xi. In contrast, each UR model ŷ
ðiÞ
UR represents y as a function of x1, ex2, . . . , exi. However, exi is itself a

function of x1, . . . , xi (equation (5)), and thus it follows that the UR model ŷ
ðiÞ
UR itself is also a function of x1, . . . , xi.

Because ŷ
ðiÞ
S and ŷ

ðiÞ
UR are both functions of the same covariates, it follows that ŷ

ðkÞ
S ¼ ŷ

ðkÞ
UR, thereby satisfying Property (i).

Property (ii):

It is trivially true that the coefficients estimated for x1 in the first standard regression model ŷ
ð1Þ
S and corresponding

UR model ŷ
ð1Þ
UR will be equal (i.e. �̂ð1Þx1 ¼ �̂

ð1Þ
x1 ) because the models are themselves equivalent. All subsequent UR

Table 1. Total effect of x2 on y estimated by a standard regression model compared to total effect of ex2 on y estimated by an

equivalent UR model (Figure 1(a), with k ¼ 3).

Exposure Path Effect size Total effect

x2

Direct: x2 ! y pyx2
pyx2
þ px3x2

� pyx3

Indirect: x2 ! x3 ! y px3x2
� pyx3

ex2

Direct: n/a pyx2
þ px3x2

� pyx3

Indirect: ex2 ! x2 ! y px2ex2
� pyx2

ex2 ! x2 ! x3 ! y px2ex2
� px3x2

� pyx3

Table 2. For the scenario depicted in Figure 1(a), the standard regression model ŷ
ðiÞ
S necessary for estimating the total causal effect of

each exposure xi on y, and the corresponding UR model ŷ
ðiÞ
UR, for 1 � i � k.

Standard regression model ŷ
ðiÞ
S UR model ŷ

ðiÞ
UR

i ¼ 1: �̂ð1Þ0 þ â
ð1Þ
x1 x1 �̂ð1Þ0 þ k̂

ð1Þ

x1 x1

i ¼ 2: �̂ð2Þ0 þ �̂
ð2Þ
x1 x1 þ â

ð2Þ
x2 x2 �̂ð2Þ0 þ k̂

ð2Þ

x1 x1 þ k̂
ð2Þ

ex2ex2
..
. ..

. ..
.

i ¼ k: �̂ðkÞ0 þ �̂
ðkÞ
x1 x1 þ �̂

ðkÞ
x2 x2 þ � � � þ â

ðkÞ
xk xk �̂ðkÞ0 þ k̂

ðkÞ

x1 x1 þ k̂
ðkÞ

ex2ex2 þ � � � þ k̂
ðkÞ

exkexk
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terms ex2, . . . , exk are orthogonal to x1 and to one another; therefore, it follows that the estimated coefficient of x1
will be equivalent for all UR models in Table 1 (i.e. �̂ð1Þx1 ¼ �̂

ð2Þ
x1 ¼ . . . ¼ �̂ðkÞx1 ). This ensures that the coefficient of x1

in ŷ
ð1Þ
S (which represents the total effect of x1 on y) will be unchanged in the composite UR model ŷ

ðkÞ
UR (i.e.

�̂ð1Þx1 ¼ �̂
ðkÞ
x1 ).

Property (iii):

Lastly, we can show that the coefficient for exi (i.e. �̂
ðiÞ
exi) in a UR model is equal to the estimated total effect of xi

(i.e. �̂ðiÞxi ) in the corresponding standard regression model. To this end, we consider the following standard
regression and corresponding UR models, respectively:

ŷ
ðiÞ
S ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ðiÞ
xi xi

ŷ
ðiÞ
UR ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
ex2ex2 þ � � � þ �̂

ðiÞ
exiexi

We may set these two equations equal to one another (due to Property (i)), substitute the expansions for
ex2, . . . , exi (equation (5)) into the UR model and rearrange, thereby producing:

�̂ðiÞ0 þ �̂
ðiÞ
x1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ið Þ
xi xi ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
ex2ex2 þ � � � þ �̂

ðiÞ
exiexi

¼ �̂ðiÞ0 þ �̂
ðiÞ
x1x1 þ �̂

ðiÞ
ex2½��̂

2ð Þ
0 � �̂

ð2Þ
x1 x1 þ x2� þ � � � þ �̂

ið Þ
exi½��̂

ið Þ
0 � �̂

ið Þ
x1x1

� �̂ ið Þ
x2x2 � � � � � �̂

ið Þ
xði�1Þxi�1 þ xi�

¼ �̂ ið Þ
0 � �̂

ið Þ
ex2�

2ð Þ
0 � � � � � �̂

ið Þ
exi�

ið Þ
0

h i
þ �̂ ið Þ

x1 � �̂
ið Þ
ex2�

2ð Þ
x1 � � � � � �̂

ið Þ
exi�

ið Þ
x1

h i
x1

þ �̂ ið Þ
ex2 � �̂

ið Þ
ex3�

3ð Þ
x2 � � � � � �̂

ið Þ
exi�

ið Þ
x2

h i
x2 þ � � � þ �̂ ið Þ

exi

h i
xi ð8Þ

From equation (8) above, it becomes clear that the coefficients for xi in ŷ
ðiÞ
S and exi in ŷ

ðiÞ
UR are equal (i.e. �̂ ið Þ

xi ¼

�̂ ið Þ
exi). Again, we invoke the property of orthogonality to conclude that the estimated coefficient for exi will be

equivalent for all UR models in Table 2 (i.e. �̂ð1Þexi ¼ �̂
ð2Þ
exi ¼ . . . ¼ �̂ðkÞexi). This ensures that the coefficient of exi in ŷ

ðiÞ
S

(which represents the total effect of xi on y) will be unchanged in the composite UR model ŷ
ðkÞ
UR (i.e. �̂ðiÞxi ¼ �̂

ðkÞ
exi).

5 UR models: Time-invariant confounder (Figure 2(a))

We next consider the scenario in Figure 2(a), in which a time-invariant covariate m confounds the relationship
between x1, x2, . . . , xk and y. This section is structured similarly to the preceding one. We provide: definitions of
the standard regression models, UR terms, and UR models, all adjusted for the confounder m based upon the
DAG in Figure 2(a) (§5.1); an analysis of UR models within a causal framework (§5.2); arguments for why
Properties (i)–(iii) are upheld when the defined adjustments for m have been made (§5.3); and a discussion
regarding the implications of insufficient adjustment for m (§5.4).

5.1 Definitions (with correct adjustment for m)

Using the DAG in Figure 2(a) as guidance, we extend the original definitions of the standard regression models,
UR terms, and UR models (equations (5) to (7), respectively) to properly account for the confounding effect of m,
a time-invariant covariate.

We define the OLS regression model ŷ
ðiÞ
S for estimating the total causal effect of each measurement of the

exposure variable xi (for 1 � i � k) on y as:

ŷ
ðiÞ
S ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
mm þ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ið Þ
xi xi ð9Þ

Because the relationship between each xi and y is confounded by all previous measurements of x (i.e.
x1, . . . , xi�1) and m, these covariates must be adjusted for to obtain an inferentially unbiased estimate of the
total causal effect of each measurement of the exposure. As previously, only the coefficient of the last/most
recent measurement of x (i.e. �̂ðiÞxi ) may be interpreted as a total causal effect.
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We further extend the process of Keijzer-Veen et al.9 to create UR terms for this scenario. As is evident, the
relationship between each measurement of the exposure variable xi and all previous measurements x1, . . . , xi�1 is
confounded by m (for 2 � i � k); thus, adjustment for m is necessary:

xi ¼ �̂
ðiÞ
0 þ �̂

ðiÞ
m mþ �̂ðiÞx1x1 þ �̂

ðiÞ
x2x2 þ � � � þ �̂

ðiÞ
xði�1Þxi�1 þ exi ð10Þ

Therefore, the UR term exi represents the difference between the actual value of xi and the value of xi as
predicted by all previous measurements x1, . . . , xi�1, adjusted for the confounding effect of m.

Finally, we define the UR model ŷ
ðiÞ
UR (for 1 � i � k); this model must be also be adjusted for m, since m

confounds the relationship between x1 and y :

ŷ
ðiÞ
UR ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
mmþ �̂

ðiÞ
x1x1 þ �̂

ðiÞ
ex2ex2 þ � � � þ �̂

ðiÞ
exiexi ð11Þ

The composite UR model ŷ
ðkÞ
UR thus represents the outcome y as function of the initial value of the exposure x1,

all subsequent ‘unexplained’ increases ex2, . . . , exk, and the time-invariant confounder m.
As in the preceding section, visual depictions of the previous equations are provided, with Figure 2(b)

corresponding to equation (8) and Figure 2(c) corresponding to equation (8) and equation (9) (with i ¼ k).

5.2 A causal framework

We may easily extend the reasoning from the previous scenario (§4.2) to explain why the UR model (equation (11))
satisfies Properties (i)–(iii) before resorting to mathematics, by considering the diagram in Figure 2(a) as a path
diagram. A regression model containing all of m, x1, x2, . . . , xk (as in equation (9)) would only allow for the
interpretation of the coefficient of xk as a total causal effect on y; the coefficients of x1, . . . , xk�1 would
represent only the direct effects of each measurement on y, because all future measurements would mediate the
respective relationship and all backdoor paths would be blocked by preceding measurements (including m). Within
the UR model, the independence of all UR terms ex2, . . . , exk ensures no mediating paths are blocked, and the only
backdoor path between x1 and y is blocked by m.

5.3 Covariate orthogonality and Properties (i)–(iii)

In addition to the graph-based approach in the preceding section (§5.2), we are able to illustrate mathematically
that adjustment for m both when generating each UR term exi (equation (10)) and in the composite UR model
(Eq.11) will result in Properties (i)–(iii) being satisfied. Note that the scenario depicted in Figure 2(a) is nearly
indistinguishable, both visually and mathematically, from the scenario in Figure 1(a). The confounder m (which
affects y and all measurements of x) could be reimagined as variable x0; viewed in this way, the need for its
adjustment becomes clear and the proofs from the previous section apply with only minor notational adjustments.
Even though a distinction must be drawn between exposure variables and confounding variables within a causal
framework, OLS regression treats both equivalently (i.e. as ‘independent variables’). Therefore, we give a brief
outline only of how the adjustments deemed necessary by the causal diagram in Figure 2(a) will result in Properties
(i)–(iii) being upheld and attach the formal mathematical proofs in online supplementary Appendix 2.

Equations (9) to (11), which are summarised in Table 3, are guaranteed satisfy Properties (i)–(iii). As in the
previous scenario (§4.3), each regression model (for both the standard and UR methods) in Table 3 contains one
more covariate than the model preceding it – an additional xi term in the column of standard regression models,

Table 3. For the scenario depicted in Figure 2(a), the standard regression model ŷ
ðiÞ
S necessary for estimating the total causal effect of

each exposure xi on y, and the corresponding UR model ŷ
ðiÞ
UR, for 1 � i � k.

Standard regression model ŷ
ðiÞ
S UR model ŷ

ðiÞ
UR

i ¼ 1: �̂ð1Þ0 þ �̂
ð1Þ
m mþ â

ð1Þ
x1 x1 �̂ð1Þ0 þ �̂

ð1Þ
m mþ k̂

ð1Þ

x1 x1

i ¼ 2: �̂ð2Þ0 þ �̂
ð2Þ
m mþ �̂ð2Þx1 x1 þ â

ð2Þ
x2 x2 �̂ð2Þ0 þ �̂

ð2Þ
m mþ k̂

ð2Þ

x1 x1 þ k̂
ð2Þ

ex2ex2
..
. ..

. ..
.

i ¼ k: �̂ðkÞ0 þ �̂
ðkÞ
m mþ �̂ðkÞx1 x1 þ �̂

ðkÞ
x2 x2 þ � � � þ â

ðkÞ
xk xk �̂ðkÞ0 þ �̂

ðkÞ
m mþ k̂

ðkÞ

x1 x1 þ k̂
ðkÞ

ex2ex2 þ � � � þ k̂
ðkÞ

exkexk
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and an additional exi term in the column of UR models. Proofs for the previous scenario relied on the property of
each UR term being orthogonal to all preceding terms in the model. Adjustment for m when generating each UR
term exi (equation (10)) guarantees that this property will be upheld, because it ensures that exi is orthogonal to m
in addition to ex1, . . . , exði�1Þ; this cannot be guaranteed without explicit adjustment for m. Furthermore,
adjustment for m in each UR model in Table 3 ensures that ŷ

ðiÞ
S ¼ ŷ

ðiÞ
UR for each row in Table 3.

5.4 Incorrect adjustment for m

We have used the causal diagram in Figure 2(a) to argue for the necessity of adjusting for a time-invariant
confounder m during both stages of the UR modelling process, and have demonstrated how such adjustments
will produce a composite UR model that satisfies Properties (i)–(iii), as Keijzer-Veen et al. intended. We now
consider the implications of insufficient adjustment.

Without adjustment for m when generating each UR term exi, the coefficients of x1, . . . , xi�1 (i.e. �̂ð j Þxi , for
1 � i � k� 1 and 1 � j � k) and the UR term will absorb the effect of the omitted variable m on xi, thereby
biasing the total effect of exi estimated within the UR model (so-called ‘omitted variable bias’). Further, it is
evident that m confounds the relationship between x1 and y, so that failure to adjust for m in the composite UR
model will produce different predicted outcome values and bias the estimated coefficient of x1.

6 UR models: Time-varying confounder (Figure 3(a))

Finally, we consider the scenario in Figure 3(a), in which a time-varying covariate m1,m2, . . . ,mk confounds the
relationship between x1,x2, . . . , xk and y.

In this section, we again provide: definitions of the standard regression models, UR terms, and UR models, all
adjusted for the confounder m1,m2, . . . ,mk based upon the DAG in Figure 3(a) (§6.1); an analysis of UR models
within a causal framework (§6.2); arguments for why Properties (i)–(iii) are upheld when the defined adjustments
for m1,m2, . . . ,mk have been made (§6.3); and a discussion regarding the implications of insufficient adjustment for
m1,m2, . . . ,mk (§6.4).

6.1 Definitions (with correct adjustment for m1, m2, . . . ,mk)

Using the DAG in Figure 3(a), we extend the original definitions of the standard regression models, UR terms, and
UR models (equations (5) to (7), respectively) to properly account for the confounding effect of m1,m2, . . . ,mk, a
time-varying covariate.

We define the OLS regression model ŷ
ðiÞ
S for estimating the total causal effect of each measurement of the

exposure variable xi (for 1 � i � k) on y as:

ŷ
ðiÞ
S ¼ �̂

ðiÞ
0 þ �̂

ðiÞ
m1m1 þ �̂

ðiÞ
x1x1 þ � � � þ �̂

ðiÞ
mimi þ �̂

ið Þ
xi xi ð12Þ

The relationship between each xi and y is not only confounded by all previous values of the exposure
x1, . . . , xi�1 but also by the current measurement and all previous measurements of the confounder m1, . . . ,mi.
Therefore, adjustment for m1, . . . ,mi, x1, . . . , xi�1 is necessary to obtain an inferentially unbiased estimate of the
total causal effect of each measurement of the exposure. We reiterate that only the coefficient of the last/most
recent measurement of x (i.e. �̂ðiÞxi ) may be interpreted as a total causal effect.

Extending the process of Keijzer-Veen et al.9 to create UR terms for each measurement of the exposure xi in this
scenario necessitates adjustment for the current measurement and all previous measurements of the confounder
m1,m2, . . . ,mi (for 2 � i � k), since these variables confound the relationship between each measurement of the
exposure variable xi and all previous measurements x1, . . . ,xi�1, i.e.:

xi ¼ �̂
ðiÞ
0 þ �̂

ðiÞ
m1m1 þ �̂

ðiÞ
x1x1 þ � � � þ �̂

ðiÞ
mði�1Þmi�1 þ �̂

ðiÞ
xði�1Þxi�1 þ �̂

ðiÞ
mimi þ exi ð13Þ

In this way, exi represents the difference between the observed value of xi and the value of xi as predicted by all
previous measurements x1, . . . , xi�1, adjusted for the confounding effects of m1,m2, . . . ,mi.

As we have demonstrated previously (§4.3, §5.3), UR models rely upon the orthogonality of terms in the
composite UR model. This necessitates the creation of UR terms emi for each measurement of the time-varying
confounding variable mi (for 2 � i � k) in a similar manner to that of the UR terms exi (equation (13)). Each emi is
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derived from the OLS regression of mi on all previous values of the confounder m1, . . . ,mi�1, as well as all previous
values of the exposure x1,x2, . . . , xi�1 which confound this relationship:

mi ¼ �̂
ðiÞ
0 þ �̂

ðiÞ
m1m1 þ �̂

ðiÞ
x1x1 þ � � � þ �̂

ðiÞ
mði�1Þmi�1 þ �̂

ðiÞ
xði�1Þxi�1 þ emi ð14Þ

Thus, emi has a similar interpretation to the original UR term exi, in that it represents the part of mi unexplained
by all previous values m1, . . . ,mi�1, adjusted for the confounding effects of x1, . . . , xi�1.

Lastly, we define the UR model ŷ
ðiÞ
UR (for 1 � i � k) as a function of the initial value of the confounder m1 and its

subsequent ‘unexplained’ increases em2, . . . , emi, and the initial value of the exposure x1 and its subsequent
‘unexplained’ increases ex2, . . . , exi :

ŷ
ið Þ
UR ¼ �̂

ið Þ
0 þ �̂

ið Þ
m1m1 þ �̂

ið Þ
x1x1 þ �̂

ið Þ
em2em2 þ �̂

ið Þ
ex2ex2 þ � � � þ �̂

ðiÞ
emiemi þ �̂

ið Þ
exiexi ð15Þ

As previously, visual depictions of these equations are provided. Figure 3(b) corresponds to the standard
regression models given by equation (12); Figure 3(c) corresponds to the k� 1 regressions of xi on all
preceding measurements of x and m (equation (13)), the k� 1 regressions of mi on all preceding measurements
of x and m (equation (14)), and one composite UR regression model (equation (15), with i ¼ k).

6.2 A causal framework

The similarities amongst the three causal scenarios depicted in Figures 1(a), 2(a), and 3(a) are evident, and shed
light on how the reasoning from the previous scenarios (§4.2 and §5.2) can be extended to demonstrate why the UR
model in equation (15) satisfies Properties (i)–(iii). In a regression model containing all of m1, . . . ,mk, x1, . . . , xk (as
in equation (12), with i ¼ k), only the coefficient of xk could be interpreted as a total causal effect on y; the
coefficients of x1, . . . , xk�1 may only be interpreted as the direct effects of each measurement of the exposure on y,
because all future measurements of both x and m would fully mediate the respective relationship and all preceding
measurements of x and m would block all backdoor paths. Within the UR model, however, the independence of all
UR terms for both the exposure (i.e. ex2, . . . , exk) and confounder (i.e. em2, . . . , emk) ensures no mediating paths are
blocked, and the only backdoor path between x1 and y is blocked by m1.

6.3 Covariate orthogonality and Properties (i)–(iii)

In addition to the graph-based approach in the preceding section (§6.2), we can illustrate mathematically that the
standard regression models ŷ

ið Þ
S (equation (12)), UR terms for measurements of the exposure (equation (13)) and

confounder (equation (14)), and composite UR model ŷ
kð Þ
UR (equation (15), with i ¼ k) satisfy Properties (i)–(iii).

Although seemingly more complex, the scenario depicted in Figure 3(a) also has very little to distinguish it from
the scenarios in Figures 1(a) and 2(a). The confounder m1, being the only exogenous node on the graph, could be
imagined as variable x0, with all nodes subsequent to x1 having an associated UR term. Viewed as such, the
necessity of adjusting for m1 and creating UR terms for both the exposure and the time-varying confounder
becomes apparent, as the causal diagram in Figure 3(a) is equivalent to that of Figure 2(a) with minor notational
adjustments. Therefore, we provide only a brief outline of how the adjustments deemed necessary by the causal
diagrams in Figure 3(a) will result in Properties (i)–(iii) being upheld; formal mathematical proofs are provided in
online supplementary Appendix 3.

Equations (12) to (15) are summarised in Table 4 and are guaranteed to satisfy Properties (i)–(iii). In contrast to
previous scenarios (§4.3 and §5.3), each regression model (for both the standard and UR models) contains two
more covariates than the model preceding it. In the column of standard regression models, each row contains an
additional xi and mi term; in the column of UR models, each row contains an additional exi and emi term. Thus, for
Properties (i)–(iii) to be upheld in in each UR model ŷ

ðiÞ
UR, these two additional terms must be orthogonal to one

another and to all preceding terms.
Proving this is relatively straightforward. For any UR term emi for the confounder, it holds that emi is

orthogonal to m1, . . . ,mi�1, x1, . . . , xi�1 by construction (equation (14)). Because preceding UR terms
ex2, . . . , exði�1Þ (equation (13)) and em2, . . . , emði�1Þ (equation (14)) may be expressed as linear combinations of
m1, . . . ,mi, x1, . . . , xi�1, it follows that emi is orthogonal to em2, . . . , em i�1ð Þ, ex2, . . . , exði�1Þ. Furthermore, for any
UR term exi for the exposure, it holds that exi is orthogonal to m1, . . . ,mi, x1, . . . , xi�1 by construction (equation
(13)). Because preceding UR terms ex2, . . . , exði�1Þ (equation (13)) and em2, . . . , emi (equation (14)) may be expressed
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as linear combinations of m1, . . . ,mi, x1, . . . ,xi�1, it follows that exi is orthogonal to em2, . . . , emi, ex2, . . . , ex i�1ð Þ.
Thus, we are able to conclude that emi and exi are orthogonal to one another and to all preceding terms in for any
UR model ŷ

ðiÞ
UR; adjustment for all causally preceding measurements of both m and x when generating UR terms

for both the confounder and the exposure ensures this orthogonality.

6.4 Incorrect adjustment for m1, m2, . . . ,mk

The DAG in Figure 3(a) demonstrates the necessity of adjusting for a time-varying confounder m1,m2, . . . ,mk in
the manner described in Section 6.1, and we have demonstrated how such adjustments will produce a composite
UR model that satisfies Properties (i)–(iii). The implications of incorrect adjustment for a time-varying confounder
m1,m2, . . . ,mk in a UR model are similar to those of incorrect adjustment for a time-invariant confounder m,
which were previously outlined in Section 5.4. Without adjustment for any of m1, . . . ,mi when constructing each
UR term for the exposure exi, the coefficients of x1, . . . , xi�1 (i.e. �̂

ð j Þ
xi , for 1 � i � ðk� 1Þ and 1 � j � k) and the UR

term will absorb the effect of each omitted variable on xi; this will result in the coefficient estimated for each exi in
the composite UR model being unequal to the total effect of xi in its corresponding standard regression model.

The requirement of orthogonal covariates within the composite UR model also sheds light on the necessity for
generating UR terms em2, em3, . . . , emk for measurements of a time-varying confounder, if present. We might easily
imagine a scenario in which we considered only the original covariates m1,m2, . . . ,mk in the UR model. In such a
scenario, the terms would remain correlated with each other and with x1; therefore, the inclusion of subsequent m
terms in the UR model would necessarily change the coefficient estimates for x1 and all other covariates.

7 UR model interpretation

Having demonstrated that confounder adjustment within UR models is possible, we consider the claim9 that UR
models offer additional insight via the coefficients for each UR term exi (e.g. �̂

ðkÞ
exi in equation (7), for 2 � i � k) into

the effect of xi increasing more than expected upon y.
Consider again the simple example with two longitudinal measurements of a continuous exposure x (i.e. x1 and

x2), outcome y, and no additional confounders (i.e. Figure 1(a), with k ¼ 2); the standard regression model (with
x2 as the specified exposure variable) and ‘equivalent’ UR model are given below, respectively:

ŷ
ð2Þ
S ¼ �̂

ð2Þ
0 þ �̂

ð2Þ
x1x1 þ �̂

ð2Þ
x2x2

ŷ
ð2Þ
UR ¼ �̂

ð2Þ
0 þ �̂

ð2Þ
x1x1 þ �̂

ð2Þ
ex2ex2

It has been shown (§4.3) that �̂ð2Þx2 and �̂ð2Þex2 are equal, yet �̂ð2Þx2 is interpreted as the total effect of a one-unit
increase in x2 on y, whereas �̂ð2Þex2 is (supposedly) interpreted as the total effect of a one-unit higher than expected
increase in x2 on y. If these two variables truly are distinct, their regression coefficients should likewise be distinct.
This issue has also been addressed by Tu and Gilthorpe,11 who have argued that the two coefficients are equivalent
because adjustment for x1 in ŷ

ð2Þ
S amounts to testing the relation between y and the part of x2 unexplained by x1 (i.e.

the unexplained residual). In fact, the two coefficients are equal simply because they mean the same thing. The UR
model does not, therefore, offer any additional insight into the effect of higher than expected change in x on the
outcome.15

We also raise a more philosophical point, which speaks to the need for any model to reflect accurately the
underlying data-generation process of a given scenario. As an artefact of OLS regression, the UR terms will always

Table 4. For the scenario depicted in Figure 3(a), the standard regression model ŷ
ðiÞ
S necessary for estimating the total causal effect of

each exposure xi on y, and the corresponding UR model ŷ
ðiÞ
UR, for 1 � i � k.

Standard regression model ŷ
ðiÞ
S UR model ŷ

ðiÞ
UR

i ¼ 1: �̂ð1Þ0 þ �̂
ð1Þ
m1m1 þ â

ð1Þ
x1 x1 �̂ð1Þ0 þ �̂

ð1Þ
m1m1 þ k̂

ð1Þ

x1 x1

i ¼ 2: �̂ð2Þ0 þ �̂
ð2Þ
m1m1 þ �̂

ð2Þ
x1 x1 þ �̂

ð2Þ
m2m2 þ â

ð2Þ
x2 x2 �̂ð2Þ0 þ �̂

ð2Þ
m1m1 þ k̂

ð2Þ

x1 x1 þ �̂
ð2Þ
em2em2 þ k̂

ð2Þ

ex2ex2

..

. ..
. ..

.

i ¼ k:
�̂ðkÞ0 þ �̂

ðkÞ
m1m1 þ �̂

ðkÞ
x1 x1 þ �̂

ðkÞ
m2m2 þ �̂

ðkÞ
x2 x2

þ � � � þ �̂ðkÞmkmk þ â
ðkÞ
xk xk

�̂ðkÞ0 þ �̂
ðkÞ
m1m1 þ k̂

ðkÞ

x1 x1 þ �̂
ðkÞ
em2em2 þ k̂

ðkÞ

ex2ex2

þ � � � þ �̂ðkÞemkemk þ k̂
ðkÞ

exkexk
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be mathematically independent of the value of the initial measurement of the exposure and all subsequent
measurements. This is unlikely to be an accurate representation of real-world exposure variables. Many of
these, such as body size, exhibit a consistent, cumulative presence that is only manifest at the discrete time
points at which it is measured; these measurements are thus distinct only as a result of the discretisation of
time within the measurement processes adopted. Moreover, in auxological studies, the phenomenon of so-
called compensatory (or ‘catch up’) growth has been well documented, with accelerated growth being observed
in individuals who begin with a low value of some measure, e.g. birthweight.45,46 Therefore, however convenient
and mathematically sound it may be to model data in a way that implies complete statistical independence
amongst an exposure variable’s initial value and its subsequent measurements, this assumption is likely to be
implausible and unrealistic for most biological and social variables of interest to epidemiologists. This is a
weakness shared by all conditional approaches (of which UR models are one), which has led several authors47

to recommend that the results be considered alongside those produced by other methods, rather than in isolation.

8 Standard error reduction

Finally, we address an important consequence of the use of UR models; namely, that they underestimate the
standard errors (SEs) of estimated coefficients, thereby resulting in artificial precision of estimated effect sizes.
Although focus on statistical significance by way of p-values and confidence intervals is not in and of itself
justifiable within a causal framework (as focus is effect size and likely functional significance, e.g. the absolute
risk posed or the potential for substantive intervention), we consider it an important issue to address as a matter of
clarity for researchers seeking to use UR models.

To demonstrate, we have simulated 1000 non-overlapping random samples of 1000 observations from a
multivariate normal distribution based upon the DAG in Figure 1(a) with k ¼ 2, using the ‘dagitty’ package
(v. 0.2–2)4,48 in R (v. 3.3.2).49 Each sample was used to create: (1) the two standard regression models necessary
for estimating the total causal effect of each of x1,x2 on y (equation (5)); (2) the UR term ex2, derived by regressing x2
on x1 (equation (6)); and (3) the composite UR model in which y is regressed on x1 and ex2 (equation (7)). For each
standard regression model ŷ

ðiÞ
S (for i ¼ 1, 2), the reported SE of the regression coefficient for exposure xi is stored.

For each composite URmodel ŷ
ð2Þ
UR, the SE of the regression coefficient for each of x1, ex2 is stored in two forms: (1) as

reported in the URmodel summary output; and (2) as estimated by bootstrapping 1000 samples and calculating the
standard deviation of the distribution of estimated coefficients. Additional details relating to this simulation –
including parameters and code – are located in online supplementary Appendix 4. (Note: The specific correlation
structure and parameter values used to simulate the data are unimportant for the purposes of this demonstration).

By definition, the SE of an estimated regression coefficient is a point estimate of the standard deviation of an
(infinitely) large sampling distribution of estimated regression coefficients. We have shown that standard
regression and UR models elicit identical point estimates of the total causal effects of each measure of the
longitudinal exposure (§4); from this, it follows that the associated SEs should themselves be equal.

Violin plots of the SEs estimated for each coefficient representing a total causal effect across the 1000
simulations are displayed in Figure 4 for each method considered. As is evident, the reported SEs within the
UR models are reduced in comparison to those within the first standard regression models (for designated
exposure x1) and equal to those within the final standard regression models (for designated exposure x2). This
demonstrates an apparent paradox: the coefficient values are equivalent, yet the associated SEs are unequal.

We argue that the apparent reduction in SEs achieved by using UR models is purely artefactual and arises from
the explicit conditioning on future measurements of x within a UR model. In the standard regression analysis,
the only information within the data that is used to inform SE estimation lies in the past (i.e. past measures of the
exposure plus any confounders). In contrast, the UR modelling process generates (orthogonal) residuals for the
entire exposure period and combines these into a single model, thereby using information within the data that is
from both the past and the future. If we possessed data pertaining to any true independent causes of future
measurements of the exposure, such a method would indeed be valid; however, the UR terms are simply
estimated using prior measurements of the exposure. Moreover, due to the fact that they are estimates, the UR
terms themselves contain additional variation that is not accommodated by traditional regression methods which
assume covariates are measured without error. Consequently, the SEs of estimated causal effect derived from UR
models are artefactually reduced and should not be inferred as robust. Indeed, when the SEs within the UR models
are estimated via bootstrapping, they are similar to those within the standard regression models.

Comparing the two plots in Figure 4 offers clarity to this argument: (a) displays differing distributions of the
reported SEs for the coefficient estimates of x1 (where conditioning on the future information given by x2 reduces
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the standard error in the UR model); whereas (b) displays the same distribution of the reported SEs for the
coefficient estimates of x2 and ex2 (where the standard regression model correctly exploits all prior information
given by x1, as does the UR model). Although the magnitude of bias in estimated SEs is small in this simulated
example, it will always be present due to the way in which UR models are constructed. Quantifying the magnitude
of this bias is not trivial and is beyond the scope of the present study.

9 Conclusion

The mathematical appraisal of UR models that we have undertaken confirms that the method proposed by
Keijzer-Veen et al.9 is capable of accommodating more than two longitudinal measurements of an exposure

Figure 4. Violin plots comparing the standard errors associated with equivalent coefficients estimated in standard regression vs. UR

models, for data simulated based upon the scenario depicted in Figure 1(a) (with k ¼ 2). Horizontal bars within each distribution

represent the mean� 1 standard deviation.
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variable and demonstrates how adjustment for confounding variables should be made in this framework to uphold
the property that the coefficients for the terms x1, ex2, . . . , exk estimated within a UR model are equal to the total
effects for x1,x2, . . . , xk estimated by their respective standard regression models. This result will only be
guaranteed to hold when adjustment for all confounding variables has been made at both stages in the UR
modelling process (i.e. when generating UR terms for subsequent measurements of the exposure and in the
composite UR model). From a statistical perspective, adjustment for all preceding variables (including
confounders) ensures orthogonality amongst the covariates in a composite UR model. Therefore, when the
potential confounder is time-varying, it is also necessary to generate UR terms for subsequent measurements of
the confounder itself and include these in the final composite models used.

As our proofs only consider one confounding variable, the causal framework provided by DAGs should aid
future researchers who wish to extend robustly UR models to situations involving multiple, possibly causally
linked, time-invariant and time-varying confounders. Such a DAG will be useful in identifying confounders and
establishing the temporal ordering of variables, thereby ensuring that all preceding variables are adjusted for when
generating the necessary UR terms.

Although UR models can accommodate multiple measurements of an exposure variable in addition to
confounding variables, we have concerns about their practical implementation. Although only one UR model
need ultimately be presented, the necessity of generating orthogonal covariates for that UR model requires that
many models be created; this has the potential to be quite substantial when multiple confounders are considered.
For an exposure x measured at k points in time, the standard regression approach necessitates k separate models
for estimating the total causal effect of each measurement on the outcome regardless of the number of confounders.
In the case of one time-invariant confounder (§5), kmodels are also created (k� 1 models to generate all UR terms
and 1 composite UR model); for a time-varying confounder (§6), 2k� 1 models are created (i.e. 2k� 2 models to
generate all UR terms and 1 composite UR model). The total number of models created by the UR process will
always be either equal to or greater than the total number of models created by the standard regression process. If
such a process offered real gains in insight into the scenario under consideration, it may indeed be worth it;
however, UR models offer no additional insight compared to standard regression methods. Moreover, the
inclusion of multiple covariates that are explicitly conditional on one another within the same model also
results in artificially reduced standard error estimates, the extent of which has yet to be fully evaluated; the
issue can be avoided by bootstrapping, but such a solution may be computationally intensive and require more
programming skills than those necessary for implementing the built-in regression functionalities in statistical
software packages. Previous research that has utilised UR models without undertaking sufficient adjustment for
confounders and correcting SEs via bootstrapping should not be considered robust.

We therefore have strong reservations about the use and implementation of UR models within lifecourse
epidemiology, and suggest that researchers considering using them should instead rely on standard regression
methods, which produce the same results but are much less likely to be mis-specified and misleading. However, for
researchers wishing to use these models, the hypothesised DAG or causal diagram should be presented so that any
readers and/or reviewers can confirm that sufficient adjustment for confounders has been undertaken; moreover,
SEs should be estimated via bootstrapping and not simply reported as in the model output, as these have the
potential to be misleading. We support the recommendation of previous authors47 that additional analytical
approaches should be considered alongside conditional approaches (e.g. UR models) in order to achieve robust
causal conclusions. For example, multilevel, latent growth curve, and growth mixture models may be used to
estimate the effects of growth across the lifecourse on a distal outcome, and are more flexible than standard
regression methods.5 Moreover, the three G-methods50,51 are explicitly grounded in a causal framework and allow
for the simultaneous consideration of multiple measurements of a longitudinally measured exposure, as well as
time-varying confounding; these methods provide exciting avenues of research for lifecourse epidemiologists.
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