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The electrophysiological 
connectome is maintained in 
healthy elders: a power envelope 
correlation MEG study
N. Coquelet1, A. Mary2,3, P. Peigneux  2, S. Goldman1,4, V. Wens1,4 & X. De Tiège1,4

Functional magnetic resonance imaging (fMRI) studies report age-related changes in resting-state 
functional connectivity (rsFC), suggesting altered or reorganized connectivity patterns with age. 
However, age-related changes in neurovascular coupling might also partially account for altered 
connectivity patterns. Here, we used resting-state magnetoencephalography (MEG) and a connectome 
approach in carefully selected healthy young adults and elders. The MEG connectome was estimated 
as rsFC matrices involving forty nodes from six major  resting-state networks. Source-level rsFC maps 
were computed in relevant frequency bands using leakage-corrected envelope correlations. Group 
differences were statistically assessed using non-parametric permutation tests. Our results failed to 
evidence significant age-related differences after correction for multiple comparisons in the α and 
the β bands both for static and dynamic rsFC, suggesting that the electrophysiological connectome 
is maintained in healthy ageing. Further studies should compare the evolution of the human brain 
connectome as estimated using fMRI and MEG in same healthy young and elder adults, as well as in 
ageing conditions associated with cognitive decline. At present, our results are in agreement with the 
brain maintenance theory for successful aging as they suggest that preserved intrinsic functional brain 
integration contributes to preserved cognitive functioning in healthy elders.

Substantial changes in sensory perception1–3, motor4 and cognitive abilities (for a review, see, e.g.5) usually occur 
with age. Nevertheless, there is a marked inter-individual variability in the age-related decline of brain functions, 
and particularly regarding cognitive functioning (for reviews, see, e.g.6,7). Indeed, in a population of subjects 
with no characterized neurodegenerative disorders, some individuals may show early (i.e., in their 50 s) reliable 
decline, while others may show late (i.e., in their 70 s or even 80 s) preserved functioning6,7. The neural correlates 
subtending age-related behavioural and cognitive decline have been a major topic of neuroimaging research these 
last decades. Conversely, there has been  increased interest in the last years in  the brain mechanisms subtending 
“healthy” or “successful” aging6.

Structurally, physiological aging is usually considered to be associated with changes in brain volume and 
cerebrospinal fluid spaces8–12 that are due to progressive regional grey matter and more widespread white matter 
loss13. White matter loss induces a disruption of fiber tracks connecting specific large-scale neural network nodes 
involved in high-level brain functions14–16. Interestingly, some structural magnetic resonance imaging (MRI) 
and diffusion tensor imaging (DTI) studies have suggested that the less structural brain changes are observed, 
the better is the cognitive functioning at old age (see, e.g17–20). These findings provide empirical support to the 
“brain maintenance” theory, which postulates that individual differences in the manifestation of age-related brain 
changes and pathology account for the variability in age-related cognitive decline6.
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The first attempts to characterize the age-related modifications in the functional organization of the human 
brain during healthy aging have been performed using task-based functional MRI (fMRI) (for a review, see, 
e.g.21). A meta-analysis of task-related fMRI datasets has disclosed age-related hypo-activation of the visual areas 
and hyper-activations mainly in two cognitive networks, i.e., the fronto-parietal control (FPN) and the default 
mode (DMN) networks21. The latter finding was interpreted as an over-recruitment mechanism playing a crucial 
role in generating successful cognitive compensation in older adults21. Cerebral over-recruitment in aging pro-
vided some support to the “cognitive reserve” or the “compensation” hypotheses, which posit that some individ-
uals will cope better with age-related pathology than others because they do react or compensate better for their 
progressive brain changes (for reviews, see, e.g.22,23).

A major disadvantage of task-based investigations is the possible performance biases between young adults 
and elder subjects in cross-sectional studies, or between elders with different behavioral and cognitive function-
ing. This indeed complicates the interpretation of age-related fMRI changes. Thus, with the advent of resting-state 
neuroimaging, there has been a growing interest in resting-state investigations to provide an accurate picture of 
the age-related changes in the functional human brain architecture, free of task-performance bias. Indeed, fMRI 
studies have shown that task-based brain networks configuration is actually shaped primarily by an intrinsic net-
work architecture that is also present during the so-called “resting state” (i.e., in the absence of any explicit input 
or output)24,25. Such intrinsic network architecture emerges from the spontaneous low-frequency fluctuations of 
the blood-oxygen-level-dependent (BOLD) signal captured by fMRI (for a review, see, e.g.26).

In their seminal study, Andrews-Hanna et al.27 studied using resting-state fMRI the effect of aging on 
resting-state functional connectivity (rsFC). They highlighted a loss of rsFC between nodes of two important 
large-scale brain networks (i.e., the DMN and the dorsal attentional network (DAN)) with aging, and especially 
between the anterior and the posterior nodes of the DMN (i.e., between the medial prefrontal (mPFC) and the 
posterior cingulate (PCC) cortices). Importantly, the within-DMN rsFC positively correlated with the cognitive 
performance (i.e., executive, memory and processing speed) in older participants. However, the DAN and the 
DMN are not the sole networks impacted by aging, and age-related effects on other networks have also been 
(inconsistently) uncovered in subsequent fMRI studies. Resting-state fMRI investigations also found decreased 
rsFC in the FPN and cingulo-opercular networks, as well as increased in rsFC in somatosensory and subcortical 
networks (see, e.g.28,29). Besides within-network investigations, the effects of aging on cross-networks interactions 
were also investigated using fMRI and, e.g., disclosed increased interactions between the somatomotor and the 
visual networks with age29. Taken together, these studies and others (for reviews, see, e.g.23,30) demonstrated that 
normal aging impacts the intrinsic functional architecture of the human brain with either decreased or increased 
functional connectivity between nodes of the different networks. Some of these functional connectivity changes 
correlated with some cognitive measures, suggesting a direct link with the cognitive decline that can be observed 
with aging. These findings also partly bring support to the “cognitive reserve” or the “compensation” hypotheses.

When it turns to the study of the age-related changes in functional brain architecture using fMRI, two impor-
tant issues should be considered. First, aging is frequently associated with an increased prevalence of sleep disor-
ders (e.g., insomnia), psychiatric conditions (e.g., anxiety, depression), or with the use of psychotropic drugs (e.g., 
sedatives) that can potentially influence rsFC estimates and bias the results (see, e.g.31–33). Second, fMRI actually 
provides indirect information about neuronal activity, by measuring the local variations of brain perfusion asso-
ciated with changes in neuronal activity via the BOLD signal. The neurovascular coupling is considered to be 
altered with aging and some brain disorders (for a review, see, e.g.34). In this respect, the impact of age-related 
neurovascular coupling changes on rsFC measures as indexed by fMRI remains unsettled (for a review, see, e.g.35). 
Contrary to fMRI, magnetoencephalography (MEG) provides a direct measure of neuronal activity36 and allows 
bypassing this neurovascular coupling issue. Interestingly, networks similar to those observed with fMRI at rest, 
also called resting-state networks (RSNs), were uncovered using MEG from large-scale correlation patterns in the 
slow fluctuations of band-limited sources envelope (i.e., power envelope correlation), particularly in the alpha and 
the beta frequency bands37–39. Indeed, some RSNs emerge preferentially either in the alpha band (e.g., the visual 
network and the DMN) or in the beta band (e.g., the somatomotor or the auditory networks)37,39. These findings 
paved the way for the investigation of the electrophysiological bases of fMRI RSNs37,39. Furthermore, the excellent 
temporal resolution of the MEG, of the order of 1 ms, allows better investigation of the spatial, temporal and spec-
tral dynamics of the human brain rsFC than fMRI. Previous MEG studies have indeed demonstrated that RSNs 
actually alternate between short periods (i.e., from hundred milliseconds to several seconds) of high correlation 
among nodes within or between RSNs, and periods during which only a subset of network nodes interact40–42. 
This dynamic functional integration within and between RSNs within specific frequency bands therefore appears 
as a key element of the intrinsic functional organization of the human brain.

In this study, we aimed at investigating further the age-related changes in functional brain integration using 
MEG rsFC in carefully selected elder participants, to ensure that they were free of any confounding factors that 
could affect MEG rsFC estimates. Also, in order to provide a more complete description of brain rsFC changes 
with aging, we investigated both static and dynamic MEG rsFC using the power envelope correlation approach. 
We explored within- and cross-networks interactions on the basis of a connectome matrix adapted from41. This 
latter approach relied on forty cortical nodes distributed across six major RSNs, i.e., the DMN, the DAN, the ven-
tral attentional network (VAN), the visual network (VISN), the somatomotor network (SMN) and the language 
network (LAN). Most of these RSNs were shown to display significant changes in within- and between-RSNs 
rsFC in previous fMRI studies (see above). The reasons guiding the use of those methods were (i) that focusing on 
power envelope correlation as an index of brain rsFC would allow (by contrast with phase coupling approaches) 
to compare the MEG findings with the available fMRI literature, (ii) that dynamic rsFC would potentially detect 
subtle changes in the functional brain integration associated with aging, and (iii) that the connectome approach 
is a computationally efficient method limiting data analysis to a subset of relevant cortical nodes and, there-
fore, making interactions between nodes clearly readable. As we focused on power envelope correlation for rsFC 
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computation, we also assessed the age-related changes in static and dynamic MEG power across the different 
RSNs nodes because previous studies have disclosed age-related changes in band-specific regional power (see, 
e.g.43–46). Based on the available literature, we expected to find substantial age-related changes in band-specific 
power and rsFC with both increases and decreases in the power of some frequency bands, and in within- and 
between-RSNs interactions. We also expected that dynamic band-specific power and rsFC would provide an 
additional and potentially more sensitive view than static approaches on the age-related changes in functional 
brain integration.

Results
Neuromagnetic activity was recorded at rest (eyes opened) during 5 minutes using whole-scalp-covering MEG 
device in twenty-five young (12 females and 13 males; age: 23.6 ± 2.9 years (mean ± standard deviation)) and 
twenty-five elderly (15 females and 10 males; 68.8 ± 2.4 years) right-handed healthy adult subjects. All partic-
ipants had no prior history of neurological or psychiatric disorder, and did not report any subjective sleep or 
cognitive (e.g., memory impairment) problem. More specifically, all elder subjects had active personal and social 
life, and were free of psychotropic drug intake as well as of known sleep problem, depression, anxiety and signs of 
pathological cognitive decline (see Table 1).

The analysis of MEG rsFC was derived from source-reconstructed band-limited α (8–13 Hz) and β (13–25 Hz) 
power envelope correlations with geometric correction for spatial leakage effects47 at 40 cortical nodes belonging 
to 6 RSNs detectable by MEG41. Figure 1 displays the location of the 40 cortical nodes on the MNI brain. Both 
static and dynamic rsFC were considered, the former being computed over the whole 5 min MEG recording and 
the latter, within short (length: 10 s, steps: 2 s) time windows sliding along the recording40,41. To assess how the 
temporal variability of rsFC time series was affected by physiological aging, we considered the standard devia-
tion (SD) and the coefficient of stability (CS, i.e., mean-over-SD) of the dynamic data, both computed in each 
individual across windows. We also derived α- and β-band static and dynamic power (with proper correction 
for depth bias) at these nodes to control for possible power-induced effects on rsFC. Furthermore, we computed 
static power in δ (1–3 Hz) and θ (4–7 Hz) frequency bands as previous studies have demonstrated changes in the 
power of those frequency bands with aging43–46. Group-level differences in rsFC or power entries between young 
and elder participants were evaluated statistically using non-parametric permutation testing. The large number 
of multiple comparisons involved in the analyses was taken into account by controlling the false discovery rate 
(FDR).

No age-related difference in static and dynamic rsFC within the α and the β bands survived the FDR correc-
tion. On this account, we cannot report differences in band-specific rsFC data between young and elder subjects.

By contrast, we identified significant age-related power modulations both in the α and the β bands (Fig. 2). 
For the static evaluation, significant power decreases were found from young adults to elders for one node of 
the DAN, one node of the VAN, and two nodes of the SMN in the α band (Fig. 2a). Significant power increases 
were also disclosed for one node of the DMN, the LAN, the SMN, and the VISN in the β band (Fig. 2b). For the 
dynamic SD (Fig. 2c,d), significant age-related power decreases were observed for two SMN nodes in the α band 
and for three VISN nodes in the β band, while significant power increases were found in the β band only for 3 
nodes in the LAN, one node in the SMN and one node in the DMN. For the CS, power increases in three nodes of 
the VISN were highlighted in the α band (Fig. 2e). The β-band CS displayed one power increase in the VISN and 
two power decreases in one node of LAN and one node of the VAN (Fig. 2f). The p-values associated with each 
age-related change are listed in the Supplementary Table S1.

As control analysis, we also considered static power changes in slow wave activity and only observed signif-
icant power decreases with aging in some nodes for the δ and the θ bands (Fig. 3). More precisely, we noted a 
power reduction for 3 nodes of the DAN, 1 node of the VAN, 1 node of the DMN, 1 node of the VISN, 4 nodes 
of the SMN and 1 node of the LAN in the δ band (Fig. 3a); and for 2 nodes of the DAN and 4 nodes of the SMN 
in the θ band (Fig. 3b).

The absence of age-related rsFC changes found in this study suggests that the electrophysiological connectome 
is actually maintained with age, contrary to what is claimed in the fMRI literature. However, one might argue 
that the FDR correction used in this study might be too conservative. Still, the massive number of comparisons 
involved (mainly due to the spatial degrees of freedom associated with the 40 nodes considered) cannot be left 

Study n°1 Study n°2

Number of participants (female) 15 (9) 10 (6)

Age (years) 68.8 ± 1.6 68.8 ± 3.3

Tests Scores Range Inclusion Scores Range Inclusion

Beck Depression Inventory 2.1 ± 2.3 0–7 ≤7 n. a. n. a. n. a.

Geriatric Depression Scale n. a. n. a. n. a. 0.6 ± 0.9 0–3 <5

STAI: A-State 25.5 ± 5.4 20–36 ≤45 23.4 ± 6.2 20–39 ≤45

STAI: A-Trait 31.9 ± 6.1 24–40 ≤45 28.6 ± 7.5 22–47 ≤45

Mattis Dementia Scale 141.5 ± 1.7 137–144 >123 n. a. n. a. n. a.

Montreal Cognitive Assessment n. a. n. a. n. a. 29.4 ± 0.8 28–30 >26

Table 1. Demographic data and scores for the elder population.  Age and scores are represented as 
mean ± standard deviation.
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unhandled. Fortunately, the number of those spatial degrees of freedom can be estimated quite accurately, as it 
solely depends on the source reconstruction model, and this aspect can thus be taken into account in a precise 
manner47. So we also used an alternative approach whereby the family-wise error rate (FWER) associated with 
the spatial comparisons is corrected (in the spirit of random field theory for positron emission tomography and 
fMRI48 and analogs for MEG49) while the other factors remain uncontrolled, leading to a somewhat more liberal 
approach. In this case, only a few age-related FC changes could be observed on top of power changes, so that the 
conclusion that the electrophysiological connectome is globally maintained with age stands. (See Supplemental 
statistical analysis, Table S2 and Figure S1 for details).

Discussion
The main purpose of this work was to investigate using MEG connectivity approaches whether aging induces 
modulations of the human functional brain architecture. To that aim, we first rigorously selected a population 
of elder participants, in order to avoid any bias related to the use of psychotropic drugs, the presence of recog-
nized sleep impairment, and to psychiatric or cognitive confounding factors. Also, MEG allowed bypassing the 
neurovascular coupling issue typically encountered when using fMRI. Finally, we used the power envelope cor-
relation approach to index rsFC together with a connectome approach allowing the investigation of within- and 
between-RSNs interactions to make a link with the available fMRI literature. Indeed, previous studies suggest that 
this MEG connectivity index allows uncovering similar RSNs as fMRI37,39. Results showed that no functional con-
nection (either within or between networks) appeared modulated by aging. These results therefore suggest that 
the electrophysiological connectome is maintained in healthy elders. This observation contrasts with the available 
fMRI literature demonstrating substantial changes in functional connectivity with healthy aging.

Methodologically, we controlled the FDR to take into account the problem of multiple comparisons inherent 
to such neuroimaging data analyses. Nonetheless, one might argue that FDR might be too conservative and, con-
sequently, that our negative results are due to too strict statistics. However, a more liberal approach based on spa-
tial FWER control highlighted subtle rsFC changes at best; leaving our conclusion unchanged. Another possible 
issue might be a lack of statistical power associated with the relatively low number of subjects included. However, 
previous fMRI studies that disclosed significant and distributed age-related changes in rsFC included a similar 
(or even lower) number of subjects as the one used in this study, i.e., 25 subjects in each group (see, e.g.50–56). Still, 

Figure 1. Locations and labels onto the glass MNI brain of the fourty cortical nodes considered in this study. 
The top parts correspond to the left (Left) and the right (Right) external faces of the hemispheres. The bottom 
part provides a view of the glass MNI brain from the top. Color code: red is associated with the DAN nodes, 
light blue with VAN nodes, dark blue with DMN nodes, gray with VISN nodes, orange with SMN nodes and 
green with LAN nodes. Coordinates and labels abbreviations  may be found in41.
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increasing this sample size might help detecting possible age-related effects, but it is noteworthy that the drastic 
screening of elders used in this study renders this task rather difficult.

We used the power envelope correlation approach as rsFC index because it provides an electrophysiological 
equivalent to the fMRI RSNs37, at least for young healthy adults. So, why do the results of this MEG study therefore 
contrast with previous fMRI studies that disclosed significant changes in static within- and between-RSNs inter-
actions between young adults and elder subjects? The discrepancy identified here between our MEG data and the 
fMRI literature with regard to aging is possibly rooted in two different factors. First, fMRI indirectly records neu-
ronal activity via the neurovascular coupling, which is presumably altered by age (for a review, see, e.g.34). Thus, 
this study might suggest that the age-related modifications in rsFC previously reported using fMRI could simply 
represent an epiphenomenon (i.e., age-related changes in neurovascular coupling) rather than being directly 
relevant to brain networks, as already suggested in the fMRI literature (see, e.g50). Second, as already stressed 
above, the study of the effects of aging on the functional brain organization is typically associated with several 
possible confounding factors (e.g., sleep problems, psychotropic drugs, psychiatric or cognitive comorbidities) 

Figure 2. Significant age-related power increases (red) and decreases (blue) from young to elder subjects in the 
α band (left column) and the β band (right column), for the static (top), dynamic SD (middle) and dynamic CS 
(bottom) analyses. The nodes are displayed onto the glass MNI brain.
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when it turns to the comparison of elders with young healthy adults. This is why, in this study, elder subjects were 
thoroughly screened for those confounding factors to leave age as much as possible as the main discriminant 
factor between the two populations. One possible drawback of such approach is that the included elder subjects 
might actually not be considered as representative of “typical” elders. As a matter of fact, based on the selection 
criteria adopted, this study tested subjects representative of elders with healthy or successful aging, as far as those 
concepts may be defined and delineated (for a review, see, e.g.57). This hypothesis is reinforced by the observed 
age-related decrease in the power of slow brain activity, i.e., the δ and θ bands. Indeed, previous studies have 
shown that power increases in those frequency bands with aging are typically associated with cognitive decline, 
while power decreases are associated with healthy or successful aging43–46. Still, in a fMRI study where elder 
subjects were thoroughly screened for confounding psychiatric and cognitive factors (including a comprehen-
sive neuropsychological evaluation), researchers identified significant age-related changes in within and between 
networks rsFC50. Therefore, using similar populations, fMRI and MEG resting-state investigations might lead to 
different findings regarding the effects of healthy aging on functional brain integration. Our MEG data together 
with other neuroimaging studies supporting the “brain maintenance” theory for healthy or successful aging6 
suggest that preserved structural and functional brain architecture may actually contributes to preserved cogni-
tive functioning in healthy elders. Based on the above considerations, this study also highlights the critical need 
to compare fMRI and MEG rsFC changes with age in the same population of subjects and in elder subjects with 
different behavioral and cognitive profiles to provide further evidence supporting this hypothesis. Existent mul-
timodal neuroimaging data repository such as the Cambridge Centre for Aging and Neuroscience (Cam-CAN) 
data repository58, might represent a unique opportunity to perform such comparison.

Finally, the results of this study pave the way for the use of MEG and power envelope correlation for the proper 
investigation of pathological aging pathophysiology and for the comparison with the fMRI literature on that topic. 
Indeed, the fact that we failed to find substantial MEG rsFC changes in healthy elders compared to young adult 
subjects together with the finding that patients with amnestic mild cognitive impairment show significantly altered 
static within-DMN rsFC (using power envelope correlation) compared with age-matched healthy controls59,  
suggest that the approach proposed in this paper would be sensitive to the disruptions in functional brain integra-
tion associated with pathological aging. The rationale for using such functional connectivity approach is also in 
line with the more advanced theories about Alzheimer’s disease (AD) pathophysiology, positing that amyloid-β 
and tau protein deposition progressively induces specific brain networks dysfunction due to (i) deficits in synaptic 
plasticity leading (together with other pathological processes) to neuronal hyperactivity, and (ii) the propagation 
of those proteins deposition at downstream projection structures (possibly in a prion-like manner) contributing 
to their sequential appearance in regions constituting those specific networks (for reviews, see, e.g.60). Also, con-
sidering that the vascular changes associated with AD and preclinical AD, which may affect the neurovascular 
coupling61,62, using a neuroimaging method free of the neurovascular coupling issue will be of utmost interest to 
address those questions.

To sum up, we have shown here using MEG that healthy aging does not induce marked changes in the func-
tional organization of the human brain at rest. This study - and its natural prolongations suggested above - rep-
resents a first step towards a firm basis for the application of MEG rsFC relying on  power envelope correlation 
and its comparison with fMRI data for the characterization of the brain networks dysfunctions associated with 
pathological aging.

Figure 3. Significant age-related power decreases from young to elder subjects in the δ band (left) and the θ 
band (right) for the static analyses. The nodes are displayed onto the glass MNI brain.
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Materials and Methods
Participants and  screening. Twenty-five young (12 females and 13 males; age: 23.6 ± 2.9 years 
(mean ± standard deviation); age range: 19–31 years) and twenty-five elderly (15 females and 10 males; 68.8 ± 2.4 
years; age range: 65–74 years) healthy adult subjects were included in this study. Of notice, resting-state MEG data 
from fifteen of the twenty-five elders were already used in previous studies from our group63,64. All participants 
were right-handed according to the Edinburgh handedness questionnaire (laterality scores young: 76.4 ± 15.2; 
laterality scores old: 89.2 ± 13.4), had no prior history of neurological or psychiatric disorder, and did not report 
of any subjective sleep or cognitive (e.g., memory impairment) problem. Elders had an active personal and social 
life and were thoroughly screened for psychotropic drug intake as well as for sleep habits, depression, anxiety 
and objective signs of pathological cognitive decline. The fifteen elders that contributed to63 were screened for (1) 
depression with the Short version of the Beck Depression Inventory65 (French adaptation by66), (2) anxiety with 
the State-Trait Anxiety Inventory (STAI, French version of 67), and (3) dementia with the Mattis Dementia Rating 
Scale68. The additional ten elders were screened for (1) depression with the Geriatric Depression Scale69, (2) anx-
iety with the State-Trait Anxiety Inventory (French version of 67), and (3) dementia using the Montreal Cognitive 
Assessment70. Those ten subjects also underwent a comprehensive neuropsychological evaluation in which (i) 
episodic memory was assessed using the Grober and Buschke’s procedure71, (ii) short-term memory, using the 
Forward Digit span (WAIS-III72) and the Block tapping test73, (iii) working memory, using the Backward Digit 
span (WAIS-III72), (iv) visuospatial processing, using the Rey-Osterrieth complex figure74, (v) language func-
tioning, using the verbal fluency test75, and (vi) executive functions, with the Trail Making Test (parts A and B76), 
the Tower of London77, the Wisconsin Card Sorting Test78 and the color-word Stroop test79. All those ten elder 
subjects scored within the normal range for their age and level of education in all neuropsychological tests (see 
Supplementary Table S3). Table 1 summarizes the demographic information of the elder participants as well as 
the resulting scores. For each test/scale used, the inclusion scores shown in the table indicate that all elders were 
free from depression, anxiety and pathological cognitive decline. The education level as calculated on the basis 
of the International Standard Classification of Education was similar in young (4.8 ± 1.9; range: 2–7) and elder 
(5.1 ± 2.1; range: 2–8) participants (Student’s t-test: t48 = −0.49, p = 0.62, two-sided unpaired). Finally, sleep hab-
its on the previous month as measured with the Pittsburgh Sleep Quality Index (PSQI80) were similar between 
young (3.8 ± 2.4; range: 1–12) and elder (3.2 ± 2.2; range: 0–10) subjects (Student’s t-test: t48 = 1.04, p = 0.3, two-
sided unpaired).

Each participant contributed to the study after written informed consent. The CUB-Hôpital Erasme Ethics 
Committee approved this study prior to participants’ inclusion. All experiments were performed in accordance 
with relevant guidelines and regulations.

MEG data acquisition and structural MRI. Neuromagnetic brain activity was recorded at rest (5 minutes, 
eyes open, fixation cross, sampling frequency: 1 kHz, online band-pass filter: 0.1–330 Hz) with a 306-channels 
whole-scalp MEG system installed in a light-weight magnetically shielded room (Vectorview & Maxshield; Elekta 
Oy; Helsinki, Finland; see81 for a description of its characteristics). Four head tracking coils continuously mon-
itored subjects’ head position inside the MEG helmet. Coils’ location and at least 200 head-surface points were 
determined with respect to anatomical fiducials with an electromagnetic tracker (Fastrak, Polhemus, Colchester, 
Vermont, USA). Participants’ high-resolution 3D-T1 cerebral magnetic resonance images (MRIs) were acquired 
on a 1.5 T MRI scanner (Intera, Philips, The Netherlands).

Data preprocessing. Firstly, the signal space separation method82 was applied off-line to the continuous 
MEG data to reduce external magnetic interferences and correct for head movements. Secondly, ocular, car-
diac and system artifacts were eliminated using an independent component analysis83 (FastICA algorithm with 
dimension reduction to 30 components; hyperbolic tangent nonlinearity function) of the filtered data (off-line 
band-pass filter: 0.1–45 Hz). The components corresponding to artifacts were identified by visual inspection.

To proceed towards source reconstruction, the MEG forward model was also computed on the basis of par-
ticipants’ MRI, which was anatomically segmented beforehand using the FreeSurfer software (Martinos Center 
for Biomedical Imaging, Massachussetts, USA). MEG and MRI coordinate systems were co-registered using 
three anatomical fiducial points for initial estimation and the head-surface points to manually refine the surface 
co-registration. Then, a cortically-constrained grid of dipole locations (mean inter-sources distance: 5 millim-
eters) was built in the Montreal Neurological Institute (MNI) template using the MNE suite (Martinos Centre 
for Biomedical Imaging, Massachussetts, USA) and non-linearly deformed onto each participant’s MRI with 
Statistical Parametric Mapping (SPM8, Wellcome Trust Centre for Neuroimaging, London, UK). The forward 
model associated with this source space was computed using a one-layer Boundary Element Method as imple-
mented in the MNE suite.

MEG source reconstruction. The following in-house pipeline was used for source reconstruction and enve-
lope connectivity analysis (for more details, see47). Cleaned MEG data were filtered in the delta (δ band: 1–3 Hz), 
theta (θ band: 4–7 Hz), alpha (α band: 8–13 Hz) and beta (β band: 13–25 Hz) frequency bands. Band-specific 
Minimum Norm Estimation (MNE84) based on planar gradiometers only was then applied to reconstruct the 
sources of band-limited activity. Here, the noise covariance matrix was estimated from 5 minutes of empty-room 
data filtered in the relevant frequency range, and the regularization parameter was estimated using the con-
sistency condition derived in Wens et al.47. The depth bias was corrected by a noise normalization scheme, i.e., 
dynamic statistical parametric mapping (dSPM)84. Three-dimensional dipole time series were projected on their 
direction of maximum variance, and the analytic source signals were finally extracted using the Hilbert transform.
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 Resting-state functional connectivity. Instead of working with seed-based connectivity maps, which 
often limit investigations to one or few networks, we focused here on a connectome approach. We selected forty 
cortical source locations taken from six well-known RSNs; the MNI coordinates of which were taken from41 
(see Supplementary Table S1 in41). Seven nodes were located in the DMN, six in the DAN, five in the VAN, ten 
in the VISN, six in the SMN, and six in the LAN (see Fig. 1). Forty-by-forty matrices of rsFC were built by com-
puting the slow envelope correlation (see, e.g.39) between (i) the associated forty source signals (each viewed as a 
seed signal) and (ii) the same signals (viewed as targets) corrected beforehand for spatial leakage from the seed. 
Spatial leakage indeed leads to strong spurious connectivity that dominates over physiological couplings and 
was corrected here using the geometric correction scheme47. Because spatial leakage correction induces slight 
asymmetries between seed and target (notwithstanding genuinely symmetrical approaches such as85), the result-
ing rsFC matrices were symmetrized afterwards. We also computed forty-by-one vectors containing the power 
estimate (i.e., source signals’ variance) at each node to control for possible power-induced effects in rsFC changes.

The aforementioned pipeline was applied either on the entire timespan of the recording for the static rsFC 
analysis, or on moving windows (length: 10 seconds, step: 2 seconds; parameters based on41) for the dynamic 
rsFC analysis. The individual output data were gathered into a forty-by-forty-by-W rsFC array and a forty-by-W 
power matrix; W indicating the number of time windows (static case: W = 1; dynamic case: W≈150). The tem-
poral fluctuations of dynamic rsFC patterns are generally quite complex86 and their analysis typically relies on 
pattern classification methods such as maximum correlation windows40,41 or clustering of rsFC states42,87,88. Here, 
we rather focused on the basic question of whether the temporal variability of rsFC time series was affected by 
physiological aging. Therefore, we considered the SD and the CS (i.e., mean-over-SD) of the dynamic rsFC data, 
both computed in each individual across windows.

This presented pipeline has been entirely applied to the α and β bands whereas only static power was com-
puted for the δ and θ bands.

Statistical assessments. To assess the effect of age on each type of output data (static, SD and CS of rsFC/
power), we computed group-averaged differences between the two populations and derived p-values using standard 
non-parametric unpaired, two-tailed permutation tests (106 random permutations of the age condition, see, e.g.89).  
The significance level at p < 0.05 was corrected to take into account the massive number of comparisons 
involved, i.e., the spatial factor based on the number of cortical nodes investigated (40 × 39/2 = 780 connec-
tions for rsFC and 40 nodes for power) and the non-spatial factors comprising the frequency bands (delta, theta, 
alpha and beta), static and dynamic indices (SD and CS), and rsFC and power. The correction was based on 
the Benjamini-Hochberg algorithm90 in order to control the FDR. Another approach controlling the FWER for 
the spatial degrees of freedom only is described in the Supplementary Materials (see Supplemental statistical 
analysis).

Data availability. The datasets analyzed during the current study are available from the corresponding 
author upon reasonable request.
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