
����������
�������

Citation: Othman, H.; Jemimah, S.;

da Rocha, J.E.B. SWAAT

Bioinformatics Workflow for Protein

Structure-Based Annotation

of ADME Gene Variants. J. Pers. Med.

2022, 12, 263. https://doi.org/

10.3390/jpm12020263

Academic Editors: Ali

Salehzadeh-Yazdi and Mohieddin

Jafari

Received: 27 November 2021

Accepted: 1 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

SWAAT Bioinformatics Workflow for Protein Structure-Based
Annotation of ADME Gene Variants
Houcemeddine Othman 1,∗ , Sherlyn Jemimah 2 and Jorge Emanuel Batista da Rocha 1,3

1 Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University
of the Witwatersrand, 9 jubilee Road, Parktown, Johannesburg 2193, South Africa; jdarocha1@gmail.com

2 Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology
Madras, Chennai 600036, India; sherlyn.jemimah@hotmail.com

3 National Health Laboratory Service, Division of Human Genetics, Faculty of Health Sciences, School
of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa

* Correspondence: houcemeddine.othman@wits.ac.za; Tel.: +27-11-717-6630

Abstract: Recent genomic studies have revealed the critical impact of genetic diversity within
small population groups in determining the way individuals respond to drugs. One of the biggest
challenges is to accurately predict the effect of single nucleotide variants and to get the relevant
information that allows for a better functional interpretation of genetic data. Different conformational
scenarios upon the changing in amino acid sequences of pharmacologically important proteins
might impact their stability and plasticity, which in turn might alter the interaction with the drug.
Current sequence-based annotation methods have limited power to access this type of information.
Motivated by these calls, we have developed the Structural Workflow for Annotating ADME Targets
(SWAAT) that allows for the prediction of the variant effect based on structural properties. SWAAT
annotates a panel of 36 ADME genes including 22 out of the 23 clinically important members
identified by the PharmVar consortium. The workflow consists of a set of Python codes of which
the execution is managed within Nextflow to annotate coding variants based on 37 criteria. SWAAT
also includes an auxiliary workflow allowing a versatile use for genes other than ADME members.
Our tool also includes a machine learning random forest binary classifier that showed an accuracy
of 73%. Moreover, SWAAT outperformed six commonly used sequence-based variant prediction
tools (PROVEAN, SIFT, PolyPhen-2, CADD, MetaSVM, and FATHMM) in terms of sensitivity and
has comparable specificity. SWAAT is available as an open-source tool.

Keywords: variant effect prediction; pharmacogenomics; energy; entropy; ADME genes; Nextflow

1. Introduction

Absorption, Distribution, Metabolism, and Excretion (ADME) genes are key players
determining the pharmacokinetic properties of a drug. More than 300 genes have been
identified to contribute to the ADME properties. The function of 32 core ADME genes
has been confirmed by extensive studies [1]. Drug response depends on the variants
of the ADME genes found in an individual. For instance, depending on the genetic vari-
ability, the well-studied CYP2D6 ADME gene is associated with ultrarapid, intermediate,
or poor metabolization of tamoxifen [2]. The polymorphism of ADME genes is a dis-
tinctive property of different populations [3–6]. For example, the rs1050828 T variant is
known to cause an acute deficiency in G6PD. Its occurrence among genetically diverse
groups (reflected in self-identify) in South Africa has been shown to vary significantly even
among geographically neighboring populations [3]. Moreover, clinically actionable variants
of ADME genes deviate significantly between Sub-Saharan Africa and other worldwide
populations [7].

The characterization of common variants in ADME genes was the main focus of phar-
macogenetic studies, which allowed for setting up clinical directives in general populations.
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However, these variants cannot solely explain the wide range of observed drug-response
phenotypes [8]. In particular, rare variants were shown to have an important share of the ge-
netic makeup and were identified for their putative functional implication in ADME
genes [5,7,9,10]. The important status of rare variants has been also highlighted recently
as critical to consider in deriving personalized medicine strategies [11]. Sequencing costs
are expected to drop significantly in the upcoming years [12], which will improve our in-
sight into the genetic variability at high-resolution levels. More data from ethnically diverse
groups will become available, which necessitates reliable computational tools for variant
interpretation and prioritization.

Variant functional prediction tools integrate a variety of features including conserva-
tion, amino acid properties, domain mapping, and annotation data [13]. Other algorithms
include machine learning prediction tools trained over a large set of variants with known
clinical and functional outcomes [14]. Variant effect predictors currently cover a plethora
of tools and workflows: SIFT, PolyPhen, CADD, and Ensembl Variant Effect Predictor
(VEP) are widely used in practice. Despite the significant improvement, variant functional
prediction tools are constrained by many challenges including the lack of sensitivity [15],
lack of proper training datasets [16], inappropriate benchmarking [13], and inflated ac-
curacy reporting [14]. In the context of ADME genes, variant functional prediction tools
are limited to sequence-based analysis, which might not capture scenarios such as confor-
mational perturbation, drug–protein interactions, and others. As a subject for structural
bioinformatics, these types of scenarios play an important role in explaining the hetero-
geneity of phenotypes related to precision medicine [17,18]. The integration of structural
effects in genome analysis workflows is hindered by the inefficiency and the lack of reliable
protein structures. Nevertheless, several tools were developed to predict the effect of DNA
missense mutations/variants on protein structures [19–22]. However, these tools are not
designed to accommodate the analysis of multiple variants, and they are usually employed
as supplemental tools used at late stages of the downstream analysis process.

The ability to compute and retrieve attributes of genetic variants is an important step
for characterizing their functional impact. This adds more complexity in the interpretation
of the biological and clinical meaning, which is out of the reach of manual processing.
In the last decade, there has been a significant advance in machine learning approaches
applied in variant discovery and the functional prediction of missense variants [23,24].
These methods can integrate a large number of features, extract information relevant
to the impact on the function and predict with high accuracy the outcome of the genetic
variability. Moreover, the application of structural analysis has become an operating terrain
for machine learning methods thanks in part to the availability of reliable datasets that
offer measures of the direct thermodynamic impact on protein structures. Since demand is
on the rise to understand, at the atomic scale, the mechanisms underlying protein mutations,
the exploitation of machine learning approaches brings compelling promises.

This paper presents the Structural Workflow for the Annotation of ADME Targets
(SWAAT) as a novel computational tool that allows studying the structural implication
of missense variants. We explain the extent of the application of SWAAT and its different
constituents to help the user in detecting functionally relevant variants at the protein level.

2. Methods
2.1. Obtaining 3D Structures of Proteins

The 32 core ADME genes according to PharmaADME [5,25] (Supplementary Mate-
rials: data file 1) and the 23 genes from PharmVar (www.pharmvar.org, accessed on the
23 January 2020) were screened to identify available 3D structures in the Protein Data Bank
(PDB). PharmVar aims to centralize the information regarding actionable pharmacogenes
by integrating data from the Pharmacogenomic KnowledgeBase database (PharmGKB) and
the Clinical Pharmacogenetic Implementation Consortium (CPIC). The criteria of selection
among different structures of one protein included resolution, coverage, and completeness.
All the structures were stripped from any heteroatoms including ligands, cofactors, and ions.

www.pharmvar.org
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Then, we used MODELLER [26] homology modeling software to predict the 3D coordinates
of missing segments and atoms. In addition, ADME core proteins with no experimental
3D structure were processed with homology modeling. Proteins with poor alignment
quality between the template and the target are filtered. We generated 20 conformations
starting from different random seeds of which we selected the structure with the best DOPE
score [27]. Then, stereochemical quality was verified by establishing the Ramachandran
plot [28].

2.2. Constructing and Evaluating A Predictive Model for Variant Effect Prediction

We compiled a dataset of mutations with experimentally determined ∆∆G values
(difference between the folding energy levels of the reference structure and the mutated
structure). The dataset is a combination of the Capriotti [29], Khan [30], and Guerios [31]
datasets. A total of 2614 data points were collected covering a range of ∆∆G values be-
tween −12 and 12.7 kcal/moL and consisting of mutations belonging to 96 unique protein
structures. High-impact variants are defined as changes in the amino acid sequence that
affect the variation of the Gibbs energy by increasing or decreasing it beyond the thresh-
old value of ±0.5 kcal/moL. We conducted a filtering process to remove outliers based
on the calculated ∆∆G and the vibrational entropy difference between the reference struc-
ture and the variant (∆∆Svib), which leads to retaining 2015 data points from an initial
number of 2614 to use for training and validating the model. For each mutation, we com-
puted 12 features including ∆∆G, ∆∆Svib, the solvent-accessible surface area (SASA) ratio
between the reference and the variant amino acids, the Position-Specific Scoring Matrix
(PSSM) score for substituting the reference amino acid by the variant and by itself, respec-
tively, Sneath’s index, Grantham’s index, and BLOSUM62 substitution score, amino acid
volume descriptor (BIGC670101) from AAindex, hydrophobicity descriptor (JOND750101)
from AAindex [32], and the difference of the total protein solvent-accessible surface area.

The dataset was split into training (75%) and test (25%) datasets. The training dataset
was used to build the model and fit the parameters, while the test dataset was used to eval-
uate the performance of a trained model and detect overfitting that renders the classifier un-
usable for prediction purposes. Mutations showing values of −0.5 < ∆∆G < 0.5 kcal/moL
were labeled as neutral, while mutations with ∆∆G outside that range are regarded to cause
high-impact changes on the protein function. The predictive model was built using
the Python library scikit-learn [33]. We tested several algorithms to classify the vari-
ants as neutral or high-impact variants. Metrics of performance were calculated over
a 10-fold cross-validation process and were used for additional criteria of optimization
to build the predictor. Cross-validation helps to determine the stability of the performance
of a model by sampling different portions of the data iteratively.

The random forest algorithm performed better than any other tested approach. Hyper-
parameter optimization resulted in an adjustment of the number of trees to 1000, a minimum
number of samples used to split the nodes to 2, and the minimum samples required to be
at a leaf node of 42. The maximum number of features for the best tree split is defined
by the square root of the total number of features. The maximum depth of the tree is set
to 60, and bootstrap samples were used to build the model.

2.3. Evaluation of the Classifier’s Performance Using a Benchmarking Dataset

A list of variants, whose functional effects on the protein are known, were collected
as the benchmarking dataset. These include 64 variants of DPYD gene characterized
by the study of Shrestha et al. [34]. ’High-impact’ and ’neutral’ variants were defined
by a threshold activity change of 70% as suggested by the authors in their original paper.
We also collected a set of 55 variants belonging to different ADME genes from the CYP
P450 superfamily including CYP2D6, CYP2B6, CYP2A6, CYP2C9, CYP2C19, CYP2E1, and
CYP3A4 from the PharmVar database. For these variants, we used the CPIC functional
annotation to assign the classes. In addition, we included 39 more variants belonging
to TP53 and collected from 5 different studies [35–39]. Neutral variants were the ones that
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present ∆∆G values between −0.5 and 0.5 kcal/mol. The other variants were assigned
to the ‘high-impact’ class. Each of the benchmarking variants was submitted to the Variant
Effect Predictor [40] webserver to predict the functional binary classification using SIFT,
PolyPhen-2, PROVEAN, MetaSVM, CADD, and FATHMM. The prediction tools run their
default settings within the web server, and their returned binary classification was assigned
to the ‘high-impact’ and ’neutral’ classes.

The performance of the classification was evaluated for each tool as well as the SWAAT
classifier by calculating the accuracy, sensitivity (true positive rate or TPR), and specificity
(true negative rate or TNR) according to the equations,

accuracy =
TP + TN

TP + TN + FP + FN

TPR =
TP

TP + FN

TNR =
TN

TN + FP
with TN, TP, FN, and FP corresponding to the counts of true negatives, true positives,
false negatives, and false positives, respectively.

In addition, we established the Receiver Operating Characteristic (ROC) plot using
the scikit-lean [33] Python library to calculate the true positive rates, the false positive rates,
and the Area Under the Curve (AUC) from the raw scores of the different variant predictors.
For SWAAT, we used the class probability score to perform the same calculation.

2.4. Dependencies for Working with SWAAT

SWAAT was built and tested on version 20.10.0 of Nextflow [41]. To run the main
workflow, certain requirements should be satisfied. The user must have version 3 of Python
with installed modules Pandas, Numpy Matplotlib, Bokeh, and biopython [42]. Several
other software must be installed and added to the path, including freesasa [43], FoldX [44],
EnCoM [45], and stride [46]. These dependencies are required to run the annotation
workflow. PRODRES pipline (https://github.com/ElofssonLab/PRODRES, accessed on
the 2 February 2022) is required to calculate the PSSMs of the protein sequences to annotate
during the preparation process used by the auxiliary workflow. SWAAT uses pre-mapped
coordinates data of the genetic positions with their corresponding amino acid positions.
The mapping was performed using the Transvar tool [47] running within the auxiliary
workflow. The latter screens the amino acids of the canonical protein reference sequence and
extracts the genomic positions of their corresponding DNA codons. We have implemented
a series of quality check routines in the Python code (prot2genCoor.py) that runs this
process to ensure reliability. SWAAT uses GRCh37 assembly to report on the genomic
coordinates.

2.5. Overall Description of SWAAT

SWAAT is a workflow tool that aims to annotate missense variants of ADME genes.
It uses VCF files as input, extracts the information to map the genetic coordinates to protein
coordinates, structurally models the missense protein variants, calculates their biophysical
and structural properties, and finally reports all this information to assess the status and
the pharmacological relevance of the variant. The information provided by SWAAT consid-
ers different scenarios by which the variant can lead to a significant impact on the protein
function. First, we considered the effect of the variant on the protein stability by report-
ing the difference of the folding energies between the wild type and the variant (∆∆G).
For such an end, the FoldX software package [44] is used for its calculation accuracy and
efficiency. Moreover, SWAAT integrates many qualitative criteria to help to assess the effect
of the variant on protein stability. These involve eleven molecular events that include
disulfide breakage, introducing a buried proline, replacing a buried glycine, introducing

https://github.com/ElofssonLab/PRODRES
https://github.com/hothman/SWAAT/blob/master/scripts/prot2genCoor.py
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a buried hydrophilic residue, introducing a buried charged residue, switching the formal
charge of a buried residue, changing the secondary structure, replacing a buried charged
amino acid, switching the exposure state, replacing an exposed hydrophilic residue with
a hydrophobic residue, salt bridge breakage, and the induction of large helical penalty
in an α-helix structure caused by a substitution to a glycine or a proline. These criteria are
part of the assessment approach used by missense3D [48] that were found to be disease-
associated features. SWAAT also identifies the residues that are part of a hotspot patch
defined as a cluster of amino acids in the 3D space, distant to each other by at most 6 Å and
showing a folding energy difference of at least 2 kcal/moL when substituted to alanine.

Second, a variant can induce a perturbation in the conformational space of a protein
which can cause a population shift in the free energy landscape [18]. The perception
of biomolecular systems exerting a biological function as rigid entities has been discarded
since long ago [49]. Proteins can populate various states at different levels of the energy
landscape. This confers the plasticity that is required to undergo complex functional
mechanisms such as allostery, domain–domain movements, and structural arrangement
to accommodate the ligand in the interaction site. The conformational landscape can
be assessed using simulation techniques such as molecular dynamics [50] and Monte
Carlo methods [51]. However, these methods are laborious, computationally intensive,
and unsuitable for screening variants even for a limited number of genes. To account
for the large-scale conformational movements, SWAAT integrates the calculation of the pro-
tein normal modes using ENCoM [45]. Normal modes approximate the conformational
space to a quadratic potential where the protein oscillates around an equilibrium confor-
mation at low frequency [52]. Unlike other methods, ENCoM accounts for the diversity
of amino acids thanks to a specific set of coarse grain parameters, thus allowing to study
the effect of mutations. The eigenvectors calculated by ENCoM are used to compute ∆∆Svib.

Finally, the user will be able to annotate the genetic variants of ADME genes based
on their putative role in binding drugs. We integrated the FTMap [53] data that provide
information about the drug interaction hotspots in each of the ADME proteins. These
hotspots consist of a set of amino acids evaluated for their capacity to bind 16 probe
molecules. SWAAT reports the Z-score and Percentile score statistics as well as the number
of hits per hotspot to allow for the quantitative differentiation of residues that are potential
drug-binders.

2.6. Implementation

SWAAT consists of a set of Python scripts and Bash instructions whose series of ex-
ecution is managed within Nextflow’s DSL [41]. An auxiliary workflow was developed
to build a database that contains information retrieved during the annotation process
(Figure 1A) (https://github.com/hothman/SWAAT/tree/master/auxiliary_wf, accessed
on the 2 February 2022). A database for the 36 ADME genes was prepared and made
available in the main repository of SWAAT (https://github.com/hothman/SWAAT/tree/
master/database, accessed on the 2 February 2022). Therefore, users who need to annotate
these ADME genes can use the built-in database without running the auxiliary workflow.
The auxiliary workflow was made available for versatility purposes in the case where users
desire to annotate another set of genes. For example, one of the potential applications is
the annotation of a set of functionally related genes implicated in a signaling pathway or
a generic biological function. In such a case, the user needs to provide a list of the Uniprot
identifiers and the PDB structures corresponding to the genes to annotate. Then, the auxil-
iary workflow can be run to generate and aggregate the information required by the main
workflow for the annotation. These include protein to gene mapping, protein to structure
mapping, and other sources of data. One of the limitations of this process is the neces-
sity of large database files required to run the PRODRES pipeline in order to generate
the PSSMs. However, the user may skip this process and can provide these files manu-
ally by submitting the sequences of the proteins to the webserver version of PRODRES
(https://prodres.bioinfo.se, accessed on the 2 February 2022). To get the information about

https://github.com/hothman/SWAAT/tree/master/auxiliary_wf
https://github.com/hothman/SWAAT/tree/master/database
https://github.com/hothman/SWAAT/tree/master/database
https://prodres.bioinfo.se
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the drug interaction hotspots, the user needs to submit the PDB files to the FTMap server
before running the auxiliary workflow [53].

Figure 1. Description of the SWAAT toolset. SWAAT consists of an auxiliary workflow (A) that helps
to prepare an internal database and the main workflow (B) that annotates the variants and predicts
their effect on the protein structure. The processes in the auxiliary workflow are assigned to IDs
that describe their functionalities in the internal database. “Identification of binding hotspots“ is an
external process that runs at the FTMap server. Processes marked by asterisk correspond to external
program calls (FoldX, ENCoM, Stride, freesasa and, PRODRES)

The core functionality of SWAAT includes the main workflow (Figure 1B) that can
process a list of variants, annotate them according to sequence-based and biophysical-
based properties, and return a detailed report in HTML and CSV format. The user needs
only to provide the list of variants in separated VCF files relative to each gene to an-
notate. The user can restrict the analysis to limited genes by providing a list of their
corresponding Uniprot identifiers. The most important parameter used by SWAAT is
the path to the database files generated by the auxiliary workflow. These include data about
the amino acid sequence, the protein to genome mapping, the PDB to protein sequence
mapping, the hotspot patch members, the PSSM files, precalculated BLOSUM62, Grantham,
and Sneath scores, and the normal modes of the reference structures.

3. Results
3.1. Annotated Genes

We have screened 32 core ADME genes defined by the PharmaADME standards as very
important and involved in drug processing with a high level of evidence. In addition, we
also screened all the 23 genes characterized by the PharmVar consortium [54]. The default
set of genes annotated by SWAAT comprises 36 members (Figure 2 and Supplementary
Materials: data file 2). They include 2 members of the Arylamine N-acetyltransferase
family, 20 CYP P450 members, 3 genes from the Glutathione S-transferases superfamily,
and 4 UDP-glycosyltransferase genes. Other members include the DPYD, ABCG2, SDNT,
SULT1A1, SCF15M2, NUDT15, TMT, and NUDT15. The annotated gene list covers 22
of the total 23 genes from PharmVar, as we were not able to obtain a high-quality homology
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model for CYP4F2. A maximum coverage by the protein structure of 100% was obtained
for NAT-1, NAT-2, and CYP2W1. All the CYP P450 proteins show coverage of more than
85%, while the least value was 31%, shown by UDP-glycosyltransferase family members.
This was mainly caused by incomplete 3D structures or the availability of only template
structures that partially align with the target protein. Partial coverage may also be imposed
by the experimental condition during the expression/production assays that disables
the inclusion of the full sequence of the protein. For the CYP P450 group, all the proteins lack
the transmembrane N-terminal segment. In fact, structures not lacking these segments were
excluded because of their significant poor quality compared to other truncated solutions.

Regarding ADME proteins that we modeled using comparative 3D prediction, we
obtained high structural similarity between the different sampled conformers ranked
according to their DOPE scores. Structures differ only marginally by their backbone atoms,
and most of the deviation was reported for rotameric states of the side-chain atoms.

Figure 2. SWAAT’s default annotation ADME gene list. Protein names and gene names are given
in the left-most column. We indicate the coverage by the structure. The genes belong to PharmaADME
and PharmVar lists. They were screened for a reliable 3D structure of their corresponding proteins.
The structures were obtained from the Protein Data Bank or were constructed using homology
modeling. Blue and orange colors in the figure do not indicate any information. They are used
to allow distinguishing the ADME protein group. Gray areas represent the uncovered protein
segments by the 3D structure.

3.2. Building and Assessing the Predictive Model

We have implemented a machine learning algorithm operating within SWAAT that uses
12 calculated features to predict if a variant has a high impact on the protein structure
(Figure 3A). The predictive model is presented with an accuracy of 73% and a precision
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score of 0.73. Moreover, we obtained a sensitivity of 0.89 and 0.39, respectively, for the high-
impact variant and neutral-variant classes.

Analysis of feature importance showed a high contribution of the ∆∆G, the ratio
of the accessible surface area between the variant and the wild-type forms, and ∆∆Svib
(Figure 3A). The contribution of features calculated from sequence information also showed
an important weight including the data from the PSSMs and the BLOSUM, Sneath, and
Grantham scoring indexes. The two physicochemical properties that showed significant
importance in increasing the predictive power of the model are the hydrophobicity and vol-
ume of the amino acid. These latter features require only the information about the amino
acid type for the calculation without the need for the 3D structure.
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Figure 3. Characteristics of SWAAT’s binary classifier to predict the effect of missense variants.
(A) Feature importance profile of the random forest classifier. (B) Accuracy scores of SWAAT and six
other sequence-based variant effect prediction tools performed on a dataset that includes different
ADME genes and the TP53 gene.

3.3. Benchmarking SWAAT Using Adme and Tp53 Variants

Variant effect prediction tools are widely used to detect high-impact amino acid
substitutions. Their wide usage results from the efficiency in screening high numbers of po-
tentially functional variants across the entire human genome. Our tool is better applied
for lower throughput applications compared to the variant effect predictors. A comparative
report with these tools may provide an insight into the performance of SWAAT. More-
over, training and testing datasets used to build the predictive model of SWAAT include
non-ADME proteins and other non-human proteins. Therefore, it is important to evaluate
the performance of SWAAT on a dataset that includes ADME genes. To compare the perfor-
mance of the random forest classifier with the variant effect prediction tools, we included
a dataset of variants belonging to DPYD (n = 64), TP53 (n = 39), and others from the CYP
P450 superfamily (n = 55) (Supplementary Materials: data file 3). The variants have been
annotated with SIFT, PolyPhen-2, CADD, FATHMM, MetaSVM, and PROVEAN. SWAAT’s
classifier showed better accuracy of 66% (Figure 3B), which is slightly higher than SIFT
(61%), PolyPhen-2 (60%), and PROVEAN (60%). A slight discrepancy was noted between
the calculated accuracy and the AUC. SWAAT performed better than any of the sequence-
based tools with an AUC of 0.75 except PolyPhen-2 (AUC = 0.76), where it was marginally
surpassed (Figure 4, Supplementary Materials: Python code).
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Figure 4. The ROC curve was generated for each tool, and the AUC is shown in the figure’s legend
between parentheses. Note that the calculation was performed for the entirety of the benchmarking
dataset. The red discontinuous line indicates the performance of the random classifier

Overall, SWAAT’s predictive model also outperformed the other tools in terms of sen-
sitivity with a score of 0.84 (Figure 5). With a score of 0.45, the classifier was slightly
exceeded by SIFT, PolyPhen-2, and PROVEAN in terms of specificity. Compared to SWAAT,
the worst performance in terms of sensitivity was noted for MetaSVM, FATHMM, and
CADD (a score of more than 0.5 representing the performance of a random classifier).

In terms of both sensitivity and specificity, SWAAT and PROVEAN had comparable
performances on DPYD variants. Although it shows slightly poorer sensitivity values
compared to MetaSVM, PolyPhen-2, and SIFT, the specificity score of SWAAT’s classifier
was better than any other variant prediction tool. For TP53, which is a non-ADME gene,
SWAAT outperformed all the other tools, showing a better balancing between the sensitivity
and the specificity. CADD had a large specificity score of 0.86. However, it performed very
poorly in terms of sensitivity, showing a score of less than 0.1. The capability of SWAAT
to predict the high-impact variants was noticed for CYP P450 proteins. Our tool out-
performs all the other methods with a sensitivity score of 0.86. However, the specificity
of SWAAT was poor with a score of 0.32. Nevertheless, all the tools in the upper left quad-
rant, namely PolyPhen-2, SIFT, and PROVEAN, show a sensitivity of no more than 0.67. It is
also clear that SWAAT has better consistency of performance for all three systems mainly
in terms of sensitivity with scores of 0.84, 0.82, 0.86, and 0.86, respectively, for the overall
comparison, DPYD, TP53, and CYP P450 genes. As a comparison, PROVEAN’s perfor-
mance on DPYD and CYP P450 was considerably divergent both in terms of sensitivity and
specificity.
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Figure 5. Sensitivity vs. specificity plots of the random forest predictive model integrated within
SWAAT in comparison to SIFT, PolyPhen-2, CADD, FATHMM, MetaSVM, and PROVEAN. Variants
from DPYD, CYP2D6, CYP2B6, CYP2A6, CYP2C9, CYP2C19, CYP2E1, and CYP3A4 are included
in the analysis. In addition, variants of TP53 were used to evaluate the performance of SWAAT’s
classifier based on well-established thermodynamics data of the gene mutants. The vertical and
the horizontal discontinuous lines indicate the domain of values expected to be shown by a random
classifier.

4. Practical Application

SWAAT requires the user to provide plain text uncompressed VCF files, which are
sliced according to the position of the ADME genes in the genome. The annotation uses
the GRCh37 genome build, and the user needs to bring the genome position to the same
reference before any use. The VCF files must be named according to the gene symbol
followed by the file extension (.vcf). For example, the files CYP3A4.vcf and DPYD.vcf are
acceptable file names for CYP3A4 and DPYD genes, respectively. The path to the directory
that contains the VCF files can be specified via --vcfhome argument.

The path to the database must also be provided with the --dbhome argument. The
database is a directory that contains information retreived during the annotation process.
The database for the ADME genes is maintained and provided within the GitHub repository
of SWAAT (available in the link https://github.com/hothman/SWAAT/tree/master/database,
accessed on the 2 February 2022). Notice also that the database can be generated using
the auxiliary workflow. The user can also specify the location of the directory that will
contain all the output files with the --outfolder option. All these options (i.e., --vcfhome,
--dbhome, --outfolder, and others) can be tuned by the user to annotate the default list
of ADME genes or to use another personalized list of genes. A typical run of SWAAT
annotation can be performed as follows:

https://github.com/hothman/SWAAT/tree/master/database
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nextflow run main.nf --dbhome /home/hothman/SWAAT/database/ \
--vcfhome /home/hothman/SWAAT/vcfs \
--outfolder ./swaat_out \
--genelist ./inputexample/gene_list.txt.

The output consists of CSV and HTML reports that help the user to explore the col-
lected data for each of the annotated genes. The CSV file offers richer content than the HTML
file and serves for elaborate analysis and filtering. The HTML report is better in summariz-
ing the structural events with likely significant impact. These can be spotted as red flag tags
in the output (Figure 6A). The report also links the genome coordinates with the amino acid
substitution. In addition, the report offers the sequence annotation associated with each
amino acid position as well as statistics about the drug-binding likelihood of the amino
acid. These statistics were calculated from the FTMap output, which reports the number
of probe molecules that likely bind to the amino acid. The HTML report also provides
the option to generate interactive plots (Figure 6B). Data files that could help for tracing
the workflow’s input/output streams are also reported per gene.

(A)

(B)

Figure 6. HTML report of SWAAT. (A) Rows in this figure correspond to variants. Red flags are
tags that show structural events that can result in a deleterious effect on the protein structure.
(B) Interactive plots generated by SWAAT. Lolliplots correspond to variants located at different
levels of ∆∆G and ∆∆Svib. The user can hover over these elements to display useful information.
The distributions were calculated by fitting a Gaussian model to a set of computed estimations
from mutated forms of different proteins.

5. Discussion

Until very recently, integration of the structural-based large-scale analysis of genetic
variants was limited by the availability of data and the efficiency of algorithms. Several ini-
tiatives have emerged to fill this gap by providing mapping tools between the genome and
the proteome, recommendations for data standardization, updating, and integration [55].
However, these initiatives have not evolved to the development of a complete set of tools
allowing the use of the protein structure information in interpreting the functional impact
of variants [56]. As far as we know, SWAAT is the first tool to allow this type of anal-
ysis using the standard VCF file as input, which is commonly used to store the genetic
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variability data. In part, this is due to the limited number of genes to annotate (n = 36),
which makes it relatively trivial to manually model and curate the structures of the ADME
proteins. In addition to the sequence-based features provided by SWAAT, the integration
of structural properties aimed at capturing molecular events related to low-scale molecular
movements such as the side chain rotation and events related to large conformational
movements. For the former, the FoldX calculation method offering a good balance between
accuracy and efficiency was integrated into the workflow. In addition, ENCoM has been
used to calculate the changes in the vibrational entropy upon mutation [57] due to its
computational efficiency and because it allows the calculation of normal mode analysis
by considering the chemical diversity of the amino acids.

Annotation with SWAAT has several limitations that are worth mentioning. While it is
intended for versatility of use, manual protein structure prediction and generating input
files for the drug-binding hotspot calculation are still needed. However, the ADME genes
within SWAAT are maintained and curated regularly, and the user does not have to use
the auxiliary workflow to proceed with the annotation. Moreover, because the predictive
machine learning model was trained on a set of single amino acid mutations, SWAAT
cannot annotate scenarios of proteins with multiple variants or deletions. In addition,
the range of variants within the genes to annotate by SWAAT depends on the coverage
by the protein structure. For example, our workflow is capable of annotating all the coding
variants of NAT-1 and NAT-2 genes while only 28% of SLC15A2 variants are available
for annotation due to the low coverage by the corresponding protein structure. Never-
theless, all the non-processed variants are reported in the output of SWAAT. The current
version of SWAAT does not handle the annotation of multiple isoforms encoded by a
single gene nor does it account for the availability of discontinuous structures of a single
protein. For example, structures of two domains from the same protein can be solved
separately using experimental methods. One of the workaround solutions is to provide
separate structures for the annotation workflow for as many runs as needed to annotate
the corresponding variants. In upcoming versions of SWAAT, we will implement the option
to use multiple structures per gene.

The integration of sequence-based and structure-based features in predictive machine
learning models has a significant impact on the performance of the model. In particular,
the calculation of the normal modes has increased the predictive power. The importance
of vibrational entropy might be protein-dependent and might not be relevant in the case
of highly packed proteins [58], which leads some studies to discard it from the calculation
due to computational cost [59]. However, in our case, it emerges as a feature with a signifi-
cant impact on the predictive power of the model but not as important as other features
such as the calculation of the accessible surface area surface. Since ENCoM is reasonably
efficient, especially for medium and small size proteins, the integration of the vibrational
entropy was not a limitation in the annotation process.

None of the sequence-based annotation tools use the structure-based features de-
scribed in Figure 3A. In addition, chemical and physical descriptors are exclusively used
by SWAAT in its annotation process. However, there are some similarities with the sequence-
based features. For example, SIFT exploits the information of amino acid conservation
of the PSSMs to calculate a probability score per position [60]. In addition, PolyPhen-2
integrates similar types of information to predict the impact of non-synonymous SNPs [61].
PROVEAN integrates information about amino acid conservation from substitution matri-
ces to calculate a delta score that measures the effect of the variation. CADD, on the other
hand, uses a support vector machine predictor trained over millions of human variants
to calculate a score that assesses deleteriousness [62]. The effect of amino acid substi-
tution is calculated from evolutionary information using Hidden Markov Models with
FATHMM [63], and MetaSVM is unique in its concept as it performs a meta-analysis
from multiple OMICS data to calculate a prediction score for the variant’s impact [64].

Conventional variant effect predictors perform poorly in annotating ADME genes that
are generally highly variable in population groups and are not always disease-related [65].
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This makes extracting conservation patterns difficult. However, most of the variant im-
pact prediction tools are designed to detect pathological impact based on evolutionary
constraints. In such regard, even though SWAAT uses conservation information, structure-
based features are still the major determinants of the random forest classifier’s performance,
which makes it more suitable for annotating ADME genes than any other conventional tool
and could explain its remarkable consistency to annotate different genes.

In general, the SWAAT predictor performed better than other sequence-based ap-
proaches in terms of sensitivity, specificity, and consistency. We have obtained a similar
value of sensitivity for the DPYD gene evaluated by sequence-based methods obtained
from the analysis by Shrestha et al. [34], thus showing the reproducibility of our results.
However, SWAAT has a lower accuracy score of 67% compared to their variant predic-
tor tool, DPYD-Varifier (85%). This is expected, since their training dataset is exclusive
for DPYD and includes functional biochemical characterization related to 5-fluorouracil
toxicity, whereas SWAAT-predictor training data are generic. However, we were able
to obtain better sensitivity for SWAAT (0.82) compared to DPYD-Varifier (0.73). Our work
highlights the potential of using structural-based methods in predicting the effect of the vari-
ants. The ability of SWAAT to discriminate true positive variants with functional effect
on the CYP P450 superfamily is a significant achievement. CYP P450 proteins include,
arguably, the most functionally relevant ADME genes (91% of the total genes from the
PharmVar database) involved in the drug metabolization process. This could be an advan-
tage for variant prioritization in clinical applications, as more sequencing will reveal new
polymorphisms in many populations.

The coverage of 95% of the PharmVar database expands the clinical applicability
of SWAAT. Efforts within the consortium have been focused on providing standard-
ized nomenclature of clinically actionable genes for which the plans have been estab-
lished by the Clinical Pharmacogenetics Implementation Consortium and the expert panel
from PharmGKB. The expansion of high-throughput sequencing will lead to the identifica-
tion of more novel variants and variants with unknown significance belonging to actionable
genes. In this regard, our tool draws a new perspective for uncovering variants with phar-
macological impact, leading to better accuracy and specificity of the annotation process
and an increase in the predictive power.

With the continuous enrichment of the Protein Data Bank, the improvement of exper-
imental protein-solving approaches, and the significant leap toward solving the protein-
folding problem, integration of structural analysis in variant impact prediction will become
easier to achieve. The entire human proteome would be available in the upcoming future,
and new tools to integrating structural analysis within genome analysis workflows are
necessary. Based on this, SWAAT has been created as a part of benchwork tools devel-
oped by our team [66] to refine the annotation of ADME gene variants, thus improving
the decision-making process in precision medicine practices.

6. Conclusions

We described SWAAT, a tool to annotate missense coding variants from ADME
genes based on structural features. Comprehensive and detailed reports are generated
by the workflow to present the user with reliable information concerning the functional
impact of the annotated variants. SWAAT integrates a random forest predictive model
that showed good performance compared to other sequence-based variant prediction tools.
The auxiliary workflow could be employed to customize the annotation of other genes
outside the ADME list. SWAAT could be applied to the discovery, prioritization, and fun-
damental understanding of the impact of putative actionable variants with clinical interest.
In the upcoming future, we are willing to address many of the limitations of SWAAT and
develop a webserver version for the tool.
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