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Abstract: Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bring-
ing humanity towards the “post-antibiotic” era. The emergence of so-called “superbugs”—pathogen
strains that develop resistance to multiple conventional antibiotics—is urging researchers around the
globe to work on the development or perfecting of alternative means of tackling the pathogenic bacte-
ria infections. Although various conceptually different approaches are being considered, each comes
with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented
by both Gram(+) and Gram(−) bacteria, possible target spectrum across the proposed alternative
approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing
the pathogenicity of target bacteria rather than eliminating them are being considered among such
alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes
a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to
the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the
Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other al-
ternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in
Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript,
results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their
potency were summarized and commented on. Here, we discussed the rationale behind the inhibition
of SrtA, raised some concerns on the comparability of the results from different studies, and touched
upon the possible resistance mechanisms as a response to implementation of such therapy in practice.
The goal of this article is to encourage further studies of SrtA inhibitory compounds.

Keywords: sortase A; SrtA; sortase A inhibitor; small molecule compounds; antivirulence strategies;
antibiotic resistance; superbugs; Staphylococcus aureus

1. Introduction

The rapid spread of antibiotic resistance throughout the kingdom of bacteria (includ-
ing, but not limited to, human pathogens that are of healthcare and economic importance)
has highlighted the need for alternative means of bacterial disease treatment and rein-
vigorated the interest in studies that are targeted towards the development of alternative
approaches to their containment [1]. Although the search for novel antibiotics and reg-
istration of drugs for effective treatment of multidrug-resistant strain infections is likely
to continue, the occurrence of resistance due to the natural course of evolution under the
selective pressure is inevitable. The question that arises is: Can we keep up the pace of
discovery and registration of novel antibiotics [2], with each successive one proving to
be effective only for a while, with the rate of antibiotic-resistance emergence which is a
complex phenomenon that is still considered incompletely known [3]?
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While multidrug-resistant bacterial pathogens are undoubtedly found in both Gram-
positive and Gram-negative groups (e.g., two Gram-positive and four Gram-negative
highly virulent antibiotic-resistant species are listed in the ESKAPE list [4]), herein we
largely focused on the Gram-positive species, as the presence of sortases, the focal point
of this paper, is far from being ubiquitous and has been seldom observed in Gram-
negative bacterium.

2. The Emergence of Antibiotic-Resistant Gram-Positive Pathogens of
Healthcare Importance

It was previously noted that numerous major bacterial pathogens that still con-
tinue to pose a serious threat to humanity today have emerged in the course of the last
50 years [5]. Some of the most prominent among these are the Gram-positive drug-resistant
causative agents of various hospital-acquired (also known as “nosocomial” or “healthcare-
associated”) infections. These include (however are not restricted to): The notoriously
known multidrug-resistant (MDRSA) and methicillin-resistant (MRSA) Staphylococcus au-
reus strains [6]; Staphylococcus epidermidis—for long thought to be a mere opportunistic
microorganism, but recently shown to be implicated in medical device-related infections,
keratitis, and bacteremia [7]; Clostridium difficile, which is considered one of the most
frequent causes of hospital-acquired gastrointestinal tract infections [8,9]; different ente-
rococci, some of which (e.g., Enterococcus faecalis and E. faecium) can be responsible for
bacteremia and endocarditis in addition to urinary tract, intra-abdominal, pelvic, and
soft tissue infections [10]. Whereas some other (non-nosocomial) relevant Gram-positive
pathogens worth a mention are Streptococcus mutans—associated with oral diseases and
infective endocarditis [11,12]; Streptococcus pneumoniae—capable of causing pneumonia,
meningitis, sepsis, bacteremia, and otitis [13]; Listeria monocytogenes—a significant cause
of foodborne listeriosis outbreaks with a fatality rate of up to 30% [14,15]; causative agent
of zoonotic anthrax—Bacillus anthracis, for which antibiotic resistance may not yet be an
urgent matter, but potentially relevant [16,17].

While the antibiotic susceptibility spectra among the different strains of the aforemen-
tioned species are highly different and have been described elsewhere (e.g., [7,14,15,17]
etc.), all of them have already been documented to harbor resistance to at least one or more
antimicrobials in different classes in addition to the high potential for development of
further drug resistance [18,19], which signifies the importance of research on the alternative
means to combat them.

3. Alternative Options

It is, however, a widely known fact that antibiotics are by no means a sole option to
treat bacterial pathogens. Although probably the most widely-used and, arguably, the most
effective means for treatment of bacterial infections to date, there are also some alternative
approaches that were described even prior to seminal discovery of penicillin by Alexander
Fleming in 1928 [20]. But, historically, these were slowly dimmed by the wide employment
of antibiotics only to resurface recently, and undergo further perfecting along with the
various other state-of-art approaches, each with their own advantages and disadvantages
in comparison to antibiotics [21].

Further in this article we shall attempt to briefly introduce some of the chosen prospec-
tive approaches that are being considered possible alternatives to antibiotics and in the
recent years have gathered substantial attention from the research community (Figure 1).

A detailed description of these selected methods, as well as other possible alter-
natives (e.g., vaccines, antibodies, immune stimulation), is not considered herein be-
cause these have been recently summarized and reviewed in detail by other authors
elsewhere [1,21–26].
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Figure 1. Conceptual sexpartite diagram comparing simplified modes of action for antibiotics and some of the alternative 
approaches to combat the pathogenic bacteria. The diagram is divided into six parts, each corresponding to the given 
approach for combating the Gram-positive pathogenic bacteria. Brown rounded rectangle represents peptidoglycan layer 
and together with the contents represents the Gram-positive bacterial cell. Perimeter of the blue rounded rectangle repre-
sents the plasma membrane. Black arrows represent interactions and point at the desired spatial location/locations of the 
agents for interplay with their bacterial targets. Green arrows pointing away from the cell represent the desired outcome 
of an interplay between a given agent and its target. Colored figures unique to each of the diagram parts represent agents 
that can be viewed as an alternative to antibiotics (for example red circles represent molecules of antibiotics). In the case 
of sortase A (SrtA) inhibitors (leftmost part of the diagram): Green circles—inhibitory compounds, purple ellipses—viru-
lence factors, amorphous brown figures—SrtA enzyme. 
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entities in the biosphere—were already being viewed as a tool for treatment of bacterial 
infections shortly after their independent discovery by Frederick Twort [27] and Felix 
d’Herelle [28] in the beginning of the 20th century [29]. The usage of strictly lytic bacteri-
ophages in the therapy, although somewhat abandoned during the antibiotic era, has 
proven to be effective against various human bacterial diseases caused by different cocci, 
pseudomonads, coliforms, and other pathogens [30]. Some of the benefits of phage ther-
apy, as outlined by Loc–Carrillo and Abedon [31], include: Bactericidal mode of action; 
“auto-dosing” upon infection of host bacteria population; low inherent toxicity, minimal 
disruption of normal bacterial flora, narrower potential for inducing resistance, lack of 
cross-resistance with antibiotics, application versatility, and capability of biofilm clear-
ance. Arguably, the main disadvantage of phage therapy, however, is strongly linked to 
one of their greatest benefits—the narrow host range of phages, which might span just a 
few strains of a particular bacterial species. This suggests the need to formulate cocktails 
of multiple carefully characterized phages with a good proven bacterial killing potential, 
covering, ideally, different host receptors to rule out the phage-resistance emergence in 
the course of treatment. However, even then, they are not guaranteed to eliminate every 
strain of the target species encountered. Despite the fact that strictly lytic phages were 
almost exclusively used as such natural antibacterial agents for obvious reasons, efforts to 
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3.1. Phage Therapy

Bacteriophages (“bacteria eaters”)—viruses of bacteria, the most abundant biological
entities in the biosphere—were already being viewed as a tool for treatment of bacterial
infections shortly after their independent discovery by Frederick Twort [27] and Felix
d’Herelle [28] in the beginning of the 20th century [29]. The usage of strictly lytic bacte-
riophages in the therapy, although somewhat abandoned during the antibiotic era, has
proven to be effective against various human bacterial diseases caused by different cocci,
pseudomonads, coliforms, and other pathogens [30]. Some of the benefits of phage ther-
apy, as outlined by Loc–Carrillo and Abedon [31], include: Bactericidal mode of action;
“auto-dosing” upon infection of host bacteria population; low inherent toxicity, minimal
disruption of normal bacterial flora, narrower potential for inducing resistance, lack of
cross-resistance with antibiotics, application versatility, and capability of biofilm clearance.
Arguably, the main disadvantage of phage therapy, however, is strongly linked to one
of their greatest benefits—the narrow host range of phages, which might span just a few
strains of a particular bacterial species. This suggests the need to formulate cocktails of
multiple carefully characterized phages with a good proven bacterial killing potential,
covering, ideally, different host receptors to rule out the phage-resistance emergence in the
course of treatment. However, even then, they are not guaranteed to eliminate every strain
of the target species encountered. Despite the fact that strictly lytic phages were almost
exclusively used as such natural antibacterial agents for obvious reasons, efforts to use
lytic-derivatives of temperate phages with a broad host range to treat bacterial infections
in humans were successfully partaken as of recently [32].
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3.2. Lysins

Lysins—enzymes that are produced by bacteriophages to disrupt the cell wall of
their hosts during the last phases of the infection cycle to release the phage progeny into
the environment—are also being considered a prospective alternative to antibiotics [33].
Although the ability of lysins to reach the peptidoglycan layer from within the phage-
infected cell is usually dependent on another phage-encoded protein (holin) in the natural
setting, it has been previously shown that exogenous application of lysins is a rather
prospective strategy for treatment of bacterial infections. When applied to Gram-positive
bacteria exogenously, lysins have an immediate access to the cell wall, as opposed to
being obstructed by the membrane from within the cell, which is the case during the
natural phage life cycle; thus, even the small amounts of recombinant phage lysins have
demonstrated promising therapeutic potential due to their capability of rapidly lysing
the target bacteria. [34]. The first study showing phage lysin effectiveness in vivo was
reported in 2001. It described the disease prevention and pathogen elimination in the upper
respiratory tracts of mice that were colonized by streptococci [35]. Since then, a plethora
of novel lysins have been discovered [36] and numerous advances in the field have been
made (recently reviewed in detail by De Maesschalck et al. [37]). The main advantages
of lysin therapeutic applications over antibiotics include: Selectiveness regarding their
targets, low risk of lysin-resistance emergence, potent activity that occurs within seconds
after application of even highly diluted preparations, synergy between different lysins,
and lack of toxicity, among others [21]. The main hurdle of “classical” lysin therapy,
however, was general ineffectiveness of exogenously applied lysins against Gram-negative
bacteria. Nevertheless, this issue is being addressed by the development of state-of-art
endolysin-based anti-bacterials termed Artilysin®s that are active against Gram-negative
pathogens [38].

3.3. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are a diverse class of small molecules (generally
between 10–50 amino acids long) that are naturally produced by both single-cell and
multicellular organisms to either directly kill/inhibit the growth of competing/foreign
microorganisms or modulate the innate immune response of the higher organism. These are
being considered as yet another alternative tool of combating various pathogens (including
antibiotic-resistant bacteria) [39,40]. The main mechanism of action for AMPs lies in their
ability to interact with bacterial membranes/cell walls via electrostatic interactions, which
results in either rupturing of the membrane or entry into the bacteria with subsequent
inhibition of intracellular functions [41]. Although the first antimicrobial peptide lysozyme
was discovered by Alexander Fleming as early as 1922 [42], until the 1980s there was a
relatively low number of research reports on AMPs [43]. The latest antimicrobial peptide
database (APD3) lists 2169 AMPs of various origins, with the vast majority being animal
host defense peptides [44].

3.4. Bacteriocins

Bacteriocins are highly potent bactericidal agents representing a subclass of antimi-
crobial peptides produced by bacteria. In general terms these can be classified as either
post-translationally modified (class I) or made up of peptides with unmodified amino acids
(class II) [45]. The discovery of bacteriocins is attributed to André Gratia, who described
the first bacteriocin (colicin V) produced by verotoxin-producing E. coli strain to act against
other nearby E. coli in 1925 [46]. The bacteriocins are structurally diverse and, thus, ex-
hibit different mechanisms of action. Most bacteriocins, however, act by forming pores
in bacterial cell membranes, which leads to their disruption and subsequent collapse of
the phospholipid bilayer that ultimately leads to death of a bacterial cell [21]. Although
their main function is to enhance the competitiveness of bacteriocin-producing bacteria
in their natural environment through the elimination of contestant co-inhabitant bacte-
ria, researchers have found applications for bacteriocins in food preservation and clinical
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setting despite the potential for resistance-development [47,48]. In addition, some of the
state-of-art studies have suggested that bacteriocin application might be even more feasible
if these peptides are formulated using the state-of-art nanotechnological approaches, and
these findings pave way for further enhancements of their usability [49].

3.5. Antivirulence Strategies

The rationale behind antivirulence strategies lies in the assumption that “disarmed”
pathogens can do no harm; thus, the aim of such strategies is to interfere with the bacterial
virulence factors that help the pathogen to either cause damage to the host or evade its
immune system and persist within the host [50]. The current anti-virulence strategies tend
to target the processes of bacterial quorum sensing systems and biofilm formation ability,
as well as to disassemble functional membrane domains and neutralize bacterial toxins via
usage of small molecule compounds that show corresponding inhibitory activity against at
least one of the virulence factors of the pathogen of interest [51].

It is clearly evident that only a few cells of any pathogenic bacteria are of no imme-
diate concern to the host; however, strength of all pathogens “lies in numbers” that they
eventually reach through inevitable propagation in appropriate environmental conditions.
With growth of bacterial cell population also grows the necessity for “communication”
between the cells, which is essential for coordination of the whole community towards
situations that are advantageous to a population as a whole. This communication was
revealed to be mediated by small signal molecules that auto-induce expression of par-
ticular genes [52]. The cell density-dependent process of such communication is termed
“quorum sensing” [53] and there are indications that it might occur even between different
species [54]. It is thought that as much as 4–10% of bacterial genome and≥20% of proteome
could be influenced by quorum sensing, and the effects of quorum sensing range from
harmless metabolic or phenotypic adaptations to modulation of pathogenicity related
virulence (e.g., biofilm formation, toxin expression) [55]. Thus, interference with quorum
sensing cascades that blocks bacterial virulence-associated “communication” (“quorum
quenching”) was outlined as a promising antivirulence strategy [56].

Whereas inhibition of the transcription might seem a more appropriate approach for
some of the bacterial virulence factors, such as protein-based toxins, thus, eliminating the
cause rather than a consequence, it is also possible to target these molecules after their
synthesis. Studies in this direction have led to the development of approaches that enable
evasion from the destructive effects of toxins on the host through their neutralization by
antibodies, toxin activity blocking by small molecule compounds [57], or even sequestration
of toxins in artificial liposomes [58].

Recently discovered bacterial functional membrane microdomains (FMMs), which
resemble lipid rafts of eukaryotic cells in both structure and function, were immediately
proposed as yet another novel antivirulence strategy target due to the involvement of
FMMs/FMM-associated proteins (e.g., flotillins) in biofilm formation, attachment, viru-
lence, and signaling [59–61].

The ability of some pathogens to form biofilms, which are bacterial communities
enclosed in structure formed by thereof extracellular matrix components, helps embedded
bacterial communities to evade host defensive responses, mitigate environmental stresses,
and provide protection from antibiotics [62]. Pathogenic biofilm formation on the host
tissues facilitates the onset of a chronic bacterial disease that is considerably more difficult
to treat than acute infections caused by pathogens in the planctonic (“free”) state [63].
Thus, the prevention of biofilm formation is also recognized as a prospective antivirulence
strategy that strives to limit bacterial adhesion to surfaces or affect the extracellular matrix
component production, and sometimes even destroy the extracellular matrix post factum,
when biofilm has already been formed [51].

One of the particularly promising antivirulence strategies that is aimed at Gram-
positive bacteria is the inhibition of bacterial cysteine protease—sortase (especially SrtA)—
activity by small molecule compounds [64].
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4. Sortase A (SrtA)

Sortases are cysteine transpeptidases that play a pivotal role in shaping the architec-
ture of microorganisms by mediating the covalent protein attachment to their cell wall [65].
While sortase enzymes are found ubiquitously in Gram-positive bacteria, where their
functions have been largely elucidated, genes encoding proteins belonging to the sortase
superfamily have also been documented in a fraction of genomes from Gram-negative
and archaeal species, although their functions in these organisms have not yet been com-
pletely understood [66]. Despite the fact that up to eight different classes of sortases (A,
B, C, D1, D2, E, F, and “Marine”) are already being recognized as of now, the “canoni-
cal” Staphylococcus aureus SrtA still remains the most extensively studied enzyme of this
group [66–70].

SrtA is a membrane-associated cysteine protease that catalyzes a cell wall sorting
reaction by which surface proteins, including virulence factors, are anchored to the bacterial
cell wall. The steps involved in the SrtA-assisted protein anchoring to the cell wall of Gram-
positive bacteria have been uncovered and, in the case of Staphylococcus aureus, are as
follows [71]: (1) Proteins with the N-terminal secretion signal peptide are transported to
the cell surface via the secretory (Sec) pathway; proteins that are destined to be anchored
to the cell-wall contain an additional LPXTG (leucine–proline–any residue–threonine–
glycine) motif followed by a hydrophobic region and a tail of charged residues within
their C-terminus; (2) the LPXTG motif is recognized by the membrane-associated SrtA
enzyme; (3) cleavage between T and G of a LPXTG motif is introduced by two-step
transpeptidation reaction and threonine is covalently attached to the cell wall amino group
of a pentaglycine [72].

It has previously been shown that the C-terminal sorting signal with a highly-conserved
LPXTG motif is prevalent within cell wall-anchored surface proteins of Gram-positive bac-
teria [73] and the elucidation of Gram-positive bacteria surface protein roles in interactions
with the host, which also includes virulence, is a topic that has gathered substantial research
attention in the past. These studies have led to hypotheses that it might be possible to re-
duce pathogen virulence by interfering with the display of the aforementioned proteins on
the surface of the cells [74–76]. However, it was not before the seminal study of Mazmanian
and colleagues [77], which demonstrated that the SrtA enzyme is an absolute necessity
for surface protein anchoring to the cell wall envelope and consequent pathogenesis of
S. aureus infections, that the sortase inhibitor research era really begun. The primary goal
of the subsequent studies was to find a way to disrupt the pathogenesis of bacteria without
affecting microbial viability, thus, treating infections caused by Gram-positive pathogens.
In addition to S. aureus, a decrease in virulence due to inactivation of SrtA activity has also
been demonstrated in Listeria monocytogenes [78], Streptococcus pneumoniae [79], S. suis [80],
and S. mutans [81].

5. SrtA Inhibitors

In comparison to the conventional antibiotics and other anti-virulence strategies, the
main advantage of SrtA inhibitor usage as a potential Gram-positive pathogen infection
treatment lies in the relative harmlessness of possible resistance emergence to the host [82].
We hypothesize that, if the inhibitor is properly designed and targeted at the substrate
binding site, the most likely outcome of the inhibitor-induced selective pressure shall be
either in the formation of a mutated SrtA gene that produces enzyme with an altered
inhibitor binding site, which most probably shall also alter the enzymatic core structure,
decreasing enzyme activity and, along with it, overall virulence of the pathogen, or increase
the production of sortases to cope with the decrease in enzymatic activity, which shall
result in an increased metabolic burden and decreased pathogen proliferation rate. In
either way, acquisition of resistance shall come with the cost that decreases the overall
pathogenicity of the target bacteria. Alternatively, pathogens might also start to produce a
novel protein that either enzymatically alters the inhibitor, thus abolishing its inhibitory
properties, or binds it to effectively remove the inhibitor from the surrounding environment.
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However, we believe that such a scenario is unlikely, as it would require the coincidence of
far too many favorable factors. This, in our opinion, provides a prospective of the fail-safer
therapy concept ultimately resulting in the greater success rate regardless of the resistance
emergence—the pathogen is either being “disarmed” by the designated SrtA inhibitor
treatment or is “significantly hampered” in the course of evolution under the selective pres-
sure imposed by such treatment. This situation, however, would differ significantly from
the previously described if the selected inhibitor were to work as an allosteric modulator
that could bind to the enzyme at other sites than the active center. In this case it is highly
probable that the exerted selective pressure shall result in a development of metabolically
or enzymatically unburdened resistance through the introduction of only the allosteric
binding site altering mutation that would not change the overall molecular structure of the
enzyme molecule. Therefore, we believe that the development of sortase inhibitors should
be exclusively directed towards the identification of molecules binding to the enzymatic
core. An alternative approach for treatment, of course, might also be an employment of
cocktails of sortase inhibitors that couple to different allosteric binding sites, as it is highly
unlikely that several inhibitory effect inactivating mutations would occur at the same time.
However, such an approach would require a careful characterization of each individual
compound and their interactions with the sortase, as well as elucidation of possible side
effects on the health of the host, prior to being employed for the treatment of bacterial
infections in a therapeutical setting, while implementation of such extensive thorough
studies undoubtedly requires lengthy allocation of significant financial and labor resources.

Conceptually different strategies for the initial discovery of novel potential SrtA
inhibitors have previously been adopted in the field, including: Screening of natural
products [83], small compound library high throughput screening [84], virtual screening in
silico [85], and fragment based lead discovery [86]. Although initial hits can be generated
by each of the approaches individually, these approaches complement each other well,
and, thus, combining them in a single study could yield better results. While working on
this article and exploring the repertoire of uncovered sortase inhibitor leads (extensively
summarized in Supplementary Material Table S1 [84,87–118]), we observed that despite
the great advances in this field, there was also a great ambiguity in the acquired results.

The presentation of the determined compound-specific parameters differed signifi-
cantly as IC50 values were presented both as molar and mass concentrations, with the latter
being less informative due to the great differences in tested compound molecular weight.
Even more, the minimum inhibitory concentration (MIC) test has not been performed for
many of the reported leads; thus, their bacterial toxicity and possible drawbacks of their
applicability in anti-virulence therapies remains unexplored. An additional aspect that
seems to hamper the effective cross-study comparison of various compounds is related to
the basic enzyme kinetics, because, as clearly demonstrated by the data that we acquired
in one of our latest studies (Supplementary Material Table S1 and Figure 2) where, while
searching for suitable substrate, we tested the same SrtA-compound combination with two
different substrates, and acquired IC50 values were dependent on a combination of both
the selected substrate and tested compound. Thus, this parameter is usable for compound
comparison only if the overall setting of the experiments is identical. This situation clearly
demonstrates that standardization of experimental procedures and results’ presentation is
needed in this field to improve cross-study comparison capabilities and achieve a greater
whole SrtA research community success rate.

It is also worth noting that only few of the studies on the identification of SrtA
inhibitory compounds that were reviewed in this article have actually taken their studies
further and performed the actual efficacy evaluation for their most potent compounds
beyond mere documentation of their inhibitory effects in enzymatic models (e.g., no
MIC tests or in vivo models), which suggests that there is a need for follow-up in-depth
studies of these compounds to evaluate the plausibility of their development into an actual
therapeutic agents of a new kind. This necessity is further highlighted by the fact that,
to the best of our knowledge, none of the thus far identified SrtA inhibitors has yet been
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advanced to the clinical trials, while numerous products from some other classes of possible
antibiotic alternatives (e.g., phage therapy, lysins) are already seeking medical approval by
moving through the different phases of clinical trials.
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Figure 2. Enzyme inhibition curves for (A) recombinant ∆70 Staphylococcus epidermidis SrtA, and (B) recombinant ∆59
Streptococcus pneumoniae SrtA. N-terminal parts containing membrane anchor domain were cleaved to improve solubility
and purification of enzyme. FRET-based inhibition assays were carried out employing two different substrates: Abz-
LPETG-K (Dnp), Dabcyl-LPETG-Edans, one lead compound, Z1758047752, which was acquired from Enamine Ltd. (https:
//www.enaminestore.com/). Measurements were performed in triplicates and repeated twice. Results demonstrate that
acquired IC50 values are substrate dependent.

Therefore, we believe that, in the near future, assessment of the previously described
SrtA inhibitor efficacy should be conducted in the natural setting using a standardized
approach, with the acquired results made available to the scientific community as soon
as possible, so that aggregation of the pro and cons evidence would either enable the
consolidation of the SrtA inhibitor position among the potential antibiotic alternatives, thus
drawing more attention from the funding bodies and attracting additional researchers to the
field, or prove the inefficiency of this approach, thus enabling the redirection of resources
to the further development of approaches that would prove to be more reasonable.

6. Materials and Methods
6.1. SrtA Expression and Purification

The presumed catalytic core of the SrtA gene from Staphylococcus epidermidis and
Streptococcus pneumoniae microorganisms that encode enzymatically active transpeptidase
domains were PCR amplified and inserted in the vector for bacterial expression [119,120].
The DNA sequence encoding for N-terminally truncated Staphylococcus epidermidis SrtA
(Se-SrtA∆N70) was PCR-amplified from genomic DNA of S. epidermidis YC-1 strain using
5′-TATACATATGGGTTATATAGAAGTTCCAGATG-3′ and 5′-TAATCTCGAGTTAGTTAA
TTTGTGTAGCTATG-3′ primers. The DNA sequence encoding for N-terminally truncated
Streptococcus pneumoniae SrtA (Sp-SrtA∆N59) was PCR-amplified from genomic DNA of the
S. pneumoniae D39 strain using 5′-ATTACATATGGAAGAAAATCAGGATACAGAAG-3′

and 5′-TATACTCGAGTTAATAAAATTGTTTATATGGT-3′ primers. The PCR-amplified
DNA sequences were cloned into the pET28b (Novagen, Madison, WI, USA) vector through
NdeI and XhoI restriction sites for expression as His-tagged proteins in E. coli. The plasmid
DNAs were isolated using the Plasmid Miniprep Kit (Thermo Fisher Scientific, Waltham,
MA, USA), verified by restriction analysis, and approved by sequencing using the BigDye™
Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA).

https://www.enaminestore.com/
https://www.enaminestore.com/
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The recombinant sortases were expressed in E. coli BL21 (DE3) cells using a standard
protocol and purified as previously described [121]. In short, transformed bacteria were
cultured in Luria–Bertani medium at 37 ◦C until an optic density at 600 nm (OD600) of
0.6–0.7 was reached. Recombinant protein synthesis was induced at 37 ◦C, 200 rpm by
adding isopropylthiogalactoside to a final concentration of 1 mM and continued for 3 h.
The cells were then sedimented by centrifugation and resuspended in phosphate-buffered
saline buffer pH 7.5 with 1 mM dithiothreitol, 0.1% Triton X100, and protease inhibitor
cocktail added prior to sonication. The recombinant soluble sortases were further purified
under native conditions.

Both histidine-tagged recombinant SrtA proteins were purified by affinity chromatog-
raphy using the Ni-nitrilotriacetic acid agarose (Qiagen, Hilden, Germany) pre-equilibrated
with buffer A (10 mM imidazole, 1 mM DTT, 50 mM NaH2PO4, and 300 mM NaCl, pH 8.0).
Protein binding was performed for 1 h at room temperature on the rotator and 20 mM
imidazole buffer A pH 8.0 was then used during the wash procedure to remove unbound
proteins. The proteins were eluted by adding 300 mM imidazole buffer A to the column
and then additionally purified on Superdex75 120 mL packed on XK16/70 gel filtration
column (GE Healthcare, Chicago, IL, USA) by using 1 mM DTT, 50 mM Tris-HCl, and
150 mM NaCl pH 7.5 end buffer. Purified proteins were concentrated to 10 mg/mL by
centrifugation at 4000 rpm at 4 ◦C in Amicon Ultra centrifugal filter units with a 3 kDa
cut off (Millipore, Burlington, VT, USA). Further clarification of protein was achieved by
centrifugation at 16,400 rpm for 10 min at 4 ◦C, and 20% glycerol was added to the buffer
for prolonged protein storage on ice.

6.2. FRET Enzymatic Assay and IC50 Determination

The tested compounds were commercial products purchased from Enamine Ltd. The
half maximal inhibitory concentration (IC50) values for compounds were determined by
monitoring the increase in fluorescence intensity upon cleavage of the Dabcyl-LPETG-
Edans FRET peptide (excitation/emission wavelength of 360/485 nm) or Abz-LPETG-K
(Dnp) FRET peptide (Ex/Em 320/420 nm), which were used as the substrates for both
sortases [108]. In brief, the test compounds of various concentrations (3–100 µM) were
added to 1–20 µM of each of the recombinant sortase in 20 mM HEPES, 5 mM CaCl2, 0.05%
Tween-20 buffer pH 7.5 [122]. Subsequently, the peptide Dabcyl-LPETG-Edans at a final
concentration 16–32 µM (depending on each sortase enzymatic activity) was added to the
reaction. Similarly, test compounds were added to the 1–20 µM recombinant sortases with
subsequent peptide Abz-LPETG-K (Dnp)-NH2 addition at a final concentration 1 or 5 µM
(depending on each sortase enzymatic activity). Fluorescence was recorded for 15 h within
an interval of 30 min at 37 ◦C temperature using a Tecan F200 microplate reader. IC50
values were calculated using GraphPad Prism Software [123].

7. Conclusions

To conclude, while SrtA activity inhibition by small molecule compounds that leads
to a decrease of Gram-positive pathogen virulence seems to be a reasonable approach to
combat drug-resistant pathogens and many of such compounds are displaying promising
potency, the SrtA research community still has a long way to go before a definite conclusion
on the feasibility of this strategy can be reached. We believe that employment of standard-
ized procedures (both in vitro and in vivo, with an employment of appropriate controls
to elucidate the non-specific effects) for testing of identified leads and reporting of the
acquired results in a standardized manner that would rapid cross study comparison (MIC
tests, ki value calculations, etc.) should be a top priority of the field. Collectively defining
the recommended workflows and/or guidelines is absolutely possible and would prove to
be extremely beneficial for a relatively small SrtA research community, possibly leading to
a faster accumulation of knowledge in the field while ensuring comparability of the results.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2079-638
2/10/2/164/s1, Table S1: Examples of the potent SrtA inhibitors and their sources. Source column is
color-coded as follows: Green entries—compounds initially described as SrtA inhibitors derived from
natural sources, blue—from small molecule screening, orange—from in silico screening. IC50 columns
represent the half maximal inhibitory concentration (µM and µg/mL). MIC columns represent the
minimum inhibitory concentration (µM and µg/mL). Asterisk (*) after the value in either of the IC50
or MIC columns indicates that the value was absent in the referenced study and was derived herein.
Double asterisk (**) in “SrtA for IC50 determination” and “Strain for MIC determination” column
indicates that the given compound was tested on more than one variant of SrtA or more than one
bacterial strain in the referenced original study; values of these columns then, respectively, represent
the SrtA for which the IC50 value is given and bacterial strain for which the MIC value is given. “Title
of the compound from the original study” indicates how the compound is referred to by the original
authors in the referenced experimental paper.
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