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Abstract: (1) Background: An earlier study on the hypoglycemic activity of S. polyanthum (Wight.)
leaf methanol extract identified squalene as the major chemical compound. The present study was
conducted to assess the hypoglycemic effect of fractions and subfractions of the methanol extract
of S. polyanthum compared to the squalene using a bioassay-guided in vivo study. (2) Methods: The
methanol extract was fractionated using the liquid–liquid fractionation method. Streptozotocin-
induced type 1 diabetic rat was used to study the hypoglycemic effect. (3) Results: The findings
showed that chloroform fraction significantly (p < 0.05) lowered blood glucose levels of diabetic
rats as compared to the control. Further fractionation of chloroform fraction yielded subfraction-1
and -2, whereby subfraction-1 exhibited a higher blood-glucose-lowering effect. The lipid profile
test showed that the total cholesterol level of subfraction-1 and squalene-treated groups decreased
significantly (p < 0.05). An immunohistochemistry study revealed that none of the treatments
regenerated pancreatic β-cells. Gas chromatography–mass spectrophotometer analysis identified the
presence of squalene in the active methanol extract, chloroform fraction, and subfraction-1. In silico
analysis revealed a higher affinity of squalene against protein receptors that control lipid metabolism
than metformin. (4) Conclusions: Data obtained from the present work suggested the crude methanol
extract exerted the highest hypoglycemic effect compared to fraction, subfraction, and squalene,
confirming synergistic effect may be responsible for the hypoglycemic activity of S. polyanthum.

Keywords: antihyperglycemic; Indonesian bay leaves; Syzygium polyanthum (Wight.); diabetes;
squalene

1. Introduction

Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyper-
glycemia resulting from insufficiency in insulin action or insulin secretion, or both [1].
Persistent hyperglycemia can lead to macrovascular and microvascular complications that
affect several vital organs, including the kidneys, eyes, and heart [2]. The majority of
diabetes cases are divided into type 1 diabetes mellitus or insulin-dependent and type
2 diabetes mellitus or noninsulin-dependent [3]. The prevalence of diabetes has been
steadily increasing over the decades. In 2021, approximately 537 million diabetes cases
were reported, and the disorder was the ninth leading cause of death worldwide [4]. Cur-
rently, oral hypoglycemic agents and insulin have been used to control the disease and
its complications. Several associated adverse effects, however, have been reported, re-
flecting the need for continuous research to develop new effective therapeutic agents for
diabetes mellitus.
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As plants are known to contain a wide range of active compounds, many studies inves-
tigate plant sources for potential antidiabetic agents. Plant-derived active compounds serve
as pure drugs, as well as lead compounds, for the development of synthetic drugs directly
or indirectly [5]. Bioassay-guided fractionation is one of the widely used techniques in
plant drug discovery. In this technique, the extraction and biological screening of the extract
take place simultaneously in order to identify the active compound [6]. By applying this
technique, several studies have successfully isolated compounds with antihyperglycemic
effects, such as xyloccensin-I from Xylocarpus granatum [7], nicotiflorin and tulipanin from
Punica granatum var. [8], and a novel decahydro-1H-xanthene from Garcinia cowa [9].

Syzygium polyanthum (Wight.) Walp. (Myrtaceae) is an herb widely used in Indonesian
and Malaysian cuisines [10]. It is also commonly used as a traditional medicine to treat dia-
betic patients in Indonesia [11]. Our previous study demonstrated the antidiabetic activity
of an S. polyanthum methanolic extract in a streptozotocin-induced diabetic rat model, in
which squalene was identified as one of the active constituents [12]. Squalene has been
reported to improve the lipid profile associated with the progression of diabetes. Gabas-
Rivera et al. [12] reported that dietary squalene increased the levels of HDL cholesterol and
paraoxonase-1 and decreased total cholesterol levels at a 1 g/kg dose in Apoe-deficient
mice. Similarly, Liu et al. [13] showed that the intake of squalene dietary supplements
effectively increased HDL levels in obese/diabetic KK-Ay mice. These findings were fur-
ther confirmed by Mirmiranpour et al. [14], who studied the effect of squalene on type
2 diabetic patients, and found that consuming squalene for 84 days caused HDL levels to
rise, subsequently lowering total cholesterol, LDL, and VLDL levels in diabetic patients.

The present study utilized a bioactivity-guided approach to further investigate the
hypoglycemic activity of S. polyanthum leaves and the squalene isolated from the plant.
A streptozotocin-induced diabetic rat model that mimicked type 1 diabetes mellitus in
humans was used to screen for possible hypoglycemic effects.

2. Results and Discussion
2.1. Gas Chromatography–Mass Spectrometry Analysis

Gas chromatography–mass spectrometry analysis was conducted to identify the pres-
ence of bioactive compound/s in the active extract (methanol extract), the fraction (chloro-
form fraction), and the subfraction (subfraction-1). Table 1 lists the detected compounds
of high library matching quality. The analysis revealed the presence of several bioactive
compounds that may contribute to the observed glucose-lowering effect; one compound
was found in methanol extract, five in chloroform fraction, and three in subfraction-1. Inter-
estingly, only squalene was detected in all samples. Squalene, a triterpene, is an isoprenoid
compound that belongs to the terpenoid family [15]. It has been implicated in several
studies as a compound that contributes to the hypoglycemic and anti-obesity activities of
plants. Wang et al. [16] have demonstrated the excellent antidiabetic of Sanbai melon seed
oil with squalene as one of the major bioactive compounds. Ravi Kumar et al. [17] reported
that squalene modulated the metabolism of fatty acids in obese diabetic mice models, thus
contributing to the glucose-lowering effect.

Table 1. Phytochemical components identified in the methanolic extract (ME), chloroform fraction
(CF), and n-hexane subfraction-1 (SF-1) using GC–MS.

Samples RT * Peak (%) Compound
Name

Molecular
Formula

ME 14.96 7.60 Squalene C30H50

CF

10.74 6.90 Hexadecanoic acid, methyl ester C17H34O2
11.49 2.03 9,12-Octadecadienoic acid, methyl ester C19H34O2
14.97 8.92 Squalene C30H50
18.37 4.73 Vitamin E C29H50O2
21.66 22.57 Stigmasterol, 22,23-dihydro- C29H50O

SF-1
14.92 4.54 Squalene C30H50
18.28 4.26 Vitamin E C29H50O2
21.50 33.37 Stigmasterol, 22,23-dihydro- C29H50O

* RT = retention time; Peak area = the percentage of the compound it represents.
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2.2. Effect on Blood Glucose Level

Active methanol extract of S. polyanthum was fractionated into chloroform, ethyl
acetate, n-butanol, and water fractions. The result showed all the fractions reduced blood
glucose levels after repeated oral administration with a significant lowering effect only
seen in the chloroform (p < 0.05) fraction-treated group, as compared to the diabetic control
group (Figure 1). Hence, the chloroform fraction was further fractionated. Subfractionation
of 10 g of chloroform fraction produced 63% of subfraction-1 and 14% of subfraction-2.
Only subfraction-1 significantly reduced blood glucose level (p < 0.05) when compared
with the diabetic control (Figure 2). Overall, the results of this study pertaining to the
hypoglycemic activity of S. polyanthum extract were consistent with the previous studies,
which demonstrated the ability of ethanolic extract of the leaves to substantially reduce the
blood glucose levels of alloxan-induced diabetic rats [18,19].
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Figure 1. Effects of the fractions of S. polyanthum’s methanol extract on the blood glucose levels of
streptozotocin-induced diabetic rats after being treated orally twice daily for six days. NC, normal
control (normal saline, 10 mL/kg); DC, diabetic control (normal saline, 10 mL/kg); M, metformin
(500 mg/kg); CF, chloroform fraction (500 mg/kg); EAF, ethyl acetate fraction; n-BF, n-butanol fraction
(500 mg/kg); WF, water fraction (500 mg/kg). The values are expressed as mean ± SEM (n = 6).
# indicates significant differences as compared to the NC (### p < 0.001 and ## p < 0.01). * indicates
significant differences compared to the DC (*** p < 0.001, ** p < 0.01, and * p < 0.05) as analyzed using
Dunnett’s as post hoc test.

Figure 3 presents the blood glucose level of active extract, fraction, subfraction, squa-
lene, as well as controls in streptozotocin-induced diabetic rats. Compared to the nor-
mal rats, streptozotocin induction caused a 2–3-fold increase in blood glucose levels.
Blood glucose levels of methanol extract, chloroform fraction, subfraction-1, squalene,
and metformin-treated groups were significantly decreased on day 12 as compared to day
0. The descending order of the hypoglycemic activity with reduction percentage was as fol-
lows: metformin = methanol extract (56%) > chloroform fraction = subfraction-1 = squalene
(43%). Interestingly, the blood-glucose-lowering effect of methanol extract was comparable
to that observed in the metformin-treated groups (p < 0.001). Overall, crude extract exerted
a better hypoglycemic effect than fraction and subfraction. As can be seen in Figure 3, the
magnitude of the hypoglycemic effect decreased when the extract was further fractionated.
As compared with the NC, only the ME group showed an insignificant difference, which
further indicated treatment with ME successfully eliminated hyperglycemia in the diabetic
rats. In addition to that, the analysis also suggested the possible synergistic effect between
squalene and other bioactive compounds of the methanol extract, chloroform fraction, and
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subfraction-1. Compared to the pharmacological effects observed with individual isolated
compounds, better results are obtained with whole plant extracts due to the presence of
various bioactive compounds that work in synergy by targeting either the same or different
pathways [20].

Molecules 2022, 26, x FOR PEER REVIEW 4 of 16 
 

 

significant differences compared to the DC (*** p < 0.001, ** p < 0.01, and * p < 0.05) as analyzed us-
ing Dunnett’s as post hoc test. 

 
Figure 2. Effects of the subfractions of S. polyanthum‘s chloroform fraction on the blood glucose 
levels of streptozotocin-induced diabetic rats after being treated orally twice daily for six days. 
NC, normal control (normal saline, 10 mL/kg); DC, diabetic control (normal saline, 10 mL/kg); M, 
metformin (500 mg/kg); SF-1, subfraction-1 (250 mg/kg); SF-2, subfraction-2 (250 mg/kg). The val-
ues are expressed as mean ± SEM (n = 6). # indicates significant differences as compared to the NC 
(### p < 0.001 and # p < 0.05). * indicates significant differences compared to the DC (*** p < 0.001 and 
* p < 0.05) as analyzed using Dunnett’s as post hoc test. 

Figure 3 presents the blood glucose level of active extract, fraction, subfraction, 
squalene, as well as controls in streptozotocin-induced diabetic rats. Compared to the 
normal rats, streptozotocin induction caused a 2–3-fold increase in blood glucose levels. 
Blood glucose levels of methanol extract, chloroform fraction, subfraction-1, squalene, 
and metformin-treated groups were significantly decreased on day 12 as compared to 
day 0. The descending order of the hypoglycemic activity with reduction percentage was 
as follows: metformin = methanol extract (56%) > chloroform fraction = subfraction-1 = 
squalene (43%). Interestingly, the blood-glucose-lowering effect of methanol extract was 
comparable to that observed in the metformin-treated groups (p < 0.001). Overall, crude 
extract exerted a better hypoglycemic effect than fraction and subfraction. As can be seen 
in Figure 3, the magnitude of the hypoglycemic effect decreased when the extract was 
further fractionated. As compared with the NC, only the ME group showed an insignifi-
cant difference, which further indicated treatment with ME successfully eliminated hy-
perglycemia in the diabetic rats. In addition to that, the analysis also suggested the pos-
sible synergistic effect between squalene and other bioactive compounds of the metha-
nol extract, chloroform fraction, and subfraction-1. Compared to the pharmacological ef-
fects observed with individual isolated compounds, better results are obtained with 
whole plant extracts due to the presence of various bioactive compounds that work in 
synergy by targeting either the same or different pathways [20]. 

In reference to the gas chromatography–mass spectrometry analysis (Table 1), five 
compounds were detected in chloroform fraction, three in subfraction-1, and one com-
pound from methanol extract. Additionally, the chloroform fraction has a higher per-
centage of squalene (8.92%) than methanol extract (7.60%) and subfraction-1 (4.54%). 
The number of detected compounds and percentage of squalene, however, do not reflect 
the magnitude of the observed hypoglycemic effect of each sample. This further implies 
the presence of other potentially bioactive compounds in the methanol extract that are 
not detected through gas chromatography–mass spectrophotometry analysis. Even 
though gas chromatography–mass spectrophotometry is considered the gold standard 

Figure 2. Effects of the subfractions of S. polyanthum‘s chloroform fraction on the blood glucose
levels of streptozotocin-induced diabetic rats after being treated orally twice daily for six days.
NC, normal control (normal saline, 10 mL/kg); DC, diabetic control (normal saline, 10 mL/kg); M,
metformin (500 mg/kg); SF-1, subfraction-1 (250 mg/kg); SF-2, subfraction-2 (250 mg/kg). The
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and * p < 0.05) as analyzed using Dunnett’s as post hoc test.
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Figure 3. Effects of S. polyanthum’s active extract, fraction, and subfraction on the blood glucose
levels of streptozotocin-induced diabetic rats after being treated orally twice daily for twelve days.
NC, normal control (normal saline, 10 mL/kg); DC, diabetic control (normal saline, 10 mL/kg); M,
metformin (500 mg/kg); ME, methanolic extract (1 g/kg); CF, chloroform fraction (500 mg/kg); SF-1,
n-hexane fraction (250 mg/kg); SQ, squalene (160 mg/kg). The values are expressed as mean ± SEM
(n = 6). # indicates significant differences as compared to the DC (### p < 0.001). * indicates significant
differences compared to the NC (*** p < 0.001, ** p < 0.01, and * p < 0.05) as analyzed using Dunnett’s
as post hoc test.
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In reference to the gas chromatography–mass spectrometry analysis (Table 1), five
compounds were detected in chloroform fraction, three in subfraction-1, and one compound
from methanol extract. Additionally, the chloroform fraction has a higher percentage of
squalene (8.92%) than methanol extract (7.60%) and subfraction-1 (4.54%). The number of
detected compounds and percentage of squalene, however, do not reflect the magnitude of
the observed hypoglycemic effect of each sample. This further implies the presence of other
potentially bioactive compounds in the methanol extract that are not detected through gas
chromatography–mass spectrophotometry analysis. Even though gas chromatography–
mass spectrophotometry is considered the gold standard for a broad spectrum of compound
screening, it is unable to directly analyze compounds that are polar and nonvolatile [21].
Chemical derivatization to create volatile forms of the compounds is needed to make them
amenable for this chromatographic analysis.

2.3. Effect on Body Weight

Figure 4 shows the effect of S. polyanthum extract, fraction, and subfraction on body
weight. Normal rats showed a significant increase in body weight after the 12-day ex-
perimental period (p < 0.01). As expected, diabetic control rats exerted a significant loss
in body weight (p < 0.05) on day 12. The significant loss of body weight in untreated
diabetic rats may be due to the increased muscle wasting and loss of muscle mass and
adipose tissue caused by the excessive breakdown of tissue proteins and fatty acids [22,23].
Several studies have reported similar significant weight reductions in untreated diabetic
rats [24–26]. Diabetic rats treated with methanol extract, chloroform fraction, subfraction-1,
and squalene, as well as metformin, also showed a reduction in body weight after 12 days of
the experiment. The reduction, however, was not significant as compared to pre-treatment
levels on day 0. The results suggested that the given treatments managed to prevent further
significant weight loss in diabetic rats. The minimal weight loss of treated groups was due
to the gradual decrease in blood glucose levels. Additionally, the effect of the treatments
on body weight might be more prominent if the diabetic rats were treated for a longer
duration. Taher et al. [27] and Azad and Sulaiman [28] reported a significant increase in
body weight of treated diabetic rats only after 14 days of treatments.
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Figure 4. Effects of S. polyanthum on the body weights of streptozotocin-induced diabetic rats. All
treatments were administered orally twice daily for 12 days as follows: NC, normal control (saline,
10 mL/kg); M, metformin (500 mg/kg); DC, diabetic control (saline, 10 mL/kg); ME, methanol extract
(1 g/kg); CF, chloroform fraction (500 mg/kg); SF-1, n-hexane fraction (250 mg/kg); SQ, squalene
(160 mg/kg). The values are expressed as mean ± SEM (n = 6). * indicates significant differences
between pre-treatment (day 0) and post-treatment (day 12) of the same group as analyzed by using
the paired t-test (* p < 0.05).
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2.4. Effect on Lipid Profile

Figure 5 presents the effects of S. polyanthum on the lipid profiles of streptozotocin-
induced diabetic rats. As compared with the diabetic control, only subfraction-1 and
squalene showed the ability to decrease total cholesterol levels significantly (p < 0.05), an
effect which was also observed in the metformin-treated group (p < 0.05). Metformin and
squalene-treated groups also significantly reduced low-density lipoprotein levels (p < 0.001
and p < 0.05 respectively). Those findings confirmed the promising hyperlipidemic effect
of squalene, as reported by previous studies. Liu et al. [29] showed that a high squalene
diet significantly reduced triglycerides and cholesterol levels in rats. Several years later,
Gabas-Rivera et al. [30] further suggested that squalene managed to reduce cholesterol
levels in a dose-dependent manner.
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Non-significant changes in lipid parameters were seen in diabetic rats treated with
methanol extract and chloroform fraction. Diabetes was shown to be associated with hy-
perlipidemia [31], and optimal glycemic control ameliorates lipid profile abnormalities [32].
However, in the author’s study, normalization of plasma glucose levels in methanol extract
and chloroform fraction treated groups did not restore the lipid parameters, implying that
factors, in addition to glycemic control, are also involved. An example of this factor is
insulin. Insulin has been reported to prevent hypercholesterolemia in type 1 diabetes. In-
sulin, by suppressing the hepatic FoxO1 gene, lowered 12α-hydroxylated bile acids, plasma
cholesterol, and cholesterol absorption [33]. This means the cholesterol levels remain high
in the deficiency of insulin.
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2.5. Insulin Level and Immunohistochemistry Assessment

Figure 6 shows the immunohistochemically stained pancreatic tissues under 40 × 10 mag-
nification power. The brown-colored area represents insulin in the viable β-cells. In the
Islets of Langerhans of the normal rat, clear and large brownish spots were seen. The
β-cells were found to make up 87.92 ± 1.9% of Islets of Langerhans in the normal rats. In
the streptozotocin-induced diabetic rats, the size of the brown-colored areas was signifi-
cantly (p < 0.001) reduced and comprised 21.36 ± 3.7% of the total islets of the Langerhans
area (Figure 7A). With the breaking of the DNA strand, interruption of the glucose trans-
port, and interference with the function of glucokinase, the streptozotocin damaged the
β-cells [34]. All the treated groups showed a tendency to have larger immunostained areas.
The effect, however, was insignificant when compared with the diabetic control group.
This indicates that the treatments were ineffective in terms of regenerating and protecting
viable pancreatic β-cells. Figure 7B depicts the concentration of serum insulin in the treated
groups. As expected, the serum insulin levels in all diabetic rats were three-fold less than
those of the normal control (p < 0.001). Only subfraction-1 significantly increased the level
of serum insulin as compared to the diabetic controls (p < 0.05). This finding explained
the positive effect of subfraction-1 in lowering cholesterol levels and confirmed the role
of insulin in normalizing cholesterol levels. Semova et al. [33], who studied the role of
insulin regulation on the cholesterol mechanism in mouse model type 1 and humans with
type 1 diabetes, have suggested that insulin modulated the level of plasma cholesterol via
inhibition of hepatic FoXO1, which led to the reduction of 12α-hydroxylated bile acids,
cholesterol absorption, and plasma cholesterol levels.
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Figure 6. Immunohistochemistry staining of the β-cells pancreas after being treated for 12 days.

Considering diabetes mellitus is a multifactorial chronic disease, further research is
needed to better understand the possible mechanism of the hypoglycemic action of this
plant by exploring the effect of S. polyanthum on the hepatic glucose production, intestinal
glucose absorption, and peripheral glucose uptake in the muscle and adipose tissues.
Additionally, the current study has limitations in terms of the duration of the treatment.
Effects of the treatment on the parameters such as body weight and lipid profile can be
more profound in a longer study period.
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Figure 7. (A) Percentage of the immunostained area of each treated group and (B) Concentration
of serum insulin of each treated group. NC, normal control (saline, 10 mL/kg); M, metformin
(500 mg/kg); DC, diabetic control (saline, 10 mL/kg); ME, methanol extract (1 g/kg); CF, chloroform
fraction (500 mg/kg); SF-1, n-hexane fraction (250 mg/kg); SQ, squalene (160 mg/kg). The values
are expressed as mean ± SEM (n = 6). * indicates significant differences as compared to the NC.
# indicates significant differences compared to the DC (*** p < 0.001 and # p < 0.05) as analyzed using
Dunnett as post hoc test.

2.6. Molecular Docking Analysis

Using iGEMDOCK, a molecular docking simulation was carried out to determine
the effectiveness of squalene’s binding to the chosen diabetes proteins. Metformin was
applied for comparison purposes. Figure 8 shows the binding energy of all two ligands
on the 13 protein targets. Based on the analysis of binding energy, the lowest negative
scores of total energy indicate a higher affinity between the ligand and protein’s recep-
tors, which further signifies that the ligands could modulate or inhibit the respective
protein target. The binding energy of squalene to all the target proteins was found to
be lower than that of the standard drugs, metformin, except for 4Y14, 1XU7, and 1IR3.
Squalene showed the highest affinity against 2Q5S (−75.9 kcal/mol), followed by 2HWQ
(−71 kcal/mol), 1ZON (−65.56 kcal/mol), and 1FM9 (−64.28 kcal/mol). Receptors 2Q5S,
2HWQ and 1FM9 are the proteins that regulate and control adipogenesis, energy balance,
and biosynthesis of lipids [35–37]. This in silico analysis is in agreement with the findings
of Mirmiranpour et al. [14] on the effect of squalene on lipid profiles in type 2 diabetic
patients. Further study is needed to predict the active site and associated amino acids of
target diabetic proteins.
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domains bound with 9–cis retinoic acid and GI262570 and co–activator peptides; 1IR3, phos-
phorylated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog;
1XU7, tetrameric 11B–HSD1; 1ZON, CD11A I–domain without bound cation; 2HWQ, peroxisome
proliferator–activated receptor agonists; 2Q5S, peroxisome proliferator–activated receptor γ bound to
partial agonist NTZDPA; 2QMJ, N–terminal subunit of human maltase–glucoamylase in complex
with acarbose; 2ZJ3, isomerase domain of human glucose:fructose–6–phosphate amidotransferase;
3C45, human dipeptidyl peptidase IV/CD26 in complex with a fluoroolefin inhibitor; 3CTT, N–
terminal human maltase–glucoamylase with casuarina; 3L2M, pig pancreatic alpha–amylase with
alpha–cyclodextrin; 4A5S, human DPP4 in complex with a novel heterocyclic DPP4 inhibitor; 4Y14,
tyrosine phosphatase 1B complexed with inhibitor.

3. Materials and Methods
3.1. Chemicals

Metformin 500 mg, a standard oral antidiabetic drug, was used as the positive control.
Streptozotocin and squalene (CID 638072) were purchased from Sigma-Aldrich Chemical
Company (St. Louis, MO, USA). All reagents and chemicals used are analytical grades.

3.2. Plant Collection and Identification

Syzygium polyanthum leaves were collected from Titi Kuning, Medan, Indonesia (Ge-
ographical coordinates: 3.522988, 98.682834) from July to October 2011. The plant was
identified by Dr. Nursahara Pasarbibu from the School of Biological Sciences, Bioteknologi
no.1 Kampus USU, University of Sumatera Utara, Medan, Indonesia (voucher specimen
number: no.13/MEDA/2012).

3.3. Preparation of Samples

The dried leaves were powdered using a milling machine. To obtain the extracts of S.
polyanthum’s, about 1.5 kg of the powder was sequentially macerated (40 ◦C–60 ◦C) with
4.9 L each of the respective solvents: petroleum ether, chloroform, and methanol. The
extracts were filtered using Whatman No.1 filter paper and concentrated in vacuo by using
a rotary evaporator (Labortechnik, AG CH-9230 Flawil, Switzerland) at reduced pressure.
The concentrated extracts were dried in an oven (40 ◦C) until traces of the organic solvent
completely evaporated. An earlier study has shown that methanol extract exerted the
most potent hypoglycemic effect [12]. Hence, in this study, the active methanol extract was
selected for further bioassay-guided fractionation.

The active methanol extract (25 g) was sequentially fractionated by a liquid–liquid par-
tition with four solvents, chloroform (250 mL), ethyl acetate (250 mL), n-butanol (250 mL),
and water. This resulted in four fractions of chloroform, ethyl acetate, n-butanol, and water.
The water fraction underwent lyophilization using a freeze dryer (Labonco Corporation,
Kansas, MO, USA). The preliminary result showed that chloroform fraction significantly
lowered the blood glucose level of streptozotocin-induced diabetic rats as compared to the
control. Thus, the most active fraction, the chloroform fraction, was further fractionated
by dissolving 0.5 g in n-hexane (100 mL). Meanwhile, the n-hexane was drained and re-
plenished until no color had formed. The n-hexane fraction was filtered, concentrated by a
rotary evaporator, and freeze-dried to obtain subfraction 1. The remaining residue, which
was dissolved in chloroform, was also filtered. The chloroform portion was concentrated in
vacuo to yield subfraction 2. Figure 9 depicts the schematic extraction and fractionation
of S. polyanthum leaves. All extracts, fractions, and subfractions were kept in a freezer
(−20 ◦C) until further use. Doses were freshly prepared using 5% Tween 80 in 0.9% normal
saline prior to oral administration.

3.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

For GC–MS analysis, 4 mg of each active methanol extract, chloroform fraction, and
subfraction-1 were respectively dissolved in 1 mL of chloroform. The reference com-
pound, squalene (410.72 g/mol, >98% liquid), was diluted in methanol at the concen-
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tration of 1 mg/mL. The presence of squalene in methanol extract, chloroform fraction,
and subfraction-1 was confirmed by using ion fractionation. The percentage of squalene
was calculated based on the peak heights in methanol extract, chloroform fraction, and
subfraction-1 respective spectra.
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3.5. In Vivo Antihyperglycemic Studies
3.5.1. Induction of Type 1 Diabetes Mellitus in Rats

Healthy male Sprague Dawley rats weighing between 200 and 250 g were obtained
from the Animal Research and Service Centre, Universiti Sains Malaysia, Penang, Malaysia.
Before commencement of the study, animals were acclimatized in the Animal Transit Room,
School of Pharmaceutical Sciences, Universiti Sains Malaysia, for one week at 20–22 ◦C
with a 12 h light/dark cycle.

Freshly prepared streptozotocin in 0.9% sodium chloride was injected intraperitoneally
at a dose of 55 mg/kg to 16-h fasted rats. The rats were provided with 10% dextrose
drinking water for the first 24 h to avoid the incidence of fatal hypoglycemia. After 72 h,
the blood glucose levels of the fasting animals were measured, and animals with blood
glucose levels above 200 mg/dL (11 mmol/L) were selected for the study.

3.5.2. Bioassay-Guided Antihyperglycemic Activity of S. polyanthum

Hypoglycemic activity of S. polyanthum’s fractions and subfractions were assessed
using streptozotocin-induced diabetic rats. Diabetic rats were randomly divided into
groups of six (n = 6). Normal saline (10 mL/kg BW) was given and acted as a negative
control group, and metformin at the dose of 500 mg/kg BW was used as the positive control.
To screen the hypoglycemic activity of fractions, diabetic rats were treated with 500 mg/kg
of chloroform, ethyl acetate, n-butanol, and water fractions, respectively. All treatments
were administered orally, twice daily, for 6 days. Blood glucose levels were measured
before and after the treatment. The same step was repeated to evaluate the hypoglycemic
activity of subfractions, subfraction-1, and subfraction-2. These subfractions, at the dose
of 250 mg/kg BW, were given orally, and blood glucose levels before and after treatment
were measured.

Finally, once the active fraction and subfraction have been determined, the hypo-
glycemic activity of the active extract, fraction, and subfraction, as well as squalene, was
conducted again at the same time to avoid time period bias. The procedure is summarized
in Figure 10. The treated groups were as follows: Four groups of diabetic rats (n = 6) were
respectively treated with methanol extract (1 g/kg B.W.), chloroform fraction (500 mg/kg
B.W.), subfraction-1 (250 mg/kg B.W.), and squalene (160 mg/kg B.W.). The fifth and sixth
groups received metformin (500 mg/kg B.W.) and normal saline (10 mL/kg B.W.) and
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served as respective positive control and diabetic control. Six normoglycemic rats were
treated with saline (10 mL/kg) and served as the normal control. The minimum effective
dose of squalene was determined previously, as shown in Supplementary Figure S1. All
treatments were administered orally twice daily for 12 days. After a 12-day treatment, the
rats were euthanized using carbogen (95% CO2 and 5% O2), and a blood sample (3 mL) was
obtained via cardiac puncture and centrifuged at 3000 rpm for 10 min to collect the serum.
The serum was stored at −20 ◦C until biochemical parameters analysis. The pancreas was
harvested for immunohistochemistry analysis.
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3.5.3. Measurement of Fasting Blood Glucose

Blood glucose level was measured at two interval points, day 0 (before treatment) and
day 12 (after repeated treatment). The rats were fasted overnight before blood glucose
measurement. Approximately fifty microliters of blood was obtained from the tail vein of
each rat, and blood glucose level was determined using Accu-Check Advantage Clinical
Glucose Meter (Roche Diagnostics Co., Indianapolis, IN, USA).

3.5.4. Measurement of Serum Insulin Level, Lipid Profile, and Body Weight

The concentration of insulin in the serum was determined in triplicates using an
ultra-sensitive rat insulin ELISA kit (Crystal Chem Inc, Elk Grove Village, IL, USA). To-
tal cholesterol, triglycerides, and HDL cholesterol were determined using an automated
Siemens ADVIA 2400 Chemistry Analyzer (Erlangen, Germany). Total cholesterol and
triglycerides were measured based on the enzyme-coupled reaction, whereas HDL choles-
terol was determined using a direct HDL-cholesterol assay. LDL cholesterol was calculated
using the Friedewald equation. The body weights of the rats were measured on day 0 and day
12 by using an electronic balance (NavigatorTM, Ohaus Corporation, Nanikon, Switzerland).

3.5.5. Immunohistochemistry Study of Pancreas

A histological assessment of the pancreas was conducted according to the immuno-
histochemical method described by Yusoff et al. [38]. The pancreatic tissues were fixed
in 10% buffered formalin, processed using a tissue processor, and embedded in paraffin.
The paraffin-embedded tissues were sectioned into 5 µm slices and mounted on a poly-L-
lysine-coated microscope slide. Immunohistochemically staining was performed using a
guinea-pig polyclonal antibody of rat insulin. The sections were treated with 3% hydrogen
peroxide in methanol to quench endogenous peroxidases, followed by washing in buffer.
Then, the sections were incubated in a diluted normal serum for 20 min. The primary
antibody, guinea-pig polyclonal insulin antibody, was applied for 30 min, followed by
buffer washing for 5 min. The sections were incubated for 30 min with the biotinylated sec-
ondary antibody, followed by washing. Following a further 30-min incubation period in a
Vectastain ABC kit, washing was performed for 5 min before adding diaminobenzidine for
3–5 min. The sections were slightly counterstained with Harris Hematoxylin, dehydrated,
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cleared, and mounted. The pancreatic islets were examined under a light microscope
(Leica® DMi1, Leica Microsystems, Wetzlar, Hesse, Germany). An image analyzer (Leica®

microsystem Qwin plus) was used to analyze the digital image and calculate the percentage
(%) of the insulin-containing area of β cells.

3.6. Molecular Docking Analysis

Selection of protein targets was conducted by referring to Rao et al. [39]; 3D struc-
tures of 13 proteins that are vitally important in diabetes mellitus were retrieved from
the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (https:
//www.rcsb.org/structure/2Q5S), accessed on 20 September 2022 and saved in PDB format.
Proteins with PDB ID: 1FM9 (Heterodimer of the human retinoic acid receptor α and per-
oxisome proliferator-activated receptor γ ligand binding domains bound with 9-cis retinoic
acid and GI262570 and co-activator peptides), 1IR3 (Phosphorylated insulin receptor ty-
rosine kinase in complex with peptide substrate and ATP analog), 1XU7 (Tetrameric 11B-
HSD1), 1ZON (CD11A I-domain without bound cation), 2HWQ (Peroxisome proliferator-
activated receptor agonists), 2Q5S (Peroxisome proliferator-activated receptor γ bound to
partial agonist NTZDPA), 2QMJ (N-terminal subunit of human maltase-glucoamylase in
complex with acarbose), 2ZJ3 (Isomerase domain of human glucose:fructose-6-phosphate
amidotransferase), 3C45 (Human dipeptidyl peptidase IV/CD26 in complex with a flu-
oroolefin inhibitor), 3CTT (N-terminal human maltase-glucoamylase with casuarine),
3L2M (Pig pancreatic alpha-amylase with alpha-cyclodextrin), 4A5S (Human DPP4 in
complex with a novel heterocyclic DPP4 inhibitor), and 4Y14 (Tyrosine phosphatase 1B
complexed with inhibitor) were employed in focused molecular docking investigations
on diabetes receptor proteins. Preparation of ligand was conducted applying canonical
SMILES format of the compounds. Canonical SMILES of ligand squalene was retrieved
from the PubChem compound database (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 20 September 2022) with PubChem CID: 638072, and the three-dimensional structure
of the molecule was simulated using the online server NovoPro Bioscience Inc., Shanghai,
China (https://www.novoprolabs.com/tools/smiles2pdb, accessed on 20 September 2022)
and was saved in PDB format. Comparative analysis of the ligand was conducted against
metformin drug obtained from PubChem database metformin (PubChem CID:4091). The
2D structures of squalene and metformin were generated using Novoprolabs (Figure 8).
Molecular docking between the ligand and the receptors was carried out using the Generic
Evolutionary Method for molecular DOCKing (iGEMDOCKv4.2). iGEMDOCK employs
generic evolutionary algorithms (flexible docking method). Docking each ligand to the
13 target proteins was carried out at the standard docking option of 70 generations, 200 pop-
ulation size, and 2 solutions. Bond energies of squalene were compared to those of the
standard drug metformin.

3.7. Statistical Analysis

The data were expressed as mean ± standard error of the mean (SEM). Statistical
significance was determined by Graphpad prism version 7. One-way ANOVA was used,
followed by Dunnet’s post hoc test. Pre-treatment and post-treatment comparisons were
performed using the paired t-test. Differences were considered significant, with the p-value
being less than 0.05.

4. Conclusions

In conclusion, the present work successfully establishes the hypoglycemic activity of
S. polyanthum leaf extract, demonstrating evidence that S. polyanthum is the most effective
antidiabetic plant when administered as a whole extract rather than fractions. This suggests
that the hypoglycemic effect is a product of the synergy of several compounds in the
plant rather than a few or a single compound therein. In addition to that, the observed
hypoglycemic effect has no association with enhanced insulin secretion by β-cells. These

https://www.rcsb.org/structure/2Q5S
https://www.rcsb.org/structure/2Q5S
https://pubchem.ncbi.nlm.nih.gov/
https://www.novoprolabs.com/tools/smiles2pdb
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warrant future studies to explore the possible mechanism of the hypoglycemic effect of S.
polyanthum and squalene at the extrapancreatic level.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27206814/s1, Figure S1: Effects of 20 mg/kg, 40 mg/kg,
80 mg/kg, and 160 mg/kg of squalene, administered twice daily, on the blood glucose levels of
streptozotocin-induced diabetic rats.
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