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Abstract

This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while
simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic
sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-
FLX-Ti yielding ,40,000 rRNA gene sequences from each sample and representing ,300 observed OTUs. Replicates
obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or
sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the
estimated number of OTUs at each timepoint was concordant, but 1.5 times and ,10 times as many phyla and genera,
respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in
community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also
identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked
these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community
composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into
freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ.
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Introduction

A key step in understanding microbial community structure,

dynamics, and how organisms might influence or be influenced by

their surroundings is to classify DNA sequences taxonomically or

phylogenetically. To date, most studies of microbial communities

in systems ranging from the open ocean to soil to the human gut

have depended on a single gene, the 16S small subunit ribosomal

RNA (rRNA) gene [1–4]. Massively parallel sequencing methods

are increasingly being applied to the characterization of microbial

communities based on amplification of this gene and have led to a

better appreciation of extant biodiversity [5]; however, the 16S

rRNA -based techniques are known to be limited by the short read

lengths obtained, sequencing errors [6,7], differences arising from

the different regions chosen [8], and difficulties in assessing

operational taxonomic units (OTUs) [9]. Furthermore, the use of a

single marker gene to assess diversity is challenging, given the

prevalence of horizontal gene transfer and the difficulty inherent

in defining bacterial species [10–12] as well as the limited

resolution of the 16S rRNA gene among closely related species.

Recently, 16S rRNA gene amplicon sequencing was compared to

metagenomic data from synthetic communities [13], but to our

knowledge, there has been no systematic evaluation of high-

throughput 16S rRNA gene sequencing involving multiple

sequencing and PCR replicates from natural microbial commu-

nities. Here, we coupled detailed analyses of replicate 16S rRNA

gene datasets to comparisons with companion community shotgun

metagenomics data from the same samples.

Metagenome approaches are commonly used to describe

microbial communities in different systems, e.g., [14–16], without

the biases inherent to PCR amplification of a single gene, although

it remains a challenge to accurately infer taxonomic origin from

metagenomic reads [17]. Whole genome shotgun (WGS) metage-

nomic approaches provide robust estimates of microbial commu-

nity composition and diversity without the need to target and

amplify a specific gene. However, differences in sequencing

platforms, DNA preparation methods, and the complexity of the

samples being studied can possibly lead to different or biased

observations [6,18,19]. Furthermore, phylogenetic classification of

microbes using WGS is seldom coupled to 16S-based classification,

and a few recent studies doing so have identified discrepancies
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between the different classification methods, usually with regard to

the level of resolution obtained [20,21].

Here, we focused on evaluating the bacterioplankton compo-

sition and short-term variability in an important, temperate

freshwater lake in the Southeast USA, Lake Lanier. Lake Lanier is

the source of drinking water for metropolitan Atlanta and is a

popular recreational area, especially during the summer months.

Freshwater microbial communities have been shown to change

over time in many different systems [22–25], influenced by a

variety of environmental factors such as pH, temperature, and

water retention time [26–28], but little is known about microbial

temporal dynamics or responses to natural perturbations such as

strong storm events in southern temperate lakes such as Lake

Lanier. Understanding the microbial community composition,

variation, and metabolic potential of Lake Lanier will help discern

the sensitivity and responsiveness of this community to potential

perturbations as well as address the gap of knowledge of freshwater

lake communities. We examined the microbial community with

16S rRNA gene and metagenomic sequencing while assessing the

reproducibility and potential biases of the 16S-based approach by

comparing multiple PCR (i.e., same template DNA with

independent 16S rDNA amplifications) and sequencing (i.e., same

DNA sequenced independently) replicate datasets from four

different timepoints separated by two different potential pertur-

bations: a summer storm event and the beginning of the fall

turnover. We further compared this 16S-based information to that

from functional genes and 16S rRNA gene fragments recovered in

companion metagenomic datasets to determine the extent to

which an amplicon approach influences our ecological inferences

and to evaluate the strengths and limitations of these common

community characterization approaches. In addition to providing

information about the technical variability of the 16S rRNA gene

amplicon approach, we also gained new insights into the microbial

ecology of the system, specifically about how certain physiochem-

ical changes might influence bacterioplankton communities as well

as how community composition changes over time. This work is

also part of a larger, long-term effort to characterize the microbial

community of Lake Lanier [29].

Methods

Sample Description
Lake Lanier is a seasonally stratified lake situated about 80 km

northeast of Atlanta, GA at the headwaters of the Apalachicola-

Chattahoochee-Flint River basin. When full, the reservoir covers

nearly 156 km2 and holds approximately 2.46109 m3 of water. It

is used for drinking water, hydroelectric power generation, flood

control, run-off management, and recreation. Samples were

collected from below the Browns Bridge at Lake Lanier (34uN
159 430, 83uW 579 70) at four time points in 2009: three centered

around an August 27 storm event (August 26, AUG1; August 28,

AUG2; and September 7, SEPT) and one during the fall mixing

event in November (November 8, NOV). No specific permissions

were required for this sampling location, nor did our field study

involve endangered or protected species. At each sampling point, a

Water Quality Meter (Horiba) was used to measure water

temperature, pH, conductivity, turbidity, dissolved oxygen, and

total dissolved solids (Table S1 in File S1, Fig. S1 in File S1). A

horizontal sampler (Wildco Instruments) was used to collect

samples of planktonic microbial communities at 5 m, within the

epilimnion, which is fairly uniform in temperature and fully

oxygenated during summer stratification. Metagenomes from

these same samples were analyzed previously [29].

DNA Extraction
A total of 10 L of water was pre-filtered through ,1.6 mm GF/

A filters (Whatman) and cells were collected on 0.22 mm Sterivex

filters (Millipore) using a peristaltic pump. Sterivex filters were

stored at 280uC until DNA extraction. DNA was extracted as

described in [29]. Briefly, filters were treated with lysis buffer

(50 mM Tris-HCl, 40 mM EDTA, and 0.75 M sucrose) and

incubated with 1 mg/ml lysozyme at 37uC for 30 min. Samples

were subsequently incubated with 1% SDS, 10 mg/ml proteinase

K, and 150 mg/ml RNAse for 2 h rotating at 55uC. DNA was

extracted from the lysate with phenol and chloroform, precipitated

with ethanol and eluted in TE buffer. DNA yield was about 1.5 mg
per liter of water filtered. For the metagenome, ,5 mg of the total

DNA aliquot was sequenced using the Illumina GA-II sequencers

at the Emory University Genomics Facility, providing paired-end

reads with an average length of 100 bp (Table S4 in File S1). 16S

rRNA gene amplicon pyrosequencing (see below) was run on the

GS-FLX 454 Titanium platform, also at the Emory University

Genomics Facility.

16S Amplicon Library Preparation and Sequencing
Lake Lanier 16S rRNA gene amplicons were PCR-amplified

from the same community DNA samples sequenced for metage-

nomic analysis using barcoded primers for the V1–V3 regions

(Table S2 in File S1). Each 20 ml PCR mixture was comprised of

0.15 ml AccuPrime Taq DNA Polymerase High Fidelity (Invitro-

gen), 2 ml 10X AccuPrime PCR Buffer II, 13.85 ml nuclease-free
water, 1 ml of 2 mM ‘‘B’’ adaptor-labeled 27F primer, 1 ml of
2 mM ‘‘A’’ adaptor-labeled and barcoded 534R primer, and 2 ml
undiluted template DNA. PCR conditions consisted of 2 min

incubation at 95uC followed by 25 cycles of 95uC, 20 sec; 50uC,
30 sec; and 72uC, 5 min. Three independent PCRs were carried

out for each primer pair listed in Table S2 in File S1, the products

of which were pooled for each sample. To further assess

reproducibility and potential technical artifacts, we sequenced

two separate amplicon pools from AUG1 (A and B) and three from

NOV (A, B, and C; Table S3 in File S1). As an additional control

sample, a mixture of DNA from four organisms grown in pure

culture: Escherichia coli strain H1-sample ANK, E. coli str. K-12

substr. DH10B, and two environmental isolates: an Enterococcus sp.

and a Shewanella sp., were also subject to 16S amplification and

sequenced together with the Lake samples. PCR products were

cleaned using Agencourt AMPure beads (Beckman Genomics). All

seven samples were then pooled according to the Roche protocol

into a mixture containing a final concentration of ,107

molecules/ml from each sample. The pooled amplicons were

sequenced in duplicate (i.e., two halves of a plate) on the GS-FLX

454 Titanium instrument providing an average read length of

333.2 bp (Table S3 in File S1).

16S rRNA Gene Sequence Analysis
Each sample was separated from the run based on its barcode

sequence using the Splitkeys.pl script from the AmpliconNoise

package, version 1.2. The reads of each sample were then

independently denoised to reduce sequencing and PCR single base

substitutions and then chimera-checked using the PyroNoiseM +
SeqNoise and Perseus shell scripts, respectively, in the Amplicon-

Noise package [6,7]. A denoising shell script included a filter

requiring a minimum flowgram length of 360 bp (including key

and primer). To reintegrate all the samples for downstream

comparisons, a combined fasta file of the denoised, chimera-

checked sequences was created and the AmpliconNoise Qiime.pl

script was used to make both a 3% and 1% OTU mapping file

(i.e., OTUs were picked at both 97% and 99% identity). The

Strengths and Limitations of 16S rRNA Sequencing
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QIIME software package, version 1.2.0 [30] was then used for 16S

rRNA analysis, skipping OTU construction and beginning with

the split_libraries.py (with –l 50–H 50) and pick_rep_set.py scripts

using the pre-processed sequences. For many analyses, a subset of

sequences obtained by randomly subsampling each dataset to the

same depth (that of the smallest dataset) was used. OTUs that were

identified in only one of the 14 datasets or that occurred as

singletons were excluded from the analysis. Within QIIME,

taxonomy was assigned with the RDP classifier based on a July

2011 version of the Greengenes reference OTU database [31]

with the addition of a freshwater sequence database and taxonomy

framework described in [32].

Assembly and Phylogenetic Assignment of Metagenomic
Reads
Metagenomic sequences from the same four timepoints were

analyzed by creating a combined assembly from all four datasets

after filtering the data for quality based on the Phred average per

sliding window with Q$20 and not allowing any N’s. The reads

were assembled into contigs as described previously [29]; Table S4

in File S1 using the SOAPdenovo [33] and Velvet [34] pre-

followed by assembly into longer contigs with Newbler 2.0. This

hybrid protocol provided significantly longer contigs, with

accuracy comparable with or higher than that of the contigs of

Velvet or SOAPdenovo [35]. The resulting contigs were

annotated using MeteGeneMark [36]. The predicted genes were

subsequently searched against a database of all sequenced

bacterial and archaeal genomes and their best match was used

to infer the phylogenetic origin of contig sequences using the

MyTaxa scheme developed in our lab ([37]; http://enve-omics.ce.

gatech.edu/mytaxa/).

Nucleotide sequence accession numbers. 16S datasets

from the Lake Lanier samples were deposited in the Sequence

Read Archive under the same projects as the previously submitted

WGS datasets [29]: AUG1 (SRA029309.1), AUG2

(SRA029314.1), SEPT (SRA029315.1), and NOV

(SRA029316.1).

Results

16S rRNA Gene Amplicon Sequencing Reproducibility
We used the control mixture made up of 16S rRNA gene

sequences from four organisms grown in isolation in the

laboratory, to validate the denoising parameters and efficacy of

OTU recovery and taxonomic assignments of amplicon sequenc-

ing. Following denoising and taxonomic binning of the sequences

in this sample, four major (.1% of total sequences) 97% OTUs

were identified in each of the two lane runs. The OTUs were

identified using RDP taxonomy within QIIME at the order level

as members of the Enterobacteriales, corresponding to the two E. coli

strains of four control organisms used and accounting for about

50% of the reads, Lactobacillales, corresponding to the Enterococcus

isolate used and accounting for about 20% of total, and

Alteromonadales, corresponding to the Shewanella isolate and

accounting for about 20% of the total. Thirteen additional OTUs

with either singletons or few representative sequences (,0.1% of

the total sequences) were also identified, but were likely the result

of sequencing errors due to their low abundance and poor matches

to the known, control sequences. These OTUs had taxonomic

affiliations that matched the known control sequences at the

phylum level, but most (9 of 13) could not be taxonomically

assigned beyond that. Furthermore, the highly populated OTUs

were the same between the two runs of the same sample, whereas

the OTUs with a small number of sequences were not. We

therefore determined that a reasonable filter would exclude OTUs

with fewer than ten reads that were not found in both sequencing

runs from the same sample, i.e., in both lanes 1 and 2. This filter,

similar to what is used by others (e.g., [38]), was subsequently

applied to our lake 16S rRNA gene datasets. Singletons were not

removed for comparison with metagenomic sequences (see below).

The 14 datasets acquired from four temporally-distinct

sampling events were processed using the standard QIIME

protocol to bin reads into OTUs and then sub-sample each

dataset to an even depth of 17,821 sequences, i.e., the number of

sequences in the smallest dataset, in order to account for

heterogeneity in the sequencing effort (Table S3 in File S1). As

expected, slightly more OTUs were identified at the 99% level

than the 97% level, but many of the additional 99% OTUs

occurred as singletons (Fig. S2 in File S1). Each sample had ,500

different OTUs at the 97% level and a total of 4,684 OTUs were

identified. Only slight differences were detected in the numbers of

OTUs recovered in independently sequenced datasets of the same

DNA (Lane 1 vs. 2; e.g., for 571 and 520 OTUs for AUG1-1 and

AUG1–2, respectively) or PCR replicates of the same water

sample (replicates A and B, e.g., 545 and 487 OTUs for AUG1 A

and AUG1 B, respectively), with the exception of NOV C which

had notably fewer OTUs than NOV A-B (364 vs. 706 OTUs,

respectively). Prior to the application of the aforementioned

singleton filter, most (,75%) of the OTUs were represented by

only one sequence or were present in only one dataset, indicating

that 16S-based sequencing approaches can overestimate OTU

diversity within a taxonomic group in a sample and/or capture

different members of the rare fraction. Excluding these OTUs

resulted in a total of 1,067 OTUs present in at least one of the four

samples and ,250 OTUs specific to each dataset. Only ,2% of

the OTUs were present in all 14 datasets and ,6% were found in

all four timepoints, but these OTUs comprised ,30% of the total

reads.

Accordingly, observed species richness varied between samples.

Rarefaction curves showed some of this variation among replicate

samples (same DNA, independent PCR amplifications), particu-

larly between NOV A/B (most diverse) and NOV C (least diverse)

(Fig. 1A). The discrepancy in estimated diversity levels between the

three November samples was surprising, given that the starting

DNA for all three samples was the same. Nevertheless, the three

NOV replicates were not significantly different from each other in

terms of OTU composition, as evaluated by one-way ANOSIM

[39]. All datasets shared more than half of their OTUs with both

their corresponding technical sequencing replicate (i.e., lane 1 and

lane 2) and their corresponding PCR replicate (e.g., A vs. B).

Furthermore, when the datasets were filtered to remove singletons,

the three NOV samples were highly similar to each other in terms

of OTU composition relative to the samples from the other three

timepoints (Fig. S3 in File S1). Good’s nonparametric coverage

estimator [40] was similar among NOV A/B (98.2 and 98.5,

respectively) and slightly higher for NOV C (99.2). Because the

original, non-rarefied NOV C datasets contained the fewest

sequenced reads of all the 14 datasets (Table S3 in File S1), the

difference between NOV C and NOV A/B could be related to the

sizes of the original datasets (Table S3 in File S1), and the number

of singletons captured in the datasets (resulting from sequencing or

PCR amplification artifacts) as opposed to the presence of entirely

different OTUs.

There was no significant difference (G test of independence) in

the presence/absence of OTUs at the 97% level between either

the sequencing replicates or the seven datasets representing the

various replicates from the four timepoints. However, there was

distinct partitioning of OTUs between samples in terms of relative

Strengths and Limitations of 16S rRNA Sequencing
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Figure 1. Diversity estimates for the four Lake Lanier timepoints. A) Alpha diversity based on observed species (97% OTUs) from 16S
amplicons for each of the nine samples. Error bars represent the variation observed among duplicate sequencing runs. B) Redundancy curves of the
metagenomes of the four timepoints using (see Methods for details). The curves show that NOV is a more diverse sample, e.g., with the same
sequencing effort it results in a lower coverage.
doi:10.1371/journal.pone.0093827.g001
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abundance of shared OTUs, with few differences between

sequencing replicates (Fig. S3 in File S1). Additionally, OTU

composition of AUG1, AUG2, and SEPT clustered uniquely from

the NOV samples (Fig. S3 in File S1). This was verified when

biological replicates were combined and the four timepoints were

compared, revealing that the NOV OTU composition, phylogeny

(evaluated with weighted UniFrac distance), and abundance was

significantly different from the other three timepoints (One-way

ANOSIM, p,0.01). In general, abundant taxa were common

between the four timepoints.

16S rRNA Gene-based Community Composition,
Diversity, and Dynamics between Four Timepoints
Most major bacterial phyla were present in Lake Lanier and

there was a high representation of common freshwater taxa [32]

such as Actinobacteria, Cyanobacteria, Verrucomicrobia and Proteobacteria

(particularly Betaproteobacteria). In fact, Proteobacteria and Actinobacteria

were the most frequently observed, with nearly 20–40% of the

total sequences identified as members of these phyla at each

timepoint (Fig. 2, top). About 10% of the OTUs from all lake

datasets matched previously sequenced organisms with high

sequence identity (.95%), e.g., Synechococcus sp. and Polynucleobacter

necessarius, a betaproteobacterium frequently detected in freshwater

[41]. More divergent sequences (e.g., 80–85% sequence identity)

were also observed, indicative of uncharacterized taxa more

distantly related to well-characterized lineages, although it is also

possible that some of these divergent sequences could arise from

sequencing errors (see below). Nearly 35% of the OTUs were

highly (.95% identity) similar to known freshwater 16S rRNA

sequences, including 118 OTUs with reads 100% identical to

freshwater tribes (a taxonomic level below clade defined in [32])

belonging to Actinobacteria, Alpha-, Beta- and Gamma-proteobacteria,

Bacteroidetes, and Verrucomicrobia.

The OTUs in each of the combined datasets from the four

timepoints were binned into phyla, genera, and described

freshwater lineages to better characterize the temporal shifts in a

taxonomic context. Of 17,821 sequences in each library, ,90%

could be assigned to a known phylum and between 32–47%,

depending on the dataset, to a known genus in the Greengenes

database. In addition to the differences in the 97% OTU

composition noted above, the NOV sample was significantly

different from the others in terms of phyla, genera, and clade

(ANOSIM with Bray-Curtis metric, p,0.01; Fig. 2). The

differences, however, were due more to variations in relative

abundances of specific phyla or genera than to differences in the

presence or absence of taxonomic groups at these levels (as

assessed by the G-test of independence), although phylogenetic

differences were found at a finer-scale resolution (as assessed by

UPGMA analysis and tribe-level comparisons). Thus, the same

major phyla and genera were typically found in all four timepoints,

but the abundances of these groups varied, as did individuals

comprising these groups. Similarity Percentage (SIMPER) analysis

[39] identified specific taxa as primary drivers of the differences

between samples (Fig. 2). Much of the difference (6%) between

AUG1 and NOV was attributed to OTUs that could not be

classified at the phylum level (‘‘Other Bacteria’’ in Fig. 2).

Generally, NOV had a lower relative abundance of Verrucomicrobia

and a higher relative abundance of Bacteroidetes compared to the

first three samples. Cyanobacteria abundance increased following the

storm event (AUG2) but returned to AUG1 levels (,8% of the

total phyla) in NOV.

While variation at the genus level was more difficult to assess

due the challenge of assigning genera with high confidence, we

were able to identify a number of known genera and their

freshwater taxonomic affiliations (based on the lineages described

in [32]) with significantly different relative abundances between

the four timepoints (Fig. 2). For example, Thiomonas comprised 16–

23% of the genera in AUG1-SEPT, but less than 5% of the genera

in NOV. Pelagibacter increased in relative abundance from ,6% in

AUG1–SEPT to ,16% in NOV. This genus corresponded to

LD12 tribe (alfV-A) [32], the freshwater sibling to the marine

SAR11 group (Fig. 2, bottom), which also increased in abundance

in NOV. Other genera such as Prochlorococcus-like sequences varied

between the four timepoints, and was highest in AUG2 (15%)

following the strong summer storm and lowest in AUG1 (8%).

Interestingly, Prochlorococcus is a ubiquitous marine organism [42],

but Prochlorococcus-like organisms have seldom been identified in

freshwater systems [43,44]. We suspect, however, that these

sequences were misclassified when using the RDP taxonomy, as

evidenced by the high representation of Synechococcus among both

the 16S rRNA gene amplicons re-analyzed using NCBI taxonomy

and the metagenome contigs in all four timepoints (see below), as

well as the known abundance of Synechococcus in freshwater lakes

[32]. These Prochlorococcus-like sequences were also assigned to the

Cyanothece related freshwater CyanI-A1. This illustrates one of the

difficulties in using 16S rRNA gene sequences to examine

populations at the genus level or lower.

Among the Actinomycetales that could not be assigned to a known

genus, we examined the freshwater lineages that they associated

with. The acI lineage [32] dominated all four sampling points,

typically representing 20–30% of the identified lineages. Among

the tribes affiliated with this lineage, acI-A6 and acI-C2 dominated

all samples, but showed different abundance profiles: acI-A6 was

roughly stable over time, accounting for 15–20% of the identified

lineages while acI-C2 peaked after the storm at AUG2 to about

twice the levels seen at the other timepoints. Other acI tribes such

as acI-B1 were more abundant in the NOV sample and acI-A1

was most abundant in AUG1. The second most abundant

Actinobacteria lineage, acIV, also showed variation in the abundance

profiles of the associated clades, with some increasing in

abundance in AUG2 and NOV (acIV-A), and others being nearly

absent in AUG1–SEPT but peaking in NOV (acIV-B and acIV-

C). Overall, substantial variation was seen among individual clades

and tribes comprising the identified lineages. Because there are so

few defined lake species and genera, these phylogenetic classifica-

tions cannot be gleaned from the genus level assignments and

individual OTUs do not always provide detailed taxonomic

information. Thus, comparisons to well-described, relevant 16S

rRNA gene databases such are useful when available.

Comparisons to Corresponding Metagenomes
We compared the 16S rRNA gene findings to those from

companion metagenomes, first by estimating the diversity of each

metagenomic dataset using a new method developed in our group

([45]; http://enve-omics.ce.gatech.edu/nonpareil/) that deter-

mines the relative complexity of a metagenomic dataset using

the extent of redundancy of its reads. From these estimates, the

AUG1, AUG2 and SEPT assembled contig sequences had on

average 2–5X coverage, while the NOV coverage was ,0.5X and

required significantly higher sequencing effort in order to achieve

nearly complete community coverage (Fig. 1B). These findings

agreed well with our 16S rRNA gene observations of increased

diversity in sample NOV A relative to the other timepoints and

different from NOV B and C (Fig. 1A). Thus, the metagenomic

analysis indicated that the NOV A 16S datasets were likely the

most representative of the three NOV replicates.

A combined assembly from the four metagenomic datasets was

then used to obtain reference contigs, representing distinct

Strengths and Limitations of 16S rRNA Sequencing
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Figure 2. Community composition shifts over time as revealed by 16S data. Taxonomic binning of 16S amplicon sequences for each of the
14 individual datasets at the phylum (top) and genus (middle) levels were based on the July 2011 version of the Greengenes database [31].
Freshwater lineages (bottom) were based on a freshwater database according to the taxonomy framework described in Newton et al., 2011. Datasets
are ordered left to right by date, technical sequencing replicate (lane 1 and lane 2), and DNA replicate (A, B and C). Taxa identified as major drivers of
the differences between timepoints (SIMPER analysis) are labeled (see figure key).
doi:10.1371/journal.pone.0093827.g002
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populations, and follow their abundance over time. Unlike the 16S

amplicon-based OTUs, more than 90% of which were unique to

one or more timepoints, 79% of the 217,149 contigs longer than

500 bp, were detected at all four timepoints. Despite the

differences in estimated diversity between the four metagenomic

samples (read redundancy, Fig. 1B), the differences in terms of the

composition and abundance of different contigs were not

significant (ANOSIM with Bray-Curtis metric, p,0.01). These

findings indicated that, unlike individual reads (read redundancy),

which can represent low-abundance in addition to high-abun-

dance community members, long contigs, which typically repre-

sent abundant community members, were found with roughly

similar coverage levels in the four timepoints. Additional diversity

that may have been present among shorter contigs in the

metagenome (,500 bp) was not assessed but likely differed

between the samples, similar to the read data above.

The organisms identified from 16S rRNA gene sequencing were

compared to those identified from the metagenomes. The OTUs

in each amplicon dataset were reanalyzed using NCBI taxonomy

both with and without singleton and other sequence–removal

filters (which reduced the number of identified OTUs by ,10%)

for consistency between the 16S and whole-genome. To determine

the taxonomic origin of short-read metagenomic sequences, we

used MyTaxa, an advanced taxonomic classifier developed in our

group that combines homology- and phylogenetic-based ap-

proaches to assign putative taxonomic origin to assembled contigs

[37]. Contig sequencing depth (reads/length) was used as a proxy

for taxon abundance. With this approach, 1.5 times and ,10

times as many phyla and genera, respectively, were identified

within the metagenomic contigs than the 16S amplicons (based on

OTUs found in the database), regardless of whether or not the

singleton filter was applied to the amplicon sequences. ChaoI

diversity estimates based on phylum- and genus-level assignments

were therefore different between the metagenomic and 16S

amplicon datasets (Fig. 3).

The taxonomic composition of each 16S rRNA gene library was

generally similar to its corresponding metagenome at the phylum

level, although some phyla were more represented in the

metagenome analysis than the 16S amplicon analysis, including

Firmicutes and Planctomycetes, while others such as Cyanobacteria were

more abundant among the 16S rRNA gene amplicons (Fig. S4 in

File S1). A few phyla were only found in the metagenomic contigs,

albeit in low abundances (,0.2% of the total number of phylum-

assigned contigs), and included the Dictyoglomi, Fusobacteria,

Synergistetes, and Deinococcus-Thermus. At the genus level, however,

there was a large amount of variation between the metagenomic

contigs and the 16S rRNA sequences. Some genera showed

similar trends and relative abundances over time (e.g., Legionella;

Fig. 4) while others showed substantial differences (e.g., Burkholderia

and Synechococcus; Fig. 4). Thiomonas accounted for ,45% of the

16S amplicons identified at the genus level in AUG1 (and 23% of

all OTUs using RDP taxonomy, Fig. 2), but only ,0.3% of the

metagenome contigs identified at that level. Although the

amplicon approach appears to overestimate the abundance of

this group (see below), the high abundance of this genus is

probably not wholly a PCR artifact, as almost 10% of the partial

16S rRNA gene sequences recovered in the metagenome (see

below) were 100% identical to the 16S rRNA gene amplicon

sequences assigned to Thiomonas. Part of the discrepancy between

the contig and 16S rRNA gene amplicon assignments could

instead be due to the fact that there were only two complete

Thiomonas reference genomes in the database but 243 distinct

Thiomonas OTUs in the Greengenes OTU database at the time of

analysis.

As noted above, the genus level may frequently mask important

levels of intra-genus population differentiation and heterogeneity,

which typically remain inaccessible to short-read, 16S rRNA gene-

based analysis that target a single variable region of the 16S rRNA

gene [46,47]. This was evident following a more detailed

investigation of three different genera, Synechococcus, Burkholderia,

and Legionella, whose relative abundance profiles over time varied

between the 16S rRNA gene amplicons and the metagenome.

Each of these genera was represented in the 16S amplicon data by

several different OTUs (Synechococcus, 80; Burkholderia, 18; and

Legionella, 56) and hundreds to thousands of different contigs in the

metagenomic datasets. The contigs assigned to each genus with

our MyTaxa algorithm were clustered using the Pearson

correlation metric in order to collapse the contigs into populations

with similar abundance profiles over the four timepoints, likely

representing similar populations [48]. Often, the two methods

were congruent, but this analysis revealed variations not captured

when the data were assessed at the genus level. For example,

Synechocococcus was dominated by a single 16S rRNA gene OTU for

the first three timepoints, which was replaced by two different

OTUs in the NOV sample that were either undetected or present

in low quantities at earlier timepoints, keeping the total abundance

of Synechococcus in the four samples relatively constant (Fig. S5 in

File S1). Although similar trends were observed among the

Figure 3. Sequence diversity of the samples used in this study. Chao1 diversity estimates of datasets based on phylum (A) and genus (B) level
taxonomic classification are shown for all four metagenomic timepoints and seven selected 16S amplicon datasets.
doi:10.1371/journal.pone.0093827.g003
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metagenome contigs, the contigs that increased in abundance in

the NOV sample relative to the other three were present at such

low levels that the overall percentage of Synechococcus in the NOV

sample was low, making the overall patterns observed for this

genus different between the two methods. It should also be noted

that, in contrast to Thiomonas, there are many Synechococcus

reference genomes. Populations (metagenomes) or OTUs (16S

rRNA gene data) within the other two genera examined generally

displayed a similar trend as well, i.e., several abundant taxa were

observed in the AUG1 to SEPT samples that were apparently

replaced by other taxa in NOV (Fig. S5 in File S1). Overall, the

metagenomic contigs and the 16S rRNA gene sequence data

generally agreed with each other, but the relative abundances of

the individual taxa within the genera contributed to seemingly

large differences.

We also compared partial 16S sequences recovered in a shotgun

454 metagenome generated from the AUG1 sample [29] to the

PCR-based identification of 16S rRNA gene amplicon sequences.

Among the 558 partial 16S sequences captured in the AUG1 454

metagenome, there were 302 different OTUs, approximately half

as many as in the PCR-based dataset, which had more than

30,000 individual 16S rRNA gene amplicon sequences (Fig. S2 in

File S1). However, subsampling the 16S rRNA gene amplicon

sequences to the same depth as the 16S rRNA gene reads from the

metagenome, i.e., 558, yielded only about 80 different OTUs in

each 16S rDNA amplicon dataset, indicating that the metagenome

provided more information on community composition at the per-

read level, but the number of reads obtained from the 16S rDNA

amplicon sequencing approach offset this inequality. Some phyla

such as TM7 were captured in the PCR-based datasets, albeit in

low abundance (,0.1%), but were not found among the shotgun-

derived 16S sequences, probably because of the lower number of

sequences, while others such as Chlamydiae were only found within

the shotgun 16S rRNA gene sequences, perhaps because of

primer/PCR biases in the amplicon approach. The relative

number of OTUs attributed to Actinobacteria and Verrucomicrobia was

Figure 4. Individual genera abundance shifts over time based on 16S and metagenomes. Genus-level taxonomic trends for a subset of
genera identified within the metagenomic contigs (A) and 16S rRNA amplicon (B) datasets, based on NCBI taxonomy, are shown. The lines represent
the general temporal trends of two genera, Synechococcus and Legionella, in each dataset.
doi:10.1371/journal.pone.0093827.g004
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higher among the shotgun sequences than the PCR-based

sequences and corresponded well with the lineages identified from

comparison to the freshwater 16S database (above), indicating that

the shotgun library is sometimes able to capture more taxonomic

diversity than 16S amplicons. Our observations corroborate those

seen by others that the 16S rRNA gene sequences derived from

metagenomic datasets vs. PCR amplification are roughly similar at

broad taxonomic classifications (e.g., [49]), but that the number of

OTUs identified by 16S rRNA gene sequencing is larger simply by

virtue of the number of sequences obtained and that shotgun

approaches capture greater diversity due to the lack of PCR

primer specificity [50].

Finally, to gain further insight into individual populations, full-

length 16S sequences were reconstructed separately from each of

the AUG1–SEPT metagenomes [51] and were compared to the

16S rDNA amplicon OTUs in terms of sequence similarity and

abundance patterns over the timepoints. One full-length recon-

structed OTU most likely corresponding to 16S amplicon ‘‘OTU

2’’ (represented by sequence GKJT1QE01CC3RV) was identified

as a member of the order Burkholderiales, had no known close

relative at the genus level, and comprised 16–20% of the 16S

rRNA genes among the fragments captured in the three

metagenomes. This sequence was named ‘‘FJ820419’’ for its

closest relative in the Silva 16S database. OTU 2 and FJ820419

were assigned to different families within the Burkholderiales: OTU 2

to Alcaligenaceae and FJ820419 to Burkholderiaceae. Although they

both had .98% identity to a known freshwater Betaproteobacteria

named LakTan18, neither could be assigned to taxa lower than

the family level; the closest genus match of OTU 2, with ,94%

identity, was to either Thiomonas or other uncultured Burkholderiales.

In fact, OTU 2 was the biggest contributor to the Thiomonas

sequences identified among the 16S rDNA amplicon OTUs.

Potential biases in the amplification of the 16S rRNA gene and the

short length of the 16S amplicon reads as well as the predictive

nature of the full length 16S rRNA genes sequence reconstruction

from the metagenomes confounded our ability to accurately link

the two methods to a single source organism. Nevertheless, the

relative abundances of FJ820419 in the four timepoints gauged by

recruitment of reads to the full-length FJ820419 sequence were

comparable to the abundances of OTU 2 in each amplicon

datasets (e.g., 22% vs. 28%; Fig. S6 in File S1), providing further

evidence that the metagenome and 16S rDNA amplicon

sequencing can sometimes identify the same populations, but the

taxonomic assignments are not always consistent.

Discussion

Sequencing Replicates are more Consistent than Sample
Preparation Replicates
While investigating temporal dynamics and response to

potential disturbances in a freshwater, mesotrophic lake commu-

nity, we employed numerous methodological and experimental

replicates, providing a means to comprehensively evaluate specific

limitations of some of the commonly used methods for microbial

community characterization. Although denoising and chimera

checking can reduce the number of potentially spurious sequences

arising from both PCR and sequencing errors [7], such processing

cannot eliminate all biases, as evidenced by the identification of

thirteen different OTUs in a control DNA sample generated from

only four different organisms. The filter that we used here, i.e.,

removing singletons and OTUs present in only one of our

replicate datasets, has the disadvantage of confounding our ability

to estimate diversity and identify rare members of the community.

In agreement with other recent studies [13,52], it is clear that the

inclusion of ‘‘synthetic communities’’ is highly advantageous for

16S amplicon sequencing in order to determine biases of

sequencing runs, optimal filtering, and assess samples properly.

Further, the use of replicate samples enabled us to better pinpoint

both advantages and limitations of the 16S rDNA amplicon

sequencing approach. We observed differences in the number of

OTUs and, therefore, the projected diversity, in replicate datasets

obtained from the same template DNA but from different pools of

PCR amplicons. Because replicate sequencing runs (i.e., lane 1 vs.

lane 2) were similar and the differences between the NOV

triplicates correlated with differences in the read yield and

singletons observed in each dataset, it appears that the discrep-

ancies in diversity estimates are likely introduced either at the PCR

and library preparation steps or sequencing steps, which are

virtually impossible to control even when all libraries are

constructed in the same manner. Specifically, among the three

NOV samples, the smallest dataset (NOV C) had the fewest

number of singletons and the lowest estimated diversity and the

resulting biases were not fully eliminated by sub-sampling to an

even sequencing depth prior to analysis. It is difficult to discern

whether the differences between NOV A/B and NOV C arise

from errors at the PCR step or from the lower yield of reads (and

whatever underlying cause resulted in fewer reads at the

sequencing step), but it is clear that replicate, at least triplicate,

biological samples should be prepared for 16S rDNA amplicon

sequencing from any sample, even if multiple PCRs are pooled for

a single sample. Replicate libraries from each pooled PCR sample

should be independently sequenced as well, which is increasingly

feasible given the advances and cost effectiveness of new

sequencing technologies. Nevertheless, the differences between

sample replicates (both lane 1 vs. lane 2 as well as ‘‘A, B, and C’’

PCR replicates) were small relative to the differences between the

four timepoints, at least in terms of community composition (e.g.,

Fig. S3 in File S1). Additionally, although differences in diversity

estimates between NOV A, B, and C were evident (Fig. 1A), the

NOV samples were clearly more similar to each other in terms of

OTU composition and distinct from the AUG and SEPT samples

(Fig. S3 in File S1). Therefore, the types of replicates included in a

study should be carefully considered in the context of the

comparisons being made as well as the sequencing platform being

used [53].

The 16S rRNA Gene Identifies Broad Levels of Community
Composition While Metagenomics Captures a Higher
Level of Diversity
The assignment of taxonomic origin to metagenomic sequences

continues to be a hurdle and the confidence with which 16S rRNA

gene sequences can be assigned to deep taxonomic levels such as

genus can be low. Classification of both protein-encoding and 16S

sequences is also limited by the databases used for sequence

comparisons; although there are several high quality, comprehen-

sive and curated 16S databases compared to genomic databases,

they are still limited, as evidenced by the paucity of 16S rRNA

gene reads that could confidently be assigned to a genus and the

increased resolution obtained by comparison to a relevant, well-

curated freshwater database. Many databases are biased in their

compositions; e.g., ,30% of the Greengenes database are

Proteobacteria, which comprise ,5% of the database of complete

microbial genomes used to assign taxonomic affiliations to

metagenomic contigs. We showed that when the genome database

is limited, the metagenome data can miss taxa due to sequences

being unassigned, while in cases where there are ample reference

genomes and gene sequences, genus-level assignments of the 16S

rRNA gene amplicons can be less reliable than those of the

Strengths and Limitations of 16S rRNA Sequencing
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contigs, likely due to the region of the 16S rRNA gene chosen

[54,55] and the high conservation of the 16S rRNA gene, which

can mask important level of micro-heterogeneity. By assigning

taxonomic origin to metagenomic sequences, we were able to get a

more detailed sense of the community structure than by 16S

rRNA gene sequencing alone, but the confidence with which we

can make these assignments remains a challenge. As the databases

expand, so does our ability to more accurately assign taxonomy to

reads.

Comparing the metagenomic and 16S rRNA amplicon

sequences revealed some notable patterns. Many more phyla

and genera were identified among the metagenomic than the

amplicon sequences, a likely consequence of both of the databases

used and biases in PCR amplification and amplicon sequencing.

The latter biases can produce differences in estimated diversity

levels depending on the sequencing platform, the discriminatory

power of the region of the 16S rRNA molecule targeted [53], and

the fact that some taxa such as Planctomycetes, which were seen in

higher abundance in the metagenomes (Fig. S4 in File S1), are

detected less efficiently, or not at all, by some 16S rRNA primer

sets [56]. Groups such as Proteobacteria, which are represented well

in the 16S and genome databases, showed similar abundances

between the two approaches. Binning either the contigs or the 16S

rDNA amplicons into taxonomic groups at finer-scale resolution

(i.e., genus level or species level) provided vastly different pictures

of community composition for many, but not all, taxa. We also

demonstrated that evaluating genus-level trends masks the

variation and diversity of individual ‘‘species’’ or OTUs/genotypes

within any genus, which can be partially overcome by binning

both metagenomic contigs and 16S rRNA gene sequences into

OTU-like units based on recruitment of reads to contigs and

percent identities, respectively.

It is clear from our analysis that different patterns arise for

different groups of organisms depending on the analysis method

used. Metagenomic contigs, 16S rRNA gene sequences encoded in

metagenomic data, and 16S rDNA amplicon sequences were

sometimes concurrent, especially for taxa that were both abundant

in the sample and well-represented in 16S rRNA and genome

databases, while other times they provided a vastly different

picture of microbial community composition and dynamics. For

example, Synechococcus populations, one of the most abundant

genera detected by both approaches, were tracked with higher

resolution, both in terms of number of distinct OTUs present as

well as OTU abundance patterns over time, by metagenomics

(Fig. S5 in File S1). The 16S rDNA amplicon approach clearly has

the potential to artificially increase the perceived diversity of a

sample more so than the metagenome due to errors or artifacts, as

evidenced by our examination of a mixture of known 16S rRNA

gene sequences. As long as sufficient reference genomes exist for

identification, the metagenome performs well in describing the

taxonomic composition of a sample. In addition, metagenomics

offers the potential to investigate 16S rRNA gene fragments

recovered in metagenomic reads without amplification as well as

robust taxonomic assignment of contigs, description of genomic

populations based on contig dynamics, and even the reconstruc-

tion of full-length 16S rRNA gene sequences.

Temporal Changes in Microbial Community Composition
In evaluating microbial communities, it is informative to not

only quantify the relative abundances of different taxa, but also to

track these abundances over time and following potential

perturbations such as heavy rainfall or lake turnover. We are

particularly interested in such dynamics in Lake Lanier due to its

regional significance and the general lack of information on

microbial communities in southern temperate lakes. Taking the

above limitations in assigning taxonomic affiliations to both 16S

rDNA amplicon and metagenomic sequences into account, we

observed members of several organisms that showed different

patterns of abundance across the four samples taken on short-term

timescale. The microbial communities from Lake Lanier experi-

ence broad shifts in community diversity over the course of several

months, but the community changed little over the course of 3

days, despite the occurrence of a strong summer storm between

the first two sampling timepoints. The resistance of the microbial

community to the pulse disturbance of high precipitation was

somewhat surprising, given that many microbial communities are

sensitive to ecosystem-level disturbances [57]. However, our

observations combined with the fact that there was no discernable

difference in the basic water chemistry before and after the storm

(Table S1 in File S1) indicate that either such a rainfall event was

not a chemical or thermal disturbance or that the system

recovered more rapidly than our sampling scheme could detect.

In contrast, the community changed more substantially between

August and November, correlating to in situ conditions in the lake

such as the transition from stratified to well-mixed (Fig. S1 in File

S1; Table S1 in File S1), consistent with previous observations that

bacterioplakton often experience seasonal shifts in both lakes [58–

60] and marine environments [2]. Thus, short-term, pulse

disturbances related to a meteorological event sometimes have

less of an effect on the microbial communities than anticipated

while long-term disturbances occurring that occur during lake

turnover can cause significant shifts in microbial community

composition. The general trends for the microbial community

diversity observed from metagenomic reads and 16S rDNA

amplicon reads were comparable: both approaches showed similar

diversity levels in AUG1, AUG2, and SEPT and that the NOV

sample was relatively more diverse. Mixing events have previously

been identified as disturbances that can dramatically shift

microbial community composition [61,62]. When mixing events

were performed in experimental manipulations, changes in

community composition were presumed to be due to the

introduction of nutrients from the hypolimnion [61]. Similar to

our observations in the NOV timepoint, epilimnion samples in

experimental manipulations were also shown to increase in

richness following lake mixing [62]. Using a combination of

metagenomics to track contigs and 16S rRNA gene sequencing to

track OTUs between the four temporally separated samples from

Lake Lanier, we were also able to identify some general patterns in

bacterioplankton community composition, although the specific

dynamics sometimes differed between the two methods, as noted

above. The changes in community composition in Lake Lanier

between the first three timepoints and the fall mixing sometimes

echoed shifts in individual taxa seen in very different northern

lakes that experience ice cover; for example, both LD12, the

freshwater Pelagibacter relative, and a member of the acIV lineage

increased in abundance in NOV in Lake Lanier and also peaked

in autumn in a Swedish lake [25]. In a North Sparkling Bog in the

northern US, there was a slight increase in Gammaproteobacteria

post-mixing, similar to in Lake Lanier [62]. Despite these

similarities, we observed many taxa whose abundances over time

did not correspond with those in these northern lakes, indicating

that bacterioplankton in southern temperate lakes such as Lake

Lanier might behave differently in response to similar seasonal

changes than their relatives in northern lakes.

This study provides insights into the Lake Lanier planktonic

microbial community and advances the approaches for assessing

microbial community diversity and dynamics in situ. A combined

approach using both metagenomics and 16S rRNA gene
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sequences can help provide a complete picture, but sequencing

controls and replicates are advised, especially when trying to infer

diversity levels. Using 16S rRNA gene fragments recovered in a

shotgun metagenome has the benefit of removing the initial PCR

amplicon biases and providing a means to do both functional

genomics and 16S analysis with the same sequence dataset. Here,

we demonstrated that Lake Lanier microbial communities are

resistant to a short-term rainfall disturbance in the summer, but

shift in composition and diversity during the fall mixing, although

these shifts do not always correspond to those seen in other, well-

studied freshwater lakes. Continued, long-term seasonal charac-

terizations of Lake Lanier will help validate the patterns observed

here.

Supporting Information

File S1 The file includes Figures S1 to S6 and Table S1
to S4. Figure S1 Dissolved oxygen and temperature profiles for

July–December 2009 at the Brown’s Bridge location of Lake

Lanier. Figure S2 Number of OTUs identified in each dataset.

Figure S3 Similarity of datasets based on shared OTUs. Figure S4

Differences in phylum abundance based on 16S and metagen-

omes. Figure S5 Differences in abundance of individual genera

based on 16S and metagenomes. Figure S6 Abundance of an

individual Burkholderia-like population based on 16S amplicon vs.

16S metagenomic reads. Table S1 Characteristics of Lake Lanier

at Brown’s Bridge for several dates in 2009. Table S2 V1, V3

specific primers used for amplification of the 16S rRNA gene.

Table S3 16S rRNA gene amplicon library statistics. Table S4

metagenome library statistics.

(PDF)

Acknowledgments

We thank R. Fuller for sharing Lake Lanier metadata collected under

contract with the Upper Chattahoochee Basin. We also thank Timothy

Read and Chad Haase of the Emory University Genomics Facility for

sequencing the samples.

Author Contributions

Conceived and designed the experiments: RP DT KTK. Performed the

experiments: RP DT. Analyzed the data: RP LMR CL. Contributed

reagents/materials/analysis tools: RP LMR CL DT KTK. Wrote the

paper: RP KTK.

References

1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009)

Bacterial community variation in human body habitats across space and time.

Science 326: 1694–1697.

2. Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, et al. (2012)

Defining seasonal marine microbial community dynamics. ISME J 6: 298–308.

3. Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, et al. (2004)

Annual patterns in bacterioplankton community variability in a humic lake.

Microb Ecol 48: 550–560.

4. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, et al. (2011)

Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13:

135–144.

5. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, et al. (2006)

Microbial diversity in the deep sea and the underexplored ‘‘rare biosphere’’.

Proc Natl Acad Sci U S A 103: 12115–12120.

6. Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate

determination of microbial diversity from 454 pyrosequencing data. Nat

Methods 6: 639–641.

7. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing Noise

From Pyrosequenced Amplicons. BMC Bioinformatics 12.

8. Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, et al. (2009)

Comparison of species richness estimates obtained using nearly complete

fragments and simulated pyrosequencing-generated fragments in 16S rRNA

gene-based environmental surveys. Appl Environ Microbiol 75: 5227–5236.

9. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles

in the rare biosphere through improved OTU clustering. Environ Microbiol 12:

1889–1898.

10. McDonald IR, Kampfer P, Topp E, Warner KL, Cox MJ, et al. (2005)

Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from

various terrestrial environments. Int J Syst Evol Microbiol 55: 1827–1832.

11. Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species

definition in the genomic era. Philos Trans R Soc B Biol Sci 361: 1929–1940.

12. Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS

Microbiol Rev 25: 39–67.

13. Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, et al. (2013)

Comparative metagenomic and rRNA microbial diversity characterization using

Archaeal and Bacterial synthetic communities. Environ Microbiol 15: 1882–

1899.

14. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial

community assembly based on functional genes rather than species. Proc Natl

Acad Sci U S A 108: 14288–14293.

15. Gilbert JA, Field D, Swift P, Thomas S, Cummings D, et al. (2010) The

taxonomic and functional diversity of microbes at a temperate coastal site: a

‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5: e15545.

16. Rodriguez-Brito B, Li LL, Wegley L, Furlan M, Angly F, et al. (2010) Viral and

microbial community dynamics in four aquatic environments. ISME J 4: 739–

751.

17. Bazinet AL, Cummings MP (2012) A comparative evaluation of sequence

classification programs. BMC Bioinformatics 13: 92.

18. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, et al. (2011) Analyzing

and minimizing PCR amplification bias in Illumina sequencing libraries.

Genome Biol 12 doi:10.1186/gb-2011-12-2-r18.

19. Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in
metagenomes from complex microbial communities. ISME J 3: 1314–1317.

20. Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities
inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac

Symp Biocomput: 165–176.

21. Steven B, Gallegos-Graves L, Starkenburg SR, Chain PS, Kuske CR (2012)

Targeted and shotgun metagenomic approaches provide different descriptions of

dryland soil microbial communities in a manipulated field study. Environ
Microbiol Rep 4: 248–256.

22. Portillo MC, Anderson SP, Fierer N (2012) Temporal variability in the diversity
and composition of stream bacterioplankton communities. Environ Microbiol

14: 2417–2428.

23. Yannarell AC, Kent AD, Lauster GH, Kratz TK, Triplett EW (2003) Temporal

patterns in bacterial communities in three temperate lakes of different trophic
status. Microb Ecol 46: 391–405.

24. Zwisler W, Selje N, Simon M (2003) Seasonal patterns of the bacterioplankton
community composition in a large mesotrophic lake. Aquat Microb Ecol 31:

211–225.

25. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association

networks among lake bacterioplankton taxa. ISME J 6: 330–342.

26. Lindstrom ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of

typical freshwater bacterial groups is associated with pH, temperature, and lake
water retention time. Appl Environ Microbiol 71: 8201–8206.

27. Crump RC, Adams HE, Hobbie JE, Kling GW (2007) Biogeography of
bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology

88: 1365–1378.

28. Methe BA, Zehr JP (1999) Diversity of bacterial communities in Adirondack

lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401:
77–96.

29. Oh S, Caro-Quintero A, Tsementzi D, Deleon-Rodriguez N, Luo C, et al.
(2011) Metagenomic insights into the evolution, function, and complexity of the

planktonic microbial community of Lake Lanier, a temperate freshwater

ecosystem. Appl Environ Microbiol 77: 6000–6011.

30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010)

QIIME allows analysis of high-throughput community sequencing data. Nat
Methods 7: 335–336.

31. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006)
Greengenes, a chimera-checked 16S rRNA gene database and workbench

compatible with ARB. Appl Environ Microbiol 72: 5069–5072.

32. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A Guide to

the Natural History of Freshwater Lake Bacteria. Microbiol Mol Biol Rev 75:
14–49.

33. Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2010) De novo assembly of
human genomes with massively parallel short read sequencing. Genome Res 20:

265–272.

34. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18: 821–829.

35. Luo C, Tsementzi D, Kyrpides NC, Konstantinidis KT (2012) Individual

genome assembly from complex community short-read metagenomic datasets.
ISME J 6: 898–901.

36. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in
metagenomic sequences. Nucleic Acids Res 38: e132.

Strengths and Limitations of 16S rRNA Sequencing

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e93827



37. Luo C Konstantinidis KT (Under revision) MyTaxa: an advanced taxonomic

classifier for genomic and metagenomic sequences. Nuc Acids Res.

38. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. (2012)

Ultra-high-throughput microbial community analysis on the Illumina HiSeq and

MiSeq platforms. ISME J 6: 1621–1624.

39. Clarke KR (1993) Non-parametric multivariate analyses of changes in

community structure. Aust J Ecol 18: 117–143.

40. Good IJ, Toulmin GH (1956) The Number of New Species, and the Increase in

Population Coverage, When a Sample Is Increased. Biometrika 43: 45–63.

41. Hahn MW (2003) Isolation of strains belonging to the cosmopolitan

Polynucleobacter necessarius cluster from freshwater habitats located in three

climatic zones. Appl Environ Microbiol 69: 5248–5254.

42. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic

prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127.

43. Corzo A, Jimenez-Gomez F, Gordillo FJL, Garcia-Ruiz R, Niell FX (1999)

Synechococcus and Prochlorococcus-like populations detected by flow cytometry in a

eutrophic reservoir in summer. J Plankton Res 21: 1575–1581.

44. Stenuite S, Tarbe A-L, Sarmento H, Unrein F, Pirlot S, et al. (2009)

Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns

with depth, season and basin. J Plankton Res 31: 1531–1544.

45. Rodriguez-R L, Konstantinidis K (2013) Nonpareil: A redundancy-based

approach to. assess the level of coverage in metagenomic datasets. Bioinformatics

doi:10.1093/bioinformatics/btt584.

46. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and

redundancy of 16S rRNA sequences in genomes with multiple rrn operons.

J Bacteriol 186: 2629–2635.

47. Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in

the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:

504–509.

48. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE (2012) The binning of

metagenomic contigs for microbial physiology of mixed cultures. Front

Microbiol 3: 410.

49. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, et al.

(2008) High-resolution metagenomics targets specific functional types in complex

microbial communities. Nat Biotechnol 26: 1029–1034.

50. Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O’Dwyer JP, et al. (2011)

PhylOTU: a high-throughput procedure quantifies microbial community

diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol

7: e1001061.
51. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF (2011) EMIRGE:

reconstruction of full-length ribosomal genes from microbial community short

read sequencing data. Genome Biol 12: R44.
52. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, et al. (2013)

Quality-filtering vastly improves diversity estimates from Illumina amplicon
sequencing. Nat Meth 10: 57–59.

53. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, et al. (2010)

Comparison of two next-generation sequencing technologies for resolving highly
complex microbiota composition using tandem variable 16S rRNA gene regions.

Nucleic Acids Res 38: e200.
54. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for

rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol 73: 5261–5267.

55. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, et al. (2012)

Impact of training sets on classification of high-throughput bacterial 16S rRNA
gene surveys. The ISME journal 6: 94–103.

56. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, et al. (2013) Evaluation
of general 16S ribosomal RNA gene PCR primers for classical and next-

generation sequencing-based diversity studies. Nucleic Acids Res 41: e1

doi:10.1093/nar/gks808.
57. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in

microbial communities. Proc Natl Acad Sci U S A 105: 11512–11519.
58. Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007)

Synchrony in aquatic microbial community dynamics. ISME J 1: 38–47.
59. Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community

composition following nutrient additions in a eutrophic lake. Environ Microbiol

13: 887–899.
60. Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, et al. (2007) Interannual

dynamics and phenology of bacterial communities in a eutrophic lake. Limnol
Oceanogr 52: 487–494.

61. Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, et al. (2011) Resistance,

resilience and recovery: aquatic bacterial dynamics after water column
disturbance. Environ Microbiol 13: 2752–2767.

62. Shade A, Read JS, Youngblut ND, Fierer N, Knight R, et al. (2012) Lake
microbial communities are resilient after a whole-ecosystem disturbance. ISME J

6: 2153–2167.

Strengths and Limitations of 16S rRNA Sequencing

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e93827


